research communications
[μ2-trans-1,2-Bis(pyridin-4-yl)ethene-κ2N:N′]bis{[1,2-bis(pyridin-4-yl)ethene-κN]bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ2S,S′]cadmium} acetonitrile tetrasolvate: and Hirshfeld surface analysis
aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and dCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The 2(C12H10N2)3(C6H12NOS2)4]·4C2H3N, comprises a CdII atom, two dithiocarbamate (dtc) anions, one and a half trans-1,2-dipyridin-4-ylethylene (bpe) molecules and two acetonitrile solvent molecules. The full binuclear complex is generated by the application of a centre of inversion. The dtc ligands are chelating, one bpe molecule coordinates in a monodentate mode while the other is bidentate bridging. The resulting cis-N2S4 coordination geometry is based on an octahedron. Supramolecular layers, sustained by hydroxy-O—H⋯O(hydroxy) and hydroxy-O—H⋯N(bpe) hydrogen bonding, interpenetrate to form a three-dimensional architecture; voids in this arrangement are occupied by the acetonitrile solvent molecules. Additional intermolecular interactions falling within the specified framework have been analysed by Hirshfeld surface analysis, including π–π interactions.
of the title compound, [CdKeywords: crystal structure; dithiocarbamate; 1,2-bis(pyridin-4-yl)ethene; interpenetration; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 1489732
1. Chemical context
The recent disclosure of one-dimensional, supramolecular isomers of {Cd[S2CN(iPr)CH2CH2OH]2}n notwithstanding (Tan et al., 2013, 2016), the overwhelming majority of binary bis(dialkyldithiocarbamato) compounds of cadmium are usually binuclear with a of five owing to the presence of equal numbers of chelating and μ2-tridentate ligands, i.e. are of general formula [Cd(S2CNR2)2]2 (Tiekink, 2003; Tan et al., 2016). However, the dimeric and polymeric aggregates are readily broken down in the presence of bases such as monodentate pyridine, e.g. {Cd[S2CN(CH2C(H)Me2)2]2(pyridine)} (Rodina et al., 2011) and bidentate 2,2′-bipyridine, e.g. [Cd(S2CN(Me)iPr)2(2,2′-bipyridine)] (Wahab et al., 2011). Bridging N-donors lead to a greater variety of structures such as the zero-dimensional binuclear compound, [Cd(S2CNPr2)2(2-pyridinealdazine)]2 (Poplaukhin & Tiekink, 2008) and supramolecular chains, e.g. [Cd(S2CNEt2)2(μ2-1,2-bis(4-pyridyl)ethylene)]n (Chai et al., 2003). The addition of hydrogen-bonding functionality in the dithiocarbamate ligands has greatly enhanced the supramolecular chemistry landscape of related compounds. As a recent exemplar, the formally monomeric compound {Cd[S2CN(iPr)CH2CH2OH]2}(piperazine) self-assembles into a two-dimensional array via hydroxy-O—H⋯O(hydroxy), hydroxy-O—H⋯N(terminal-piperazine) and coordinating piperazine-N—H⋯O(hydroxy) hydrogen bonds (Safbri et al., 2016). As a continuation of investigations in this area, the crystal and molecular structure as well as Hirshfeld surface analysis of the title binuclear compound, {Cd[S2CN(iPr)CH2CH2OH]2[(4-NC5H4)C=C6H4N-4)]}2[(4-NC5H4)C=C6H4N-4)]·4CH3CN, (I), featuring both bidentate bridging and monodentate trans-1,2-dipyridin-4-ylethylene ligands is described herein.
2. Structural commentary
The molecular structure of the binuclear title compound, {Cd[S2CN(iPr)CH2CH2OH]2[(4-NC5H4)C=C6H4N-4)]}2[(4-NC5H4)C=C6H4N-4)]·4CH3CN, (I), Fig. 1, is situated about a centre of inversion; two acetonitrile molecules of solvation complete the Each CdII atom is coordinated by two dithiocarbamate ligands and two nitrogen atoms, one derived from a monodentate trans-1,2-dipyridin-4-ylethylene (bispyridylethene; bpe) ligand and another from one end of a bidentate, bridging bpe ligand (located about a centre of inversion). The dithiocarbamate ligands coordinate with significant differences in their Cd—S bond lengths, Table 1. Thus, Δ(Cd—S) = d(Cd—Slong) – d(Cd—Sshort) = 0.15 Å for the S1-dithiocarbamate ligand cf. 0.10 Å for the S3-ligand. Nevertheless, there is considerable delocalization of π-electron density in the CdS2C chelate rings as evidenced by the equivalence of the associated C—S bond lengths, Table 1. The coordination geometry is based on an octahedron. In this description, the more tightly bound S1 and S3 atoms are trans [178.06 (3)°] and the less tightly bound sulfur atoms are trans to nitrogen atoms, Table 1, implying the nitrogen donors are cis. The distortions from the ideal geometry are readily related to the restricted bite angles of the chelating ligands, Table 1. Both bpe ligands exhibit twists as seen in the values of the C14—C15—C18—C18i and C22—C21—C24—C25 torsion angles of −12.2 (6) and 13.9 (5)° for the bi- and mono-dentate ligands, respectively; symmetry code: (i) 2 − x, −y, 1 − z.
|
3. Supramolecular features
Geometric details of the significant intermolecular interactions are given in Table 2. In the packing, hydroxy-O—H⋯O(hydroxy) hydrogen bonding leads to supramolecular ladders as illustrated in Fig. 2a. These ladders are connected into layers parallel to (101) via hydroxy-O—H⋯N(bpe) hydrogen bonds where the nitrogen atom is derived from the monodentate bpe ligand. Additional ethene-C—H⋯O(hydroxy) interactions are found within this framework, Table 2. As seen from Fig. 2b, this arrangement leads to rectangular channels with Cd⋯Cd separations, which approximate the edges, being 14 and 16 Å. Successive channels are largely occupied by other supramolecular layers, leading to a three-dimensional, concatenated architecture. The smaller voids defined by the interpenetrated structure are occupied by the solvent acetonitrile molecules, Fig. 2c. The N7-acetonitrile molecule is connected to the host framework by pyridyl-C—H⋯N(acetonitrile) interactions whereas the N6-acetonitrile molecule does not form significant interactions in accord with the criteria embodied in PLATON (Spek, 2009). This is reflected in the greater displacement ellipsoids for this molecule cf. with the N7-containing molecule. Further analysis of the molecular packing, e.g. pyridyl⋯pyridyl interactions, is given in the following Section.
