research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ2-trans-1,2-Bis­(pyridin-4-yl)ethene-κ2N:N′]bis­­{[1,2-bis­­(pyridin-4-yl)ethene-κN]bis­­[N-(2-hy­droxy­eth­yl)-N-iso­propyl­di­thio­carbamato-κ2S,S′]cadmium} aceto­nitrile tetra­solvate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and dCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 June 2016; accepted 4 July 2016; online 12 July 2016)

The asymmetric unit of the title compound, [Cd2(C12H10N2)3(C6H12NOS2)4]·4C2H3N, comprises a CdII atom, two di­thio­carbamate (dtc) anions, one and a half trans-1,2-dipyridin-4-yl­ethyl­ene (bpe) mol­ecules and two aceto­nitrile solvent mol­ecules. The full binuclear complex is generated by the application of a centre of inversion. The dtc ligands are chelating, one bpe mol­ecule coordinates in a monodentate mode while the other is bidentate bridging. The resulting cis-N2S4 coordination geometry is based on an octa­hedron. Supra­molecular layers, sustained by hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O—H⋯N(bpe) hydrogen bonding, inter­penetrate to form a three-dimensional architecture; voids in this arrangement are occupied by the aceto­nitrile solvent mol­ecules. Additional inter­molecular inter­actions falling within the specified framework have been analysed by Hirshfeld surface analysis, including ππ inter­actions.

1. Chemical context

The recent disclosure of one-dimensional, supra­molecular isomers of {Cd[S2CN(iPr)CH2CH2OH]2}n notwithstanding (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.], 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]), the overwhelming majority of binary bis­(di­alkyl­dithio­carbamato) compounds of cadmium are usually binuclear with a coordination number of five owing to the presence of equal numbers of chelating and μ2-tridentate ligands, i.e. are of general formula [Cd(S2CNR2)2]2 (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Tan et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]). However, the dimeric and polymeric aggregates are readily broken down in the presence of bases such as monodentate pyridine, e.g. {Cd[S2CN(CH2C(H)Me2)2]2(pyridine)} (Rodina et al., 2011[Rodina, T. A., Ivanov, A. V., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263-270.]) and bidentate 2,2′-bi­pyridine, e.g. [Cd(S2CN(Me)iPr)2(2,2′-bi­pyridine)] (Wahab et al., 2011[Wahab, N. A. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m551-m552.]). Bridging N-donors lead to a greater variety of structures such as the zero-dimensional binuclear compound, [Cd(S2CNPr2)2(2-pyridine­aldazine)]2 (Poplaukhin & Tiekink, 2008[Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176.]) and supra­molecular chains, e.g. [Cd(S2CNEt2)2(μ2-1,2-bis­(4-pyrid­yl)ethyl­ene)]n (Chai et al., 2003[Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]). The addition of hydrogen-bonding functionality in the di­thio­carbamate ligands has greatly enhanced the supra­molecular chemistry landscape of related compounds. As a recent exemplar, the formally monomeric compound {Cd[S2CN(iPr)CH2CH2OH]2}(piperazine) self-assembles into a two-dimensional array via hy­droxy-O—H⋯O(hy­droxy), hy­droxy-O—H⋯N(terminal-piperazine) and coordinating piperazine-N—H⋯O(hy­droxy) hydrogen bonds (Safbri et al., 2016[Safbri, S. A. M., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 158-163.]). As a continuation of investigations in this area, the crystal and mol­ecular structure as well as Hirshfeld surface analysis of the title binuclear compound, {Cd[S2CN(iPr)CH2CH2OH]2[(4-NC5H4)C=C6H4N-4)]}2[(4-NC5H4)C=C6H4N-4)]·4CH3CN, (I)[link], featuring both bidentate bridging and monodentate trans-1,2-dipyridin-4-yl­ethyl­ene ligands is described herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the binuclear title compound, {Cd[S2CN(iPr)CH2CH2OH]2[(4-NC5H4)C=C6H4N-4)]}2[(4-NC5H4)C=C6H4N-4)]·4CH3CN, (I)[link], Fig. 1[link], is situated about a centre of inversion; two aceto­nitrile mol­ecules of solvation complete the asymmetric unit. Each CdII atom is coordinated by two di­thio­carbamate ligands and two nitro­gen atoms, one derived from a monodentate trans-1,2-dipyridin-4-yl­ethyl­ene (bis­pyridyl­ethene; bpe) ligand and another from one end of a bidentate, bridging bpe ligand (located about a centre of inversion). The di­thio­carbamate ligands coordinate with significant differences in their Cd—S bond lengths, Table 1[link]. Thus, Δ(Cd—S) = d(Cd—Slong) – d(Cd—Sshort) = 0.15 Å for the S1-di­thio­carbamate ligand cf. 0.10 Å for the S3-ligand. Nevertheless, there is considerable delocalization of π-electron density in the CdS2C chelate rings as evidenced by the equivalence of the associated C—S bond lengths, Table 1[link]. The coordination geometry is based on an octa­hedron. In this description, the more tightly bound S1 and S3 atoms are trans [178.06 (3)°] and the less tightly bound sulfur atoms are trans to nitro­gen atoms, Table 1[link], implying the nitro­gen donors are cis. The distortions from the ideal geometry are readily related to the restricted bite angles of the chelating ligands, Table 1[link]. Both bpe ligands exhibit twists as seen in the values of the C14—C15—C18—C18i and C22—C21—C24—C25 torsion angles of −12.2 (6) and 13.9 (5)° for the bi- and mono-dentate ligands, respectively; symmetry code: (i) 2 − x, −y, 1 − z.