4. Analysis of the Hirshfeld surfaces
Recent Hirshfeld surface analyses of zinc-triad hydroxyethyl-substituted dithiocarbamates has provided key insight into their molecular packing over and beyond hydrogen-bonding considerations. For example, the relatively unusual C—H⋯π(chelate) interactions (Tiekink & Zukerman-Schpector, 2011) observed in [Hg(S2CN(CH2CH2OH)2]n (Howie et al., 2009), are clearly delineated in the Hirshfeld analysis of the molecular packing (Jotani et al., 2016). In the present study, using Crystal Explorer 3.1 (Wolff et al., 2012), the Hirshfeld surfaces were mapped over dnorm, shape-index, curvedness and electrostatic potential for the of (I). The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005) integrated into Crystal Explorer. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO–3G basis set at Hartree–Fock level of theory over a range ±0.13 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the intermolecular interactions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2004) provides a summary of intermolecular contacts in the crystal.
Two views of Hirshfeld surfaces mapped over dnorm in the −0.2 to 1.8 Å range are shown in Fig. 3. The bright-red spots appearing near pyridyl-N5, hydroxy-O1 and hydrogen atoms H1O and H2O indicate their role as the respective donors and acceptors in the dominant O—H⋯O and O—H⋯N hydrogen bonds; they also appear as blue and red regions, respectively, corresponding to positive and negative electrostatic potentials on the Hirshfeld surface mapped over electrostatic potential, Fig. 4. The light-red spots near ethene-H25, pyridyl-C28 and hydroxy-O2 in Fig. 3 and near acetonitrile-N7, Fig. 5a, indicate their involvement in the intermolecular ethene-C—H⋯O(hydroxy) and pyridyl-C—H⋯N(acetonitrile) interactions. The presence of short intermolecular C⋯C and C⋯H contacts, Table 3, is also evident from the light-red spots appearing near the pyridyl-C16, C19 and C24 and methylene-H3A atoms in Fig. 3. The C18—C18i link of the bridging bpe ligand can be viewed as a bright-red region around the C18 atom in the dnorm mapped surface, Fig. 3, and as a light-blue region surrounded by a pair of light-red arcs on the surface mapped over electrostatic potential, Fig. 4b; this arises as it is the that has been investigated not the entire binuclear molecule. With respect to the acetonitrile molecule the dnorm mapped surfaces show only the acetonitrile-N7 to be involved in a significant intermolecular C—H⋯N interaction (Fig. 5a, Table 2), and both acetonitrile molecules had very similar Hirshfeld surfaces mapped over electrostatic potential to that for the N7-molecule illustrated in Fig. 5b.
|
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C and S⋯H/H⋯S contacts (McKinnon et al., 2007) are illustrated in Fig. 6b-g, respectively; their relative contributions are summarized in Table 4. The H⋯H contacts make the greatest contribution to the Hirshfeld surface, i.e. 51.9% which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule; the single peak at de = di ∼1.15 Å results from a short intermolecular H⋯H contact between the isopropyl-H5A and pyridyl-H23 atoms, Table 3. In the fingerprint plot delineated into O⋯H/H⋯O contacts, the 6.0% contribution to the Hirshfeld surface arises from the intermolecular O—H⋯O hydrogen bonding and is viewed as a pair of spikes with the tip at de + di ∼1.8 Å in Fig. 6c. The intermolecular C—H⋯O interactions and short O⋯H/H⋯O contacts, listed in Table 3, are masked by the strong O—H⋯O hydrogen bonding in this plot.
|
In the absence of C—H⋯π interactions in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into C⋯H/H⋯C contacts with 15.9% contribution to the Hirshfeld surface, Fig. 6d, and the pair of thin edges at de + di ∼2.7 Å result from short interatomic C⋯H/H⋯C contacts, Table 3. A pair of spikes at de + di ∼1.8 Å correspond to N⋯H/H⋯N contacts, Fig. 6e, confirm the presence of intermolecular O—H⋯N and C—H⋯N interactions. The C⋯C contacts assigned to short interatomic C16⋯C19 and C16⋯C20 contacts listed in Table 3 and π–π stacking interactions within the three-dimensional architecture described in Supramolecular features appear as the two distinct distributions of points in Fig. 6f. The vertex at de = di = 1.6 Å in the approximately triangular distribution of points in the plot corresponds to short intermolecular C⋯C contacts. The presence of π–π stacking interactions between the centrosymmetrically related N5-pyridyl rings [inter-centroid distance = 3.674 (2) Å, symmetry code: 3 − x, 1 − y, 2 − z] is reflected through the appearance of green points around de = di ∼1.8 Å, the red and blue triangle pairs on the Hirshfeld surface mapped with shape-index property identified with arrows in the image of Fig. 7, and in the flat region on the Hirshfeld surface mapped over curvedness in Fig. 8. Finally, the S⋯H/H⋯S contacts in the structure with a 10.3% contribution to the surface has a nearly symmetrical distribution of points, Fig. 6g, with the tips at de + di ∼2.95 Å arising from the short interatomic S⋯H/H⋯S contacts listed in Table 3.