Table 1
Selected geometric parameters (Å, °)

Cd—S1 2.6019 (8) Cd—N4 2.454 (3)
Cd—S2 2.7457 (8) C1—S1 1.726 (3)
Cd—S3 2.6043 (8) C1—S2 1.717 (3)
Cd—S4 2.6967 (8) C7—S3 1.721 (3)
Cd—N3 2.439 (3) C7—S4 1.727 (3)
       
S1—Cd—S2 67.31 (2) S2—Cd—N4 152.04 (6)
S1—Cd—S3 178.06 (3) S3—Cd—S4 68.00 (2)
S1—Cd—S4 112.08 (3) S3—Cd—N3 86.63 (7)
S1—Cd—N3 93.39 (7) S3—Cd—N4 95.94 (6)
S1—Cd—N4 85.98 (6) S4—Cd—N3 154.39 (6)
S2—Cd—S3 110.75 (3) S4—Cd—N4 97.72 (6)
S2—Cd—S4 99.85 (3) N3—Cd—N4 80.87 (9)
S2—Cd—N3 92.19 (7)    
[Figure 1]
Figure 1
The mol­ecular structure of the binuclear title compound in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation (2 − x, −y, 1 − z.). The aceto­nitrile solvent mol­ecules have been omitted for clarity.

3. Supra­molecular features

Geometric details of the significant inter­molecular inter­actions are given in Table 2[link]. In the packing, hy­droxy-O—H⋯O(hy­droxy) hydrogen bonding leads to supra­molecular ladders as illustrated in Fig. 2[link]a. These ladders are connected into layers parallel to (101) via hy­droxy-O—H⋯N(bpe) hydrogen bonds where the nitro­gen atom is derived from the monodentate bpe ligand. Additional ethene-C—H⋯O(hy­droxy) inter­actions are found within this framework, Table 2[link]. As seen from Fig. 2[link]b, this arrangement leads to rectangular channels with Cd⋯Cd separations, which approximate the edges, being 14 and 16 Å. Successive channels are largely occupied by other supra­molecular layers, leading to a three-dimensional, concatenated architecture. The smaller voids defined by the inter­penetrated structure are occupied by the solvent aceto­nitrile mol­ecules, Fig. 2[link]c. The N7-aceto­nitrile mol­ecule is connected to the host framework by pyridyl-C—H⋯N(aceto­nitrile) inter­actions whereas the N6-aceto­nitrile mol­ecule does not form significant inter­actions in accord with the criteria embodied in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). This is reflected in the greater displacement ellipsoids for this mol­ecule cf. with the N7-containing mol­ecule. Further analysis of the mol­ecular packing, e.g. pyrid­yl⋯pyridyl inter­actions, is given in the following Section.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N5i 0.83 (4) 1.82 (4) 2.655 (4) 177 (3)
O2—H2O⋯O1ii 0.84 (3) 1.87 (3) 2.689 (3) 165 (5)
C25—H25⋯O2iii 0.95 2.44 3.261 (4) 145
C28—H28⋯N7iv 0.95 2.56 3.296 (7) 134
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+2; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of the supra­molecular ladder sustained by hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, shown as orange dashed lines, (b) two-dimensional framework whereby the layers in (a) are connected by hy­droxy-O—H⋯N(bpe) hydrogen bonds, shown as blue dashed lines, (c) view of the unit-cell contents shown in projection down the a axis, highlighting the inter­penetration of successive supra­molecular layers, illustrated in orange and green, with solvent aceto­nitrile mol­ecules shown in black.

4. Analysis of the Hirshfeld surfaces

Recent Hirshfeld surface analyses of zinc-triad hy­droxy­ethyl-substituted di­thio­carbamates has provided key insight into their mol­ecular packing over and beyond hydrogen-bonding considerations. For example, the relatively unusual C—H⋯π(chelate) inter­actions (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]) observed in [Hg(S2CN(CH2CH2OH)2]n (Howie et al., 2009[Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Chem. Crystallogr. 39, 293-298.]), are clearly delineated in the Hirshfeld analysis of the mol­ecular packing (Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231. doi: 10.1515/zkri-2016-1943.]). In the present study, using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]), the Hirshfeld surfaces were mapped over dnorm, shape-index, curvedness and electrostatic potential for the asymmetric unit of (I)[link]. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) integrated into Crystal Explorer. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO–3G basis set at Hartree–Fock level of theory over a range ±0.13 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) provides a summary of inter­molecular contacts in the crystal.

Two views of Hirshfeld surfaces mapped over dnorm in the −0.2 to 1.8 Å range are shown in Fig. 3[link]. The bright-red spots appearing near pyridyl-N5, hy­droxy-O1 and hydrogen atoms H1O and H2O indicate their role as the respective donors and acceptors in the dominant O—H⋯O and O—H⋯N hydrogen bonds; they also appear as blue and red regions, respectively, corresponding to positive and negative electrostatic potentials on the Hirshfeld surface mapped over electrostatic potential, Fig. 4[link]. The light-red spots near ethene-H25, pyridyl-C28 and hy­droxy-O2 in Fig. 3[link] and near aceto­nitrile-N7, Fig. 5[link]a, indicate their involvement in the inter­molecular ethene-C—H⋯O(hy­droxy) and pyridyl-C—H⋯N(acetonitrile) inter­actions. The presence of short inter­molecular C⋯C and C⋯H contacts, Table 3[link], is also evident from the light-red spots appearing near the pyridyl-C16, C19 and C24 and methyl­ene-H3A atoms in Fig. 3[link]. The C18—C18i link of the bridging bpe ligand can be viewed as a bright-red region around the C18 atom in the dnorm mapped surface, Fig. 3[link], and as a light-blue region surrounded by a pair of light-red arcs on the surface mapped over electrostatic potential, Fig. 4[link]b; this arises as it is the asymmetric unit that has been investigated not the entire binuclear mol­ecule. With respect to the aceto­nitrile molecule the dnorm mapped surfaces show only the aceto­nitrile-N7 to be involved in a significant inter­molecular C—H⋯N inter­action (Fig. 5[link]a, Table 2[link]), and both aceto­nitrile mol­ecules had very similar Hirshfeld surfaces mapped over electrostatic potential to that for the N7-mol­ecule illustrated in Fig. 5[link]b.