An additional descriptor, the enrichment ratio (ER), may be calculated on the basis of Hirshfeld surface analysis (Jelsch et al., 2014). This provides further insight into the molecular packing as it indicates the relative propensities to form specific intermolecular interactions. The ER values for (I) are collected in Table 5. The ER value close to but slightly less than unity for H⋯H contacts, i.e. 0.97, is in accord with expectation (Jelsch et al., 2014). The ER value of 1.36 for O⋯H/H⋯O contacts is in the expected 1.2–1.6 range and confirms the involvement of these atoms in the intermolecular O—H⋯O and C—H⋯O interactions. The ER value of 1.20 resulting from the 6% of the surface comprising nitrogen atoms and the 10.6% contribution to the Hirshfeld surface from N⋯H/H⋯N contacts is due to the presence of O—H⋯N hydrogen bonding and the C—H⋯N(acetonitrile) interaction. The high enrichment ratio of 2.23 for the C⋯C contacts reflects the formation of significant π–π stacking interactions and short C⋯C contacts as mentioned above. The ER value close to unity, i.e. 0.92, for C⋯H/H⋯C contacts shows their propensity to form short intermolecular C⋯H/H⋯C contacts. The ER values < 1 related to other contacts and low percentage contribution to the surface do not show any significance in the crystal packing.
|
5. Database survey
There is a sole example of a cadmium dithiocarbamate coordinated by bpe in the crystallographic literature (Groom et al., 2016), namely [Cd(S2CNEt2)2(μ-bpe)]n, which is a linear coordination polymer with a trans-N2S4 donor set (Chai et al., 2003). Reflecting the smaller size of zinc compared to cadmium, the zinc analogues are binuclear zero-dimensional with bpe bridging two five-coordinate (NS4) zinc atoms (Arman et al., 2009). Even in the presence of excess bpe, the [Zn(S2CNEt2)2]2(μ-bpe) species still forms with non-coordinating bpe included in the structure (Lai & Tiekink, 2003). For the analogous xanthate structures, luminescent, zero-dimensional [Zn(S2COCyEt)2]2(μ-bpe) and one-dimensional [Zn(S2COEt)2(μ-bpe)]n are formed with the dimensionality correlated with the steric bulk of the xanthate-bound R groups (Kang et al., 2010). With the sterically unencumbered cadmium dithiophosphate analogues, linear coordination polymers are formed regardless of the size of R, i.e. for {Cd[S2P(OR)2]2(μ-bpe)}n, R = iPr and Cy (Lai & Tiekink, 2004).
There are literature precedents for both bidentate, bridging and monodentate bpe ligands in cadmium structures as observed in (I), i.e. [Cd(NO3)(μ2-NO3)(μ-bpe)(bpe)(OH2)]n (Dong et al., 1999) and [Cd2(SSO3)2(μ-bpe)(bpe)2(OH2)4]n (Paul et al., 2011). Another structure has both bridging and monodentate bpe ligands as well as non-coordinating bpe ligands (and non-coordinating 4,4′-bipyridyl), i.e. [Cd(NO3)(μ-bpe)(bpe)2(OH2)2]NO3(bpe)(4,4′-bipyridyl)(H2O)4.45 (Lu et al., 2001).
6. Synthesis and crystallization
The title compound was isolated regardless of the ratio, i.e. 2:1, 1:1 or 1:2, between the precursor molecules. In a typical experiment, Cd[S2CN(iPr)CH2CH2OH]2 (190 mg, 0.50 mmol) was dissolved in boiling acetonitrile (30 ml). trans-1,2-Dipyridin-4-ylethylene (47 mg, 0.25 mmol) was added to this solution, which was allowed to slowly cool to room temperature. Yellow prisms precipitated within an hour. The yield was not measured but was close to quantitative based on Cd. M.p. = 463–465 K (uncorrected). IR (neat solid, cm−1): 1607 m, 1449 ms, 1407 s, 1170 s, 1037 s, 968 s, 954 s, 824 s. NMR: 1H δ (p.p.m.): 8.6 (dd, Ar, 1.46 Hz, 4.68 Hz), 7.6 (dd, Ar, 1.46 Hz, 4.39 Hz), 7.54 (s, –CH=CH–), 5.21 (sept., –CH, 6.72 Hz), 4.82 (t, –OH, 5.56 Hz), 3.76-3.67 (m, –CH2–CH2–), 1.18 (d, CH3, 6.72 Hz). TGA: one sharp step (onset at 497 K, mid-point at 502 K, end-point at 509 K; mass loss 62%) followed by a protracted mass loss totalling 71.5%, assigned to decomposition to CdS (calculated mass loss 69.5%).
7. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).
details are summarized in Table 6Supporting information
CCDC reference: 1489732
https://doi.org/10.1107/S2056989016010768/hb7594sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010768/hb7594Isup2.hkl
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd2(C12H10N2)3(C6H12NOS2)4]·4C2H3N | F(000) = 1704 |
Mr = 1648.84 | Dx = 1.376 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.884 (2) Å | Cell parameters from 15613 reflections |
b = 14.4021 (15) Å | θ = 2.5–30.5° |
c = 17.327 (2) Å | µ = 0.80 mm−1 |
β = 109.112 (3)° | T = 153 K |
V = 3981.0 (8) Å3 | Prism, yellow |
Z = 2 | 0.35 × 0.25 × 0.10 mm |
AFC12K/SATURN724 diffractometer | 8240 independent reflections |
Radiation source: fine-focus sealed tube | 7736 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 26.5°, θmin = 2.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −21→19 |
Tmin = 0.752, Tmax = 1.000 | k = −18→18 |
36088 measured reflections | l = −21→21 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0538P)2 + 4.1818P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 1.43 e Å−3 |
8240 reflections | Δρmin = −0.81 e Å−3 |
445 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.86121 (2) | 0.27028 (2) | 0.77182 (2) | 0.02811 (9) | |
S1 | 0.91301 (5) | 0.14219 (6) | 0.88291 (5) | 0.0409 (2) | |
S2 | 0.74876 (5) | 0.12713 (5) | 0.75128 (4) | 0.03067 (16) | |
S3 | 0.80475 (5) | 0.39522 (5) | 0.65839 (5) | 0.03553 (18) | |
S4 | 0.77645 (5) | 0.40603 (5) | 0.81826 (4) | 0.03206 (17) | |
O1 | 0.65163 (14) | −0.17072 (16) | 0.73753 (15) | 0.0409 (6) | |
H1O | 0.6124 (19) | −0.142 (3) | 0.704 (2) | 0.061* | |
O2 | 0.70145 (16) | 0.70048 (15) | 0.85595 (14) | 0.0390 (5) | |
H2O | 0.677 (3) | 0.738 (2) | 0.8189 (19) | 0.059* | |
N1 | 0.81603 (16) | −0.00780 (17) | 0.85909 (15) | 0.0320 (5) | |
N2 | 0.71824 (16) | 0.53113 (17) | 0.69907 (15) | 0.0315 (5) | |
N3 | 0.92734 (16) | 0.19783 (18) | 0.68118 (16) | 0.0338 (6) | |
N4 | 1.00214 (16) | 0.33683 (17) | 0.82938 (15) | 0.0309 (5) | |
N5 | 1.53044 (18) | 0.5788 (2) | 1.12686 (18) | 0.0427 (7) | |
N6 | 0.4531 (4) | 0.6223 (6) | 0.6589 (4) | 0.144 (3) | |
N7 | 0.4216 (5) | 0.7244 (4) | 0.4145 (4) | 0.121 (2) | |
C1 | 0.82450 (19) | 0.07842 (19) | 0.83301 (18) | 0.0295 (6) | |
C2 | 0.7352 (2) | −0.0575 (2) | 0.82882 (19) | 0.0352 (7) | |
H2A | 0.6892 | −0.0117 | 0.8191 | 0.042* | |
H2B | 0.7311 | −0.1006 | 0.8719 | 0.042* | |
C3 | 0.7226 (2) | −0.1119 (2) | 0.7513 (2) | 0.0373 (7) | |
H3A | 0.7136 | −0.0688 | 0.7047 | 0.045* | |
H3B | 0.7730 | −0.1497 | 0.7564 | 0.045* | |
C4 | 0.8842 (2) | −0.0533 (2) | 0.92667 (19) | 0.0345 (7) | |
H4 | 0.9366 | −0.0166 | 0.9349 | 0.041* | |
C5 | 0.9014 (2) | −0.1517 (2) | 0.9049 (2) | 0.0408 (7) | |
H5A | 0.9520 | −0.1753 | 0.9465 | 0.061* | |
H5B | 0.9097 | −0.1518 | 0.8515 | 0.061* | |
H5C | 0.8537 | −0.1915 | 0.9028 | 0.061* | |
C6 | 0.8641 (3) | −0.0487 (3) | 1.0054 (2) | 0.0517 (9) | |
H6A | 0.9121 | −0.0716 | 1.0504 | 0.078* | |
H6B | 0.8149 | −0.0872 | 1.0006 | 0.078* | |
H6C | 0.8524 | 0.0158 | 1.0162 | 0.078* | |
C7 | 0.76189 (18) | 0.45215 (19) | 0.72260 (18) | 0.0283 (6) | |
C8 | 0.6803 (2) | 0.5800 (2) | 0.75284 (19) | 0.0338 (7) | |
H8A | 0.6565 | 0.5338 | 0.7814 | 0.041* | |
H8B | 0.6337 | 0.6194 | 0.7191 | 0.041* | |
C9 | 0.7430 (2) | 0.6407 (2) | 0.8161 (2) | 0.0361 (7) | |
H9A | 0.7831 | 0.6006 | 0.8571 | 0.043* | |
H9B | 0.7752 | 0.6784 | 0.7889 | 0.043* | |
C10 | 0.6999 (2) | 0.5689 (2) | 0.6145 (2) | 0.0426 (8) | |