Table 3
Summary of short inter­atomic contacts (Å)

Contact Distance Symmetry
S1⋯H6A 2.98 2 − x, −y, 2 − z
S4⋯H18 2.97 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
O1⋯H11C 2.64 x, −1 + y, z
O2⋯H30 2.66 2 − x, 1 − y, 2 − z
C1⋯H20 2.83 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C3⋯H2O 2.69 (3) x, −1 + y, z
C24⋯H3A 2.72 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C28⋯H1O 2.83 (3) 1 + x, [{1\over 2}] − y, [{1\over 2}] + z
C29⋯H1O 2.67 (4) 1 + x, [{1\over 2}] − y, 1 + z
C16⋯C19 3.245 (4) 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C16⋯C20 3.377 (5) 2 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H5A⋯H23 2.31 2 − x, −y, 2 − z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm. The contact points (red) are labelled to indicate the atoms participating in the inter­molecular inter­actions.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over the electrostatic potential with positive and negative potential indicated in blue and red, respectively.
[Figure 5]
Figure 5
A view of the (a) Hirshfeld surface mapped over dnorm and (b) Hirshfeld surface mapped over the electrostatic potential with positive and negative potential indicated in blue and red, respectively, for the N7-aceto­nitrile mol­ecule.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]b-g, respectively; their relative contributions are summarized in Table 4[link]. The H⋯H contacts make the greatest contribution to the Hirshfeld surface, i.e. 51.9% which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule; the single peak at de = di ∼1.15 Å results from a short inter­molecular H⋯H contact between the isopropyl-H5A and pyridyl-H23 atoms, Table 3[link]. In the fingerprint plot delineated into O⋯H/H⋯O contacts, the 6.0% contribution to the Hirshfeld surface arises from the inter­molecular O—H⋯O hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼1.8 Å in Fig. 6[link]c. The inter­molecular C—H⋯O inter­actions and short O⋯H/H⋯O contacts, listed in Table 3[link], are masked by the strong O—H⋯O hydrogen bonding in this plot.

Table 4
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface

Contact Contribution
H⋯H 51.9
O⋯H/H⋯O 6.0
C⋯H/H⋯C 15.9
N⋯H/H⋯N 10.6
C⋯C 3.1
S⋯H/H⋯S 10.3
C⋯S/S⋯C 0.8
N⋯S/S⋯N 0.7
C⋯N/N⋯C 0.7
[Figure 6]
Figure 6
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) N⋯H/H⋯N, (f) C⋯C and (g) S⋯H/H⋯S.

In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into C⋯H/H⋯C contacts with 15.9% contribution to the Hirshfeld surface, Fig. 6[link]d, and the pair of thin edges at de + di ∼2.7 Å result from short inter­atomic C⋯H/H⋯C contacts, Table 3[link]. A pair of spikes at de + di ∼1.8 Å correspond to N⋯H/H⋯N contacts, Fig. 6[link]e, confirm the presence of inter­molecular O—H⋯N and C—H⋯N inter­actions. The C⋯C contacts assigned to short inter­atomic C16⋯C19 and C16⋯C20 contacts listed in Table 3[link] and ππ stacking inter­actions within the three-dimensional architecture described in Supra­molecular features appear as the two distinct distributions of points in Fig. 6[link]f. The vertex at de = di = 1.6 Å in the approximately triangular distribution of points in the plot corresponds to short inter­molecular C⋯C contacts. The presence of ππ stacking inter­actions between the centrosymmetrically related N5-pyridyl rings [inter-centroid distance = 3.674 (2) Å, symmetry code: 3 − x, 1 − y, 2 − z] is reflected through the appearance of green points around de = di ∼1.8 Å, the red and blue triangle pairs on the Hirshfeld surface mapped with shape-index property identified with arrows in the image of Fig. 7[link], and in the flat region on the Hirshfeld surface mapped over curvedness in Fig. 8[link]. Finally, the S⋯H/H⋯S contacts in the structure with a 10.3% contribution to the surface has a nearly symmetrical distribution of points, Fig. 6[link]g, with the tips at de + di ∼2.95 Å arising from the short inter­atomic S⋯H/H⋯S contacts listed in Table 3[link].

[Figure 7]
Figure 7
View of Hirshfeld surface mapped with shape-index property. The pairs of red and blue regions, identified with arrows, indicate ππ stacking inter­actions.
[Figure 8]
Figure 8
A view of Hirshfeld surface mapped over curvedness for (I)[link]. The flat regions highlight the involvement of rings in ππ stacking inter­actions.

An additional descriptor, the enrichment ratio (ER), may be calculated on the basis of Hirshfeld surface analysis (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). This provides further insight into the mol­ecular packing as it indicates the relative propensities to form specific inter­molecular inter­actions. The ER values for (I)[link] are collected in Table 5[link]. The ER value close to but slightly less than unity for H⋯H contacts, i.e. 0.97, is in accord with expectation (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). The ER value of 1.36 for O⋯H/H⋯O contacts is in the expected 1.2–1.6 range and confirms the involvement of these atoms in the inter­molecular O—H⋯O and C—H⋯O inter­actions. The ER value of 1.20 resulting from the 6% of the surface comprising nitro­gen atoms and the 10.6% contribution to the Hirshfeld surface from N⋯H/H⋯N contacts is due to the presence of O—H⋯N hydrogen bonding and the C—H⋯N(aceto­nitrile) inter­action. The high enrichment ratio of 2.23 for the C⋯C contacts reflects the formation of significant ππ stacking inter­actions and short C⋯C contacts as mentioned above. The ER value close to unity, i.e. 0.92, for C⋯H/H⋯C contacts shows their propensity to form short inter­molecular C⋯H/H⋯C contacts. The ER values < 1 related to other contacts and low percentage contribution to the surface do not show any significance in the crystal packing.