H10 | 0.7369 | 0.5350 | 0.5892 | 0.051* | |
C11 | 0.7209 (3) | 0.6707 (3) | 0.6145 (3) | 0.0628 (11) | |
H11A | 0.7093 | 0.6920 | 0.5581 | 0.094* | |
H11B | 0.7803 | 0.6801 | 0.6453 | 0.094* | |
H11C | 0.6866 | 0.7062 | 0.6401 | 0.094* | |
C12 | 0.6102 (3) | 0.5471 (4) | 0.5636 (2) | 0.0681 (12) | |
H12A | 0.5997 | 0.5692 | 0.5076 | 0.102* | |
H12B | 0.5719 | 0.5782 | 0.5872 | 0.102* | |
H12C | 0.6012 | 0.4799 | 0.5630 | 0.102* | |
C13 | 0.8862 (2) | 0.1867 (2) | 0.6011 (2) | 0.0416 (8) | |
H13 | 0.8344 | 0.2182 | 0.5779 | 0.050* | |
C14 | 0.9149 (2) | 0.1318 (2) | 0.5505 (2) | 0.0409 (8) | |
H14 | 0.8836 | 0.1268 | 0.4941 | 0.049* | |
C15 | 0.9902 (2) | 0.0840 (2) | 0.58273 (19) | 0.0338 (7) | |
C16 | 1.0352 (2) | 0.0992 (2) | 0.6648 (2) | 0.0351 (7) | |
H16 | 1.0886 | 0.0712 | 0.6888 | 0.042* | |
C17 | 1.0018 (2) | 0.1548 (2) | 0.7110 (2) | 0.0359 (7) | |
H17 | 1.0331 | 0.1633 | 0.7671 | 0.043* | |
C18 | 1.0222 (2) | 0.0174 (2) | 0.53632 (19) | 0.0355 (7) | |
H18 | 1.0787 | −0.0024 | 0.5596 | 0.043* | |
C19 | 1.0297 (2) | 0.4016 (2) | 0.78886 (19) | 0.0331 (6) | |
H19 | 0.9938 | 0.4200 | 0.7364 | 0.040* | |
C20 | 1.10796 (19) | 0.4431 (2) | 0.81939 (19) | 0.0338 (6) | |
H20 | 1.1244 | 0.4887 | 0.7881 | 0.041* | |
C21 | 1.16227 (19) | 0.4178 (2) | 0.89581 (18) | 0.0304 (6) | |
C22 | 1.13422 (19) | 0.3486 (2) | 0.93706 (18) | 0.0334 (6) | |
H22 | 1.1696 | 0.3271 | 0.9887 | 0.040* | |
C23 | 1.0553 (2) | 0.3117 (2) | 0.90285 (18) | 0.0337 (6) | |
H23 | 1.0374 | 0.2658 | 0.9329 | 0.040* | |
C24 | 1.2428 (2) | 0.4655 (2) | 0.93038 (19) | 0.0337 (6) | |
H24 | 1.2517 | 0.5206 | 0.9042 | 0.040* | |
C25 | 1.3045 (2) | 0.4366 (2) | 0.99626 (19) | 0.0356 (7) | |
H25 | 1.2965 | 0.3788 | 1.0190 | 0.043* | |
C26 | 1.38345 (19) | 0.4854 (2) | 1.03704 (19) | 0.0339 (6) | |
C27 | 1.4043 (2) | 0.5708 (2) | 1.0115 (2) | 0.0392 (7) | |
H27 | 1.3686 | 0.5987 | 0.9629 | 0.047* | |
C28 | 1.4775 (2) | 0.6149 (3) | 1.0576 (2) | 0.0440 (8) | |
H28 | 1.4908 | 0.6732 | 1.0394 | 0.053* | |
C29 | 1.5114 (2) | 0.4955 (3) | 1.1492 (2) | 0.0430 (8) | |
H29 | 1.5492 | 0.4681 | 1.1970 | 0.052* | |
C30 | 1.4403 (2) | 0.4469 (2) | 1.1072 (2) | 0.0383 (7) | |
H30 | 1.4299 | 0.3875 | 1.1258 | 0.046* | |
C31 | 0.3930 (3) | 0.6527 (4) | 0.6166 (3) | 0.0811 (16) | |
C32 | 0.3169 (3) | 0.6944 (4) | 0.5636 (3) | 0.0715 (13) | |
H32A | 0.3086 | 0.7549 | 0.5857 | 0.107* | |
H32B | 0.2692 | 0.6539 | 0.5603 | 0.107* | |
H32C | 0.3210 | 0.7027 | 0.5090 | 0.107* | |
C33 | 0.4380 (4) | 0.6986 (4) | 0.3603 (3) | 0.0757 (14) | |
C34 | 0.4564 (4) | 0.6632 (6) | 0.2899 (4) | 0.119 (3) | |
H34A | 0.4786 | 0.5999 | 0.3012 | 0.178* | |
H34B | 0.4980 | 0.7031 | 0.2782 | 0.178* | |
H34C | 0.4049 | 0.6624 | 0.2426 | 0.178* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.02812 (14) | 0.02260 (13) | 0.03125 (13) | 0.00156 (7) | 0.00653 (10) | 0.00010 (8) |
S1 | 0.0366 (4) | 0.0298 (4) | 0.0430 (4) | −0.0089 (3) | −0.0052 (4) | 0.0069 (3) |
S2 | 0.0283 (4) | 0.0252 (3) | 0.0334 (4) | 0.0014 (3) | 0.0032 (3) | 0.0011 (3) |
S3 | 0.0419 (5) | 0.0318 (4) | 0.0335 (4) | 0.0103 (3) | 0.0132 (3) | 0.0037 (3) |
S4 | 0.0373 (4) | 0.0265 (3) | 0.0312 (4) | 0.0030 (3) | 0.0096 (3) | 0.0016 (3) |
O1 | 0.0307 (12) | 0.0283 (11) | 0.0510 (14) | −0.0040 (9) | −0.0041 (10) | 0.0085 (10) |
O2 | 0.0532 (15) | 0.0263 (11) | 0.0402 (12) | 0.0070 (10) | 0.0189 (11) | 0.0020 (9) |
N1 | 0.0309 (14) | 0.0261 (12) | 0.0331 (12) | −0.0038 (10) | 0.0025 (11) | 0.0019 (10) |
N2 | 0.0324 (14) | 0.0270 (12) | 0.0335 (12) | 0.0059 (10) | 0.0086 (11) | 0.0034 (10) |
N3 | 0.0322 (14) | 0.0327 (13) | 0.0352 (13) | 0.0048 (11) | 0.0094 (11) | −0.0044 (11) |
N4 | 0.0306 (13) | 0.0261 (12) | 0.0353 (13) | −0.0009 (10) | 0.0096 (11) | −0.0012 (10) |
N5 | 0.0317 (15) | 0.0477 (16) | 0.0436 (15) | −0.0062 (12) | 0.0053 (12) | −0.0076 (13) |
N6 | 0.081 (4) | 0.252 (8) | 0.111 (4) | 0.064 (5) | 0.049 (3) | 0.090 (5) |
N7 | 0.174 (7) | 0.100 (4) | 0.112 (4) | −0.036 (4) | 0.076 (5) | −0.044 (3) |
C1 | 0.0322 (16) | 0.0232 (13) | 0.0315 (14) | −0.0017 (11) | 0.0084 (12) | −0.0016 (11) |
C2 | 0.0311 (16) | 0.0319 (15) | 0.0394 (16) | −0.0069 (12) | 0.0071 (13) | 0.0028 (13) |
C3 | 0.0311 (17) | 0.0302 (15) | 0.0445 (17) | −0.0047 (13) | 0.0041 (14) | 0.0037 (13) |
C4 | 0.0309 (16) | 0.0303 (15) | 0.0366 (16) | 0.0001 (12) | 0.0034 (13) | 0.0032 (13) |
C5 | 0.046 (2) | 0.0329 (16) | 0.0393 (16) | 0.0094 (14) | 0.0086 (15) | 0.0055 (14) |
C6 | 0.055 (2) | 0.060 (2) | 0.0389 (17) | 0.0110 (19) | 0.0140 (17) | 0.0000 (17) |
C7 | 0.0239 (14) | 0.0227 (13) | 0.0340 (14) | −0.0010 (11) | 0.0035 (12) | −0.0015 (11) |
C8 | 0.0347 (17) | 0.0265 (14) | 0.0404 (16) | 0.0058 (12) | 0.0125 (14) | 0.0007 (13) |
C9 | 0.0349 (17) | 0.0283 (15) | 0.0435 (17) | 0.0034 (13) | 0.0110 (14) | −0.0024 (13) |
C10 | 0.052 (2) | 0.0368 (17) | 0.0389 (17) | 0.0166 (15) | 0.0155 (16) | 0.0121 (14) |
C11 | 0.091 (3) | 0.044 (2) | 0.061 (2) | 0.011 (2) | 0.035 (2) | 0.0156 (19) |
C12 | 0.065 (3) | 0.083 (3) | 0.043 (2) | 0.010 (2) | −0.001 (2) | 0.007 (2) |
C13 | 0.044 (2) | 0.0375 (17) | 0.0379 (16) | 0.0130 (15) | 0.0069 (15) | −0.0028 (14) |
C14 | 0.048 (2) | 0.0373 (17) | 0.0332 (16) | 0.0086 (15) | 0.0073 (15) | −0.0029 (13) |
C15 | 0.0381 (17) | 0.0267 (14) | 0.0390 (16) | 0.0030 (12) | 0.0157 (14) | 0.0035 (13) |
C16 | 0.0289 (16) | 0.0320 (15) | 0.0438 (17) | 0.0026 (12) | 0.0111 (14) | −0.0023 (13) |
C17 | 0.0317 (16) | 0.0345 (16) | 0.0381 (16) | 0.0011 (13) | 0.0068 (13) | −0.0055 (13) |
C18 | 0.0372 (17) | 0.0322 (15) | 0.0394 (15) | 0.0036 (13) | 0.0156 (14) | 0.0050 (13) |
C19 | 0.0329 (16) | 0.0317 (15) | 0.0321 (14) | −0.0006 (12) | 0.0072 (13) | 0.0017 (12) |
C20 | 0.0324 (16) | 0.0313 (15) | 0.0367 (15) | −0.0019 (12) | 0.0102 (13) | 0.0044 (13) |
C21 | 0.0267 (15) | 0.0291 (14) | 0.0338 (14) | −0.0027 (11) | 0.0077 (12) | −0.0039 (12) |
C22 | 0.0300 (16) | 0.0342 (15) | 0.0311 (14) | −0.0032 (12) | 0.0032 (12) | −0.0005 (12) |
C23 | 0.0340 (17) | 0.0317 (15) | 0.0321 (15) | −0.0030 (12) | 0.0066 (13) | 0.0032 (12) |
C24 | 0.0340 (17) | 0.0304 (15) | 0.0369 (15) | −0.0042 (12) | 0.0119 (13) | 0.0000 (13) |
C25 | 0.0335 (17) | 0.0361 (16) | 0.0356 (15) | −0.0045 (13) | 0.0093 (13) | −0.0001 (13) |
C26 | 0.0298 (16) | 0.0357 (15) | 0.0360 (15) | −0.0051 (12) | 0.0106 (13) | −0.0049 (13) |
C27 | 0.0317 (17) | 0.0404 (17) | 0.0398 (17) | −0.0012 (14) | 0.0039 (14) | 0.0015 (14) |
C28 | 0.0363 (19) | 0.0414 (18) | 0.0506 (19) | −0.0076 (14) | 0.0090 (16) | −0.0005 (16) |
C29 | 0.0334 (18) | 0.056 (2) | 0.0350 (16) | −0.0043 (15) | 0.0050 (14) | 0.0002 (15) |
C30 | 0.0328 (17) | 0.0418 (18) | 0.0392 (16) | −0.0061 (14) | 0.0106 (14) | 0.0020 (14) |
C31 | 0.065 (3) | 0.119 (5) | 0.070 (3) | 0.016 (3) | 0.037 (3) | 0.033 (3) |
C32 | 0.057 (3) | 0.093 (4) | 0.060 (3) | −0.002 (3) | 0.014 (2) | 0.014 (3) |
C33 | 0.084 (4) | 0.068 (3) | 0.076 (3) | −0.018 (3) | 0.028 (3) | −0.015 (3) |
C34 | 0.087 (4) | 0.193 (8) | 0.085 (4) | −0.049 (5) | 0.040 (3) | −0.059 (5) |