Table 5
Enrichment ratios (ER)

Contact ER
H⋯H 0.97
O⋯H/H⋯O 1.36
N⋯H/H⋯N 1.20
C⋯C 2.23
S⋯H/H⋯S 1.19
C⋯H/H⋯C 0.92
C⋯S/S⋯C 0.58
C⋯N/N⋯C 0.49

5. Database survey

There is a sole example of a cadmium di­thio­carbamate coordinated by bpe in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), namely [Cd(S2CNEt2)2(μ-bpe)]n, which is a linear coordination polymer with a trans-N2S4 donor set (Chai et al., 2003[Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]). Reflecting the smaller size of zinc compared to cadmium, the zinc analogues are binuclear zero-dimensional with bpe bridging two five-coordinate (NS4) zinc atoms (Arman et al., 2009[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472-m1473.]). Even in the presence of excess bpe, the [Zn(S2CNEt2)2]2(μ-bpe) species still forms with non-coordinating bpe included in the structure (Lai & Tiekink, 2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). For the analogous xanthate structures, luminescent, zero-dimensional [Zn(S2COCyEt)2]2(μ-bpe) and one-dimensional [Zn(S2COEt)2(μ-bpe)]n are formed with the dimensionality correlated with the steric bulk of the xanthate-bound R groups (Kang et al., 2010[Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247-1256.]). With the sterically unencumbered cadmium di­thio­phosphate analogues, linear coordination polymers are formed regardless of the size of R, i.e. for {Cd[S2P(OR)2]2(μ-bpe)}n, R = iPr and Cy (Lai & Tiekink, 2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.]).

There are literature precedents for both bidentate, bridging and monodentate bpe ligands in cadmium structures as observed in (I)[link], i.e. [Cd(NO3)(μ2-NO3)(μ-bpe)(bpe)(OH2)]n (Dong et al., 1999[Dong, Y. B., Layland, R. C., Smith, M. D., Pschirer, N. G., Bunz, U. H. F. & zur Loye, H.-C. (1999). Inorg. Chem. 38, 3056-3060.]) and [Cd2(SSO3)2(μ-bpe)(bpe)2(OH2)4]n (Paul et al., 2011[Paul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741-5749.]). Another structure has both bridging and monodentate bpe ligands as well as non-coordinating bpe ligands (and non-coordinating 4,4′-bipyrid­yl), i.e. [Cd(NO3)(μ-bpe)(bpe)2(OH2)2]NO3(bpe)(4,4′-bipyrid­yl)(H2O)4.45 (Lu et al., 2001[Lu, J. Y., Runnels, K. A. & Norman, C. (2001). Inorg. Chem. 40, 4516-4517.]).

6. Synthesis and crystallization

The title compound was isolated regardless of the ratio, i.e. 2:1, 1:1 or 1:2, between the precursor mol­ecules. In a typical experiment, Cd[S2CN(iPr)CH2CH2OH]2 (190 mg, 0.50 mmol) was dissolved in boiling aceto­nitrile (30 ml). trans-1,2-Dipyridin-4-yl­ethyl­ene (47 mg, 0.25 mmol) was added to this solution, which was allowed to slowly cool to room temperature. Yellow prisms precipitated within an hour. The yield was not measured but was close to qu­anti­tative based on Cd. M.p. = 463–465 K (uncorrected). IR (neat solid, cm−1): 1607 m, 1449 ms, 1407 s, 1170 s, 1037 s, 968 s, 954 s, 824 s. NMR: 1H δ (p.p.m.): 8.6 (dd, Ar, 1.46 Hz, 4.68 Hz), 7.6 (dd, Ar, 1.46 Hz, 4.39 Hz), 7.54 (s, –CH=CH–), 5.21 (sept., –CH, 6.72 Hz), 4.82 (t, –OH, 5.56 Hz), 3.76-3.67 (m, –CH2–CH2–), 1.18 (d, CH3, 6.72 Hz). TGA: one sharp step (onset at 497 K, mid-point at 502 K, end-point at 509 K; mass loss 62%) followed by a protracted mass loss totalling 71.5%, assigned to decomposition to CdS (calculated mass loss 69.5%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).

Table 6
Experimental details

Crystal data
Chemical formula [Cd2(C12H10N2)3(C6H12NOS2)4]·4C2H3N
Mr 1648.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 16.884 (2), 14.4021 (15), 17.327 (2)
β (°) 109.112 (3)
V3) 3981.0 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.80
Crystal size (mm) 0.35 × 0.25 × 0.10
 