Cd—S1 | 2.6019 (8) | C10—C12 | 1.514 (6) |
Cd—S2 | 2.7457 (8) | C10—H10 | 1.0000 |
Cd—S3 | 2.6043 (8) | C11—H11A | 0.9800 |
Cd—S4 | 2.6967 (8) | C11—H11B | 0.9800 |
Cd—N3 | 2.439 (3) | C11—H11C | 0.9800 |
Cd—N4 | 2.454 (3) | C12—H12A | 0.9800 |
C1—S1 | 1.726 (3) | C12—H12B | 0.9800 |
C1—S2 | 1.717 (3) | C12—H12C | 0.9800 |
C7—S3 | 1.721 (3) | C13—C14 | 1.381 (5) |
C7—S4 | 1.727 (3) | C13—H13 | 0.9500 |
O1—C3 | 1.422 (4) | C14—C15 | 1.391 (5) |
O1—H1O | 0.839 (10) | C14—H14 | 0.9500 |
O2—C9 | 1.425 (4) | C15—C16 | 1.393 (4) |
O2—H2O | 0.840 (10) | C15—C18 | 1.464 (4) |
N1—C1 | 1.345 (4) | C16—C17 | 1.377 (4) |
N1—C2 | 1.477 (4) | C16—H16 | 0.9500 |
N1—C4 | 1.498 (4) | C17—H17 | 0.9500 |
N2—C7 | 1.344 (4) | C18—C18i | 1.334 (6) |
N2—C8 | 1.472 (4) | C18—H18 | 0.9500 |
N2—C10 | 1.497 (4) | C19—C20 | 1.388 (4) |
N3—C17 | 1.343 (4) | C19—H19 | 0.9500 |
N3—C13 | 1.343 (4) | C20—C21 | 1.390 (4) |
N4—C19 | 1.339 (4) | C20—H20 | 0.9500 |
N4—C23 | 1.345 (4) | C21—C22 | 1.396 (4) |
N5—C29 | 1.333 (5) | C21—C24 | 1.465 (4) |
N5—C28 | 1.344 (5) | C22—C23 | 1.375 (4) |
N6—C31 | 1.128 (7) | C22—H22 | 0.9500 |
N7—C33 | 1.126 (7) | C23—H23 | 0.9500 |
C2—C3 | 1.508 (5) | C24—C25 | 1.335 (4) |
C2—H2A | 0.9900 | C24—H24 | 0.9500 |
C2—H2B | 0.9900 | C25—C26 | 1.468 (4) |
C3—H3A | 0.9900 | C25—H25 | 0.9500 |
C3—H3B | 0.9900 | C26—C27 | 1.391 (5) |
C4—C6 | 1.510 (5) | C26—C30 | 1.393 (5) |
C4—C5 | 1.519 (4) | C27—C28 | 1.386 (5) |
C4—H4 | 1.0000 | C27—H27 | 0.9500 |
C5—H5A | 0.9800 | C28—H28 | 0.9500 |
C5—H5B | 0.9800 | C29—C30 | 1.375 (5) |
C5—H5C | 0.9800 | C29—H29 | 0.9500 |
C6—H6A | 0.9800 | C30—H30 | 0.9500 |
C6—H6B | 0.9800 | C31—C32 | 1.443 (7) |
C6—H6C | 0.9800 | C32—H32A | 0.9800 |
C8—C9 | 1.525 (4) | C32—H32B | 0.9800 |
C8—H8A | 0.9900 | C32—H32C | 0.9800 |
C8—H8B | 0.9900 | C33—C34 | 1.445 (8) |
C9—H9A | 0.9900 | C34—H34A | 0.9800 |
C9—H9B | 0.9900 | C34—H34B | 0.9800 |
C10—C11 | 1.510 (5) | C34—H34C | 0.9800 |
S1—Cd—S2 | 67.31 (2) | C11—C10—C12 | 113.0 (3) |
S1—Cd—S3 | 178.06 (3) | N2—C10—H10 | 107.0 |
S1—Cd—S4 | 112.08 (3) | C11—C10—H10 | 107.0 |
S1—Cd—N3 | 93.39 (7) | C12—C10—H10 | 107.0 |
S1—Cd—N4 | 85.98 (6) | C10—C11—H11A | 109.5 |
S2—Cd—S3 | 110.75 (3) | C10—C11—H11B | 109.5 |
S2—Cd—S4 | 99.85 (3) | H11A—C11—H11B | 109.5 |
S2—Cd—N3 | 92.19 (7) | C10—C11—H11C | 109.5 |
S2—Cd—N4 | 152.04 (6) | H11A—C11—H11C | 109.5 |
S3—Cd—S4 | 68.00 (2) | H11B—C11—H11C | 109.5 |
S3—Cd—N3 | 86.63 (7) | C10—C12—H12A | 109.5 |
S3—Cd—N4 | 95.94 (6) | C10—C12—H12B | 109.5 |
S4—Cd—N3 | 154.39 (6) | H12A—C12—H12B | 109.5 |
S4—Cd—N4 | 97.72 (6) | C10—C12—H12C | 109.5 |
N3—Cd—N4 | 80.87 (9) | H12A—C12—H12C | 109.5 |
C1—S1—Cd | 88.88 (10) | H12B—C12—H12C | 109.5 |
C1—S2—Cd | 84.44 (10) | N3—C13—C14 | 123.6 (3) |
C7—S3—Cd | 88.21 (10) | N3—C13—H13 | 118.2 |
C7—S4—Cd | 85.13 (10) | C14—C13—H13 | 118.2 |
C3—O1—H1O | 104 (3) | C13—C14—C15 | 119.5 (3) |
C9—O2—H2O | 102 (3) | C13—C14—H14 | 120.2 |
C1—N1—C2 | 121.0 (3) | C15—C14—H14 | 120.2 |
C1—N1—C4 | 121.8 (2) | C14—C15—C16 | 117.0 (3) |
C2—N1—C4 | 116.8 (2) | C14—C15—C18 | 123.8 (3) |
C7—N2—C8 | 121.5 (3) | C16—C15—C18 | 119.2 (3) |
C7—N2—C10 | 121.4 (3) | C17—C16—C15 | 119.6 (3) |
C8—N2—C10 | 116.9 (2) | C17—C16—H16 | 120.2 |
C17—N3—C13 | 116.4 (3) | C15—C16—H16 | 120.2 |
C17—N3—Cd | 121.2 (2) | N3—C17—C16 | 123.7 (3) |
C13—N3—Cd | 121.7 (2) | N3—C17—H17 | 118.2 |
C19—N4—C23 | 116.4 (3) | C16—C17—H17 | 118.2 |
C19—N4—Cd | 121.1 (2) | C18i—C18—C15 | 124.8 (4) |