Data collection
Diffractometer AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.752, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36088, 8240, 7736
Rint 0.033
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.115, 1.13
No. of reflections 8240
No. of parameters 445
No. of restraints 2
Δρmax, Δρmin (e Å−3) 1.43, −0.81
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-trans-1,2-Bis(pyridin-4-yl)ethene-κ2N:N']bis{[1,2-bis(pyridin-4-yl)ethene-κN]bis[N-(2-hydroxyethyl)-N-N-isopropyldithiocarbamato-κ2S,S']cadmium} acetonitrile tetrasolvate: top
Crystal data top
[Cd2(C12H10N2)3(C6H12NOS2)4]·4C2H3NF(000) = 1704
Mr = 1648.84Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.884 (2) ÅCell parameters from 15613 reflections
b = 14.4021 (15) Åθ = 2.5–30.5°
c = 17.327 (2) ŵ = 0.80 mm1
β = 109.112 (3)°T = 153 K
V = 3981.0 (8) Å3Prism, yellow
Z = 20.35 × 0.25 × 0.10 mm
Data collection top
AFC12K/SATURN724
diffractometer
8240 independent reflections
Radiation source: fine-focus sealed tube7736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2119
Tmin = 0.752, Tmax = 1.000k = 1818
36088 measured reflectionsl = 2121
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0538P)2 + 4.1818P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.002
S = 1.13Δρmax = 1.43 e Å3
8240 reflectionsΔρmin = 0.81 e Å3
445 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.86121 (2)0.27028 (2)0.77182 (2)0.02811 (9)
S10.91301 (5)0.14219 (6)0.88291 (5)0.0409 (2)
S20.74876 (5)0.12713 (5)0.75128 (4)0.03067 (16)
S30.80475 (5)0.39522 (5)0.65839 (5)0.03553 (18)
S40.77645 (5)0.40603 (5)0.81826 (4)0.03206 (17)
O10.65163 (14)0.17072 (16)0.73753 (15)0.0409 (6)
H1O0.6124 (19)0.142 (3)0.704 (2)0.061*
O20.70145 (16)0.70048 (15)0.85595 (14)0.0390 (5)
H2O0.677 (3)0.738 (2)0.8189 (19)0.059*
N10.81603 (16)0.00780 (17)0.85909 (15)0.0320 (5)
N20.71824 (16)0.53113 (17)0.69907 (15)0.0315 (5)
N30.92734 (16)0.19783 (18)0.68118 (16)0.0338 (6)
N41.00214 (16)0.33683 (17)0.82938 (15)0.0309 (5)
N51.53044 (18)0.5788 (2)1.12686 (18)0.0427 (7)
N60.4531 (4)0.6223 (6)0.6589 (4)0.144 (3)
N70.4216 (5)0.7244 (4)0.4145 (4)0.121 (2)
C10.82450 (19)0.07842 (19)0.83301 (18)0.0295 (6)
C20.7352 (2)0.0575 (2)0.82882 (19)0.0352 (7)
H2A0.68920.01170.81910.042*
H2B0.73110.10060.87190.042*
C30.7226 (2)0.1119 (2)0.7513 (2)0.0373 (7)
H3A0.71360.06880.70470.045*
H3B0.77300.14970.75640.045*
C40.8842 (2)0.0533 (2)0.92667 (19)0.0345 (7)
H40.93660.01660.93490.041*
C50.9014 (2)0.1517 (2)0.9049 (2)0.0408 (7)
H5A0.95200.17530.94650.061*
H5B0.90970.15180.85150.061*
H5C0.85370.19150.90280.061*
C60.8641 (3)0.0487 (3)1.0054 (2)0.0517 (9)
H6A0.91210.07161.05040.078*
H6B0.81490.08721.00060.078*
H6C0.85240.01581.01620.078*
C70.76189 (18)0.45215 (19)0.72260 (18)0.0283 (6)
C80.6803 (2)0.5800 (2)0.75284 (19)0.0338 (7)
H8A0.65650.53380.78140.041*
H8B0.63370.61940.71910.041*
C90.7430 (2)0.6407 (2)0.8161 (2)0.0361 (7)
H9A0.78310.60060.85710.043*
H9B0.77520.67840.78890.043*
C100.6999 (2)0.5689 (2)0.6145 (2)0.0426 (8)
H100.73690.53500.58920.051*
C110.7209 (3)0.6707 (3)0.6145 (3)0.0628 (11)
H11A0.70930.69200.55810.094*
H11B0.78030.68010.64530.094*
H11C0.68660.70620.64010.094*
C120.6102 (3)0.5471 (4)0.5636 (2)0.0681 (12)
H12A0.59970.56920.50760.102*
H12B0.57190.57820.58720.102*
H12C0.60120.47990.56300.102*
C130.8862 (2)0.1867 (2)0.6011 (2)0.0416 (8)
H130.83440.21820.57790.050*
C140.9149 (2)0.1318 (2)0.5505 (2)0.0409 (8)
H140.88360.12680.49410.049*
C150.9902 (2)0.0840 (2)0.58273 (19)0.0338 (7)
C161.0352 (2)0.0992 (2)0.6648 (2)0.0351 (7)
H161.08860.07120.68880.042*
C171.0018 (2)0.1548 (2)0.7110 (2)0.0359 (7)
H171.03310.16330.76710.043*
C181.0222 (2)0.0174 (2)0.53632 (19)0.0355 (7)
H181.07870.00240.55960.043*
C191.0297 (2)0.4016 (2)0.78886 (19)0.0331 (6)
H190.99380.42000.73640.040*
C201.10796 (19)0.4431 (2)0.81939 (19)0.0338 (6)
H201.12440.48870.78810.041*
C211.16227 (19)0.4178 (2)0.89581 (18)0.0304 (6)
C221.13422 (19)0.3486 (2)0.93706 (18)0.0334 (6)
H221.16960.32710.98870.040*
C231.0553 (2)0.3117 (2)0.90285 (18)0.0337 (6)
H231.03740.26580.93290.040*
C241.2428 (2)0.4655 (2)0.93038 (19)0.0337 (6)
H241.25170.52060.90420.040*
C251.3045 (2)0.4366 (2)0.99626 (19)0.0356 (7)
H251.29650.37881.01900.043*
C261.38345 (19)0.4854 (2)1.03704 (19)0.0339 (6)
C271.4043 (2)0.5708 (2)1.0115 (2)0.0392 (7)
H271.36860.59870.96290.047*
C281.4775 (2)0.6149 (3)1.0576 (2)0.0440 (8)
H281.49080.67321.03940.053*
C291.5114 (2)0.4955 (3)1.1492 (2)0.0430 (8)
H291.54920.46811.19700.052*
C301.4403 (2)0.4469 (2)1.1072 (2)0.0383 (7)
H301.42990.38751.12580.046*
C310.3930 (3)0.6527 (4)0.6166 (3)0.0811 (16)
C320.3169 (3)0.6944 (4)0.5636 (3)0.0715 (13)
H32A0.30860.75490.58570.107*
H32B0.26920.65390.56030.107*
H32C0.32100.70270.50900.107*
C330.4380 (4)0.6986 (4)0.3603 (3)0.0757 (14)
C340.4564 (4)0.6632 (6)0.2899 (4)0.119 (3)
H34A0.47860.59990.30120.178*
H34B0.49800.70310.27820.178*
H34C0.40490.66240.24260.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02812 (14)0.02260 (13)0.03125 (13)0.00156 (7)0.00653 (10)0.00010 (8)
S10.0366 (4)0.0298 (4)0.0430 (4)0.0089 (3)0.0052 (4)0.0069 (3)
S20.0283 (4)0.0252 (3)0.0334 (4)0.0014 (3)0.0032 (3)0.0011 (3)
S30.0419 (5)0.0318 (4)0.0335 (4)0.0103 (3)0.0132 (3)0.0037 (3)
S40.0373 (4)0.0265 (3)0.0312 (4)0.0030 (3)0.0096 (3)0.0016 (3)
O10.0307 (12)0.0283 (11)0.0510 (14)0.0040 (9)0.0041 (10)0.0085 (10)
O20.0532 (15)0.0263 (11)0.0402 (12)0.0070 (10)0.0189 (11)0.0020 (9)
N10.0309 (14)0.0261 (12)0.0331 (12)0.0038 (10)0.0025 (11)0.0019 (10)
N20.0324 (14)0.0270 (12)0.0335 (12)0.0059 (10)0.0086 (11)0.0034 (10)
N30.0322 (14)0.0327 (13)0.0352 (13)0.0048 (11)0.0094 (11)0.0044 (11)
N40.0306 (13)0.0261 (12)0.0353 (13)0.0009 (10)0.0096 (11)0.0012 (10)
N50.0317 (15)0.0477 (16)0.0436 (15)0.0062 (12)0.0053 (12)0.0076 (13)
N60.081 (4)0.252 (8)0.111 (4)0.064 (5)0.049 (3)0.090 (5)
N70.174 (7)0.100 (4)0.112 (4)0.036 (4)0.076 (5)0.044 (3)
C10.0322 (16)0.0232 (13)0.0315 (14)0.0017 (11)0.0084 (12)0.0016 (11)
C20.0311 (16)0.0319 (15)0.0394 (16)0.0069 (12)0.0071 (13)0.0028 (13)
C30.0311 (17)0.0302 (15)0.0445 (17)0.0047 (13)0.0041 (14)0.0037 (13)
C40.0309 (16)0.0303 (15)0.0366 (16)0.0001 (12)0.0034 (13)0.0032 (13)
C50.046 (2)0.0329 (16)0.0393 (16)0.0094 (14)0.0086 (15)0.0055 (14)
C60.055 (2)0.060 (2)0.0389 (17)0.0110 (19)0.0140 (17)0.0000 (17)
C70.0239 (14)0.0227 (13)0.0340 (14)0.0010 (11)0.0035 (12)0.0015 (11)
C80.0347 (17)0.0265 (14)0.0404 (16)0.0058 (12)0.0125 (14)0.0007 (13)
C90.0349 (17)0.0283 (15)0.0435 (17)0.0034 (13)0.0110 (14)0.0024 (13)
C100.052 (2)0.0368 (17)0.0389 (17)0.0166 (15)0.0155 (16)0.0121 (14)
C110.091 (3)0.044 (2)0.061 (2)0.011 (2)0.035 (2)0.0156 (19)
C120.065 (3)0.083 (3)0.043 (2)0.010 (2)0.001 (2)0.007 (2)
C130.044 (2)0.0375 (17)0.0379 (16)0.0130 (15)0.0069 (15)0.0028 (14)
C140.048 (2)0.0373 (17)0.0332 (16)0.0086 (15)0.0073 (15)0.0029 (13)
C150.0381 (17)0.0267 (14)0.0390 (16)0.0030 (12)0.0157 (14)0.0035 (13)
C160.0289 (16)0.0320 (15)0.0438 (17)0.0026 (12)0.0111 (14)0.0023 (13)
C170.0317 (16)0.0345 (16)0.0381 (16)0.0011 (13)0.0068 (13)0.0055 (13)
C180.0372 (17)0.0322 (15)0.0394 (15)0.0036 (13)0.0156 (14)0.0050 (13)
C190.0329 (16)0.0317 (15)0.0321 (14)0.0006 (12)0.0072 (13)0.0017 (12)
C200.0324 (16)0.0313 (15)0.0367 (15)0.0019 (12)0.0102 (13)0.0044 (13)
C210.0267 (15)0.0291 (14)0.0338 (14)0.0027 (11)0.0077 (12)0.0039 (12)
C220.0300 (16)0.0342 (15)0.0311 (14)0.0032 (12)0.0032 (12)0.0005 (12)
C230.0340 (17)0.0317 (15)0.0321 (15)0.0030 (12)0.0066 (13)0.0032 (12)
C240.0340 (17)0.0304 (15)0.0369 (15)0.0042 (12)0.0119 (13)0.0000 (13)
C250.0335 (17)0.0361 (16)0.0356 (15)0.0045 (13)0.0093 (13)0.0001 (13)
C260.0298 (16)0.0357 (15)0.0360 (15)0.0051 (12)0.0106 (13)0.0049 (13)
C270.0317 (17)0.0404 (17)0.0398 (17)0.0012 (14)0.0039 (14)0.0015 (14)
C280.0363 (19)0.0414 (18)0.0506 (19)0.0076 (14)0.0090 (16)0.0005 (16)
C290.0334 (18)0.056 (2)0.0350 (16)0.0043 (15)0.0050 (14)0.0002 (15)
C300.0328 (17)0.0418 (18)0.0392 (16)0.0061 (14)0.0106 (14)0.0020 (14)
C310.065 (3)0.119 (5)0.070 (3)0.016 (3)0.037 (3)0.033 (3)
C320.057 (3)0.093 (4)0.060 (3)0.002 (3)0.014 (2)0.014 (3)
C330.084 (4)0.068 (3)0.076 (3)0.018 (3)0.028 (3)0.015 (3)
C340.087 (4)0.193 (8)0.085 (4)0.049 (5)0.040 (3)0.059 (5)