C23—N4—Cd | 122.5 (2) | C18i—C18—H18 | 117.6 |
C29—N5—C28 | 117.0 (3) | C15—C18—H18 | 117.6 |
N1—C1—S2 | 121.5 (2) | N4—C19—C20 | 123.4 (3) |
N1—C1—S1 | 119.5 (2) | N4—C19—H19 | 118.3 |
S2—C1—S1 | 119.00 (17) | C20—C19—H19 | 118.3 |
N1—C2—C3 | 114.3 (3) | C19—C20—C21 | 119.9 (3) |
N1—C2—H2A | 108.7 | C19—C20—H20 | 120.0 |
C3—C2—H2A | 108.7 | C21—C20—H20 | 120.0 |
N1—C2—H2B | 108.7 | C20—C21—C22 | 116.5 (3) |
C3—C2—H2B | 108.7 | C20—C21—C24 | 120.1 (3) |
H2A—C2—H2B | 107.6 | C22—C21—C24 | 123.4 (3) |
O1—C3—C2 | 109.0 (3) | C23—C22—C21 | 119.9 (3) |
O1—C3—H3A | 109.9 | C23—C22—H22 | 120.1 |
C2—C3—H3A | 109.9 | C21—C22—H22 | 120.1 |
O1—C3—H3B | 109.9 | N4—C23—C22 | 123.8 (3) |
C2—C3—H3B | 109.9 | N4—C23—H23 | 118.1 |
H3A—C3—H3B | 108.3 | C22—C23—H23 | 118.1 |
N1—C4—C6 | 110.1 (3) | C25—C24—C21 | 124.3 (3) |
N1—C4—C5 | 112.0 (3) | C25—C24—H24 | 117.8 |
C6—C4—C5 | 112.5 (3) | C21—C24—H24 | 117.8 |
N1—C4—H4 | 107.3 | C24—C25—C26 | 126.5 (3) |
C6—C4—H4 | 107.3 | C24—C25—H25 | 116.8 |
C5—C4—H4 | 107.3 | C26—C25—H25 | 116.8 |
C4—C5—H5A | 109.5 | C27—C26—C30 | 117.2 (3) |
C4—C5—H5B | 109.5 | C27—C26—C25 | 123.7 (3) |
H5A—C5—H5B | 109.5 | C30—C26—C25 | 119.1 (3) |
C4—C5—H5C | 109.5 | C28—C27—C26 | 119.5 (3) |
H5A—C5—H5C | 109.5 | C28—C27—H27 | 120.3 |
H5B—C5—H5C | 109.5 | C26—C27—H27 | 120.3 |
C4—C6—H6A | 109.5 | N5—C28—C27 | 123.0 (3) |
C4—C6—H6B | 109.5 | N5—C28—H28 | 118.5 |
H6A—C6—H6B | 109.5 | C27—C28—H28 | 118.5 |
C4—C6—H6C | 109.5 | N5—C29—C30 | 123.8 (3) |
H6A—C6—H6C | 109.5 | N5—C29—H29 | 118.1 |
H6B—C6—H6C | 109.5 | C30—C29—H29 | 118.1 |
N2—C7—S3 | 120.8 (2) | C29—C30—C26 | 119.5 (3) |
N2—C7—S4 | 120.5 (2) | C29—C30—H30 | 120.3 |
S3—C7—S4 | 118.65 (16) | C26—C30—H30 | 120.3 |
N2—C8—C9 | 112.6 (3) | N6—C31—C32 | 178.2 (9) |
N2—C8—H8A | 109.1 | C31—C32—H32A | 109.5 |
C9—C8—H8A | 109.1 | C31—C32—H32B | 109.5 |
N2—C8—H8B | 109.1 | H32A—C32—H32B | 109.5 |
C9—C8—H8B | 109.1 | C31—C32—H32C | 109.5 |
H8A—C8—H8B | 107.8 | H32A—C32—H32C | 109.5 |
O2—C9—C8 | 111.0 (3) | H32B—C32—H32C | 109.5 |
O2—C9—H9A | 109.4 | N7—C33—C34 | 177.8 (7) |
C8—C9—H9A | 109.4 | C33—C34—H34A | 109.5 |
O2—C9—H9B | 109.4 | C33—C34—H34B | 109.5 |
C8—C9—H9B | 109.4 | H34A—C34—H34B | 109.5 |
H9A—C9—H9B | 108.0 | C33—C34—H34C | 109.5 |
N2—C10—C11 | 112.3 (3) | H34A—C34—H34C | 109.5 |
N2—C10—C12 | 110.1 (3) | H34B—C34—H34C | 109.5 |
C2—N1—C1—S2 | −11.5 (4) | C13—C14—C15—C16 | −3.7 (5) |
C4—N1—C1—S2 | 175.8 (2) | C13—C14—C15—C18 | 174.0 (3) |
C2—N1—C1—S1 | 168.1 (2) | C14—C15—C16—C17 | 4.0 (5) |
C4—N1—C1—S1 | −4.6 (4) | C18—C15—C16—C17 | −173.9 (3) |
Cd—S2—C1—N1 | −174.7 (3) | C13—N3—C17—C16 | −2.1 (5) |
Cd—S2—C1—S1 | 5.71 (16) | Cd—N3—C17—C16 | 168.2 (2) |
Cd—S1—C1—N1 | 174.4 (2) | C15—C16—C17—N3 | −1.1 (5) |
Cd—S1—C1—S2 | −6.00 (17) | C14—C15—C18—C18i | −12.2 (6) |
C1—N1—C2—C3 | 87.7 (4) | C16—C15—C18—C18i | 165.5 (4) |
C4—N1—C2—C3 | −99.3 (3) | C23—N4—C19—C20 | −0.9 (4) |
N1—C2—C3—O1 | 168.4 (2) | Cd—N4—C19—C20 | 178.4 (2) |
C1—N1—C4—C6 | 101.6 (3) | N4—C19—C20—C21 | 0.1 (5) |
C2—N1—C4—C6 | −71.4 (4) | C19—C20—C21—C22 | 1.5 (4) |
C1—N1—C4—C5 | −132.3 (3) | C19—C20—C21—C24 | −176.2 (3) |
C2—N1—C4—C5 | 54.6 (4) | C20—C21—C22—C23 | −2.2 (4) |
C8—N2—C7—S3 | 179.2 (2) | C24—C21—C22—C23 | 175.4 (3) |
C10—N2—C7—S3 | 4.5 (4) | C19—N4—C23—C22 | 0.1 (5) |
C8—N2—C7—S4 | −1.1 (4) | Cd—N4—C23—C22 | −179.2 (2) |
C10—N2—C7—S4 | −175.8 (2) | C21—C22—C23—N4 | 1.5 (5) |
Cd—S3—C7—N2 | −179.5 (2) | C20—C21—C24—C25 | −168.5 (3) |
Cd—S3—C7—S4 | 0.81 (16) | C22—