Geometric parameters (Å, º) top
Cd—S12.6019 (8)C10—C121.514 (6)
Cd—S22.7457 (8)C10—H101.0000
Cd—S32.6043 (8)C11—H11A0.9800
Cd—S42.6967 (8)C11—H11B0.9800
Cd—N32.439 (3)C11—H11C0.9800
Cd—N42.454 (3)C12—H12A0.9800
C1—S11.726 (3)C12—H12B0.9800
C1—S21.717 (3)C12—H12C0.9800
C7—S31.721 (3)C13—C141.381 (5)
C7—S41.727 (3)C13—H130.9500
O1—C31.422 (4)C14—C151.391 (5)
O1—H1O0.839 (10)C14—H140.9500
O2—C91.425 (4)C15—C161.393 (4)
O2—H2O0.840 (10)C15—C181.464 (4)
N1—C11.345 (4)C16—C171.377 (4)
N1—C21.477 (4)C16—H160.9500
N1—C41.498 (4)C17—H170.9500
N2—C71.344 (4)C18—C18i1.334 (6)
N2—C81.472 (4)C18—H180.9500
N2—C101.497 (4)C19—C201.388 (4)
N3—C171.343 (4)C19—H190.9500
N3—C131.343 (4)C20—C211.390 (4)
N4—C191.339 (4)C20—H200.9500
N4—C231.345 (4)C21—C221.396 (4)
N5—C291.333 (5)C21—C241.465 (4)
N5—C281.344 (5)C22—C231.375 (4)
N6—C311.128 (7)C22—H220.9500
N7—C331.126 (7)C23—H230.9500
C2—C31.508 (5)C24—C251.335 (4)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—C261.468 (4)
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—C271.391 (5)
C4—C61.510 (5)C26—C301.393 (5)
C4—C51.519 (4)C27—C281.386 (5)
C4—H41.0000C27—H270.9500
C5—H5A0.9800C28—H280.9500
C5—H5B0.9800C29—C301.375 (5)
C5—H5C0.9800C29—H290.9500
C6—H6A0.9800C30—H300.9500
C6—H6B0.9800C31—C321.443 (7)
C6—H6C0.9800C32—H32A0.9800
C8—C91.525 (4)C32—H32B0.9800
C8—H8A0.9900C32—H32C0.9800
C8—H8B0.9900C33—C341.445 (8)
C9—H9A0.9900C34—H34A0.9800
C9—H9B0.9900C34—H34B0.9800
C10—C111.510 (5)C34—H34C0.9800
S1—Cd—S267.31 (2)C11—C10—C12113.0 (3)
S1—Cd—S3178.06 (3)N2—C10—H10107.0
S1—Cd—S4112.08 (3)C11—C10—H10107.0
S1—Cd—N393.39 (7)C12—C10—H10107.0
S1—Cd—N485.98 (6)C10—C11—H11A109.5
S2—Cd—S3110.75 (3)C10—C11—H11B109.5
S2—Cd—S499.85 (3)H11A—C11—H11B109.5
S2—Cd—N392.19 (7)C10—C11—H11C109.5
S2—Cd—N4152.04 (6)H11A—C11—H11C109.5
S3—Cd—S468.00 (2)H11B—C11—H11C109.5
S3—Cd—N386.63 (7)C10—C12—H12A109.5
S3—Cd—N495.94 (6)C10—C12—H12B109.5
S4—Cd—N3154.39 (6)H12A—C12—H12B109.5
S4—Cd—N497.72 (6)C10—C12—H12C109.5
N3—Cd—N480.87 (9)H12A—C12—H12C109.5
C1—S1—Cd88.88 (10)H12B—C12—H12C109.5
C1—S2—Cd84.44 (10)N3—C13—C14123.6 (3)
C7—S3—Cd88.21 (10)N3—C13—H13118.2
C7—S4—Cd85.13 (10)C14—C13—H13118.2
C3—O1—H1O104 (3)C13—C14—C15119.5 (3)
C9—O2—H2O102 (3)C13—C14—H14120.2
C1—N1—C2121.0 (3)C15—C14—H14120.2
C1—N1—C4121.8 (2)C14—C15—C16117.0 (3)
C2—N1—C4116.8 (2)C14—C15—C18123.8 (3)
C7—N2—C8121.5 (3)C16—C15—C18119.2 (3)
C7—N2—C10121.4 (3)C17—C16—C15119.6 (3)
C8—N2—C10116.9 (2)C17—C16—H16120.2
C17—N3—C13116.4 (3)C15—C16—H16120.2
C17—N3—Cd121.2 (2)N3—C17—C16123.7 (3)
C13—N3—Cd121.7 (2)N3—C17—H17118.2
C19—N4—C23116.4 (3)C16—C17—H17118.2
C19—N4—Cd121.1 (2)C18i—C18—C15124.8 (4)
C23—N4—Cd122.5 (2)C18i—C18—H18117.6
C29—N5—C28117.0 (3)C15—C18—H18117.6
N1—C1—S2121.5 (2)N4—C19—C20123.4 (3)
N1—C1—S1119.5 (2)N4—C19—H19118.3
S2—C1—S1119.00 (17)C20—C19—H19118.3
N1—C2—C3114.3 (3)C19—C20—C21119.9 (3)
N1—C2—H2A108.7C19—C20—H20120.0
C3—C2—H2A108.7C21—C20—H20120.0
N1—C2—H2B108.7C20—C21—C22116.5 (3)
C3—C2—H2B108.7C20—C21—C24120.1 (3)
H2A—C2—H2B107.6C22—C21—C24123.4 (3)
O1—C3—C2109.0 (3)C23—C22—C21119.9 (3)
O1—C3—H3A109.9C23—C22—H22120.1
C2—C3—H3A109.9C21—C22—H22120.1
O1—C3—H3B109.9N4—C23—C22123.8 (3)
C2—C3—H3B109.9N4—C23—H23118.1
H3A—C3—H3B108.3C22—C23—H23118.1
N1—C4—C6110.1 (3)C25—C24—C21124.3 (3)
N1—C4—C5112.0 (3)C25—C24—H24117.8
C6—C4—C5112.5 (3)C21—C24—H24117.8
N1—C4—H4107.3C24—C25—C26126.5 (3)
C6—C4—H4107.3C24—C25—H25116.8
C5—C4—H4107.3C26—C25—H25116.8
C4—C5—H5A109.5C27—C26—C30117.2 (3)
C4—C5—H5B109.5C27—C26—C25123.7 (3)
H5A—C5—H5B109.5C30—C26—C25119.1 (3)
C4—C5—H5C109.5C28—C27—C26119.5 (3)
H5A—C5—H5C109.5C28—C27—H27120.3
H5B—C5—H5C109.5C26—C27—H27120.3
C4—C6—H6A109.5N5—C28—C27123.0 (3)
C4—C6—H6B109.5N5—C28—H28118.5
H6A—C6—H6B109.5C27—C28—H28118.5
C4—C6—H6C109.5N5—C29—C30123.8 (3)
H6A—C6—H6C109.5N5—C29—H29118.1
H6B—C6—H6C109.5C30—C29—H29118.1
N2—C7—S3120.8 (2)C29—C30—C26119.5 (3)
N2—C7—S4120.5 (2)C29—C30—H30120.3
S3—C7—S4118.65 (16)C26—C30—H30120.3
N2—C8—C9112.6 (3)N6—C31—C32178.2 (9)
N2—C8—H8A109.1C31—C32—H32A109.5
C9—C8—H8A109.1C31—C32—H32B109.5
N2—C8—H8B109.1H32A—C32—H32B109.5
C9—C8—H8B109.1C31—C32—H32C109.5
H8A—C8—H8B107.8H32A—C32—H32C109.5
O2—C9—C8111.0 (3)H32B—C32—H32C109.5
O2—C9—H9A109.4N7—C33—C34177.8 (7)
C8—C9—H9A109.4C33—C34—H34A109.5
O2—C9—H9B109.4C33—C34—H34B109.5
C8—C9—H9B109.4H34A—C34—H34B109.5
H9A—C9—H9B108.0C33—C34—H34C109.5
N2—C10—C11112.3 (3)H34A—C34—H34C109.5
N2—C10—C12110.1 (3)H34B—C34—H34C109.5
C2—N1—C1—S211.5 (4)C13—C14—C15—C163.7 (5)
C4—N1—C1—S2175.8 (2)C13—C14—C15—C18174.0 (3)
C2—N1—C1—S1168.1 (2)C14—C15—C16—C174.0 (5)
C4—N1—C1—S14.6 (4)C18—C15—C16—C17173.9 (3)
Cd—S2—C1—N1174.7 (3)C13—N3—C17—C162.1 (5)
Cd—S2—C1—S15.71 (16)Cd—N3—C17—C16168.2 (2)
Cd—S1—C1—N1174.4 (2)C15—C16—C17—N31.1 (5)
Cd—S1—C1—S26.00 (17)C14—C15—C18—C18i12.2 (6)
C1—N1—C2—C387.7 (4)C16—C15—C18—C18i165.5 (4)
C4—N1—C2—C399.3 (3)C23—N4—C19—C200.9 (4)
N1—C2—C3—O1168.4 (2)Cd—N4—C19—C20178.4 (2)
C1—N1—C4—C6101.6 (3)N4—C19—C20—C210.1 (5)
C2—N1—C4—C671.4 (4)C19—C20—C21—C221.5 (4)
C1—N1—C4—C5132.3 (3)C19—C20—C21—C24176.2 (3)
C2—N1—C4—C554.6 (4)C20—C21—C22—C232.2 (4)
C8—N2—C7—S3179.2 (2)C24—C21—C22—C23175.4 (3)
C10—N2—C7—S34.5 (4)C19—N4—C23—C220.1 (5)
C8—N2—C7—S41.1 (4)Cd—N4—C23—C22179.2 (2)
C10—N2—C7—S4175.8 (2)C21—C22—C23—N41.5 (5)
Cd—S3—C7—N2179.5 (2)C20—C21—C24—C25168.5 (3)
Cd—S3—C7—S40.81 (16)C22—C21—C24—C2513.9 (5)
Cd—S4—C7—N2179.5 (2)C21—C24—C25—C26174.9 (3)
Cd—S4—C7—S30.78 (15)C24—C25—C26—C270.4 (5)
C7—N2—C8—C981.4 (3)C24—C25—C26—C30177.9 (3)
C10—N2—C8—C9103.6 (3)C30—C26—C27—C282.4 (5)
N2—C8—C9—O2168.5 (2)C25—C26—C27—C28175.1 (3)
C7—N2—C10—C11131.1 (3)C29—N5—C28—C272.3 (5)
C8—N2—C10—C1153.9 (4)C26—C27—C28—N50.0 (5)
C7—N2—C10—C12102.0 (4)C28—N5—C29—C302.2 (5)
C8—N2—C10—C1272.9 (4)N5—C29—C30—C260.2 (5)
C17—N3—C13—C142.4 (5)C27—C26—C30—C292.5 (5)
Cd—N3—C13—C14167.9 (3)C25—C26—C30—C29175.1 (3)
N3—C13—C14—C150.6 (6)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N5ii0.83 (4)1.82 (4)2.655 (4)177 (3)
O2—H2O···O1iii0.84 (3)1.87 (3)2.689 (3)165 (5)
C25—H25···O2iv0.952.443.261 (4)145
C28—H28···N7v0.952.563.296 (7)134
Symmetry codes: (ii) x1, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+2, y+1, z+2; (v) x+1, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) top
ContactDistanceSymmetry
S1···H6A2.982 - x, -y, 2 - z
S4···H182.972 - x, 1/2 + y, 3/2 - z
O1···H11C2.64x, -1 + y, z
O2···H302.662 - x, 1 - y, 2 - z
C1···H202.832 - x, -1/2 + y, 3/2 - z
C3···H2O2.69 (3)x, -1 + y, z
C24···H3A2.722 - x, -1/2 + y, 3/2 - z
C28···H1O2.83 (3)1 + x, 1/2 - y, 1/2 + z
C29···H1O2.67 (4)1 + x, 1/2 - y, 1 + z
C16···C193.245 (4)2 - x, -1/2 + y, 3/2 - z
C16···C203.377 (5)2 - x, -1/2 + y, 3/2 - z
H5A···H232.312 - x, -y, 2 - z
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface top
ContactContribution
H···H51.9
O···H/H···O6.0
C···H/H···C15.9
N···H/H···N10.6
C···C3.1
S···H/H···S10.3
C···S/S···C0.8
N···S/S···N0.7
C···N/N···C0.7
Enrichment ratios (ER) top
ContactER
H···H0.97
O···H/H···O1.36
N···H/H···N1.20
C···C2.23
S···H/H···S1.19
C···H/H···C0.92
C···S/S···C0.58
C···N/N···C0.49
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

References

First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472–m1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y. B., Layland, R. C., Smith, M. D., Pschirer, N. G., Bunz, U. H. F. & zur Loye, H.-C. (1999). Inorg. Chem. 38, 3056–3060.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHowie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Chem. Crystallogr. 39, 293–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231. doi: 10.1515/zkri-2016-1943.  Google Scholar
First citationKang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. Y., Runnels, K. A. & Norman, C. (2001). Inorg. Chem. 40, 4516–4517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPaul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741–5749.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodina, T. A., Ivanov, A. V., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafbri, S. A. M., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 158–163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWahab, N. A. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m551–m552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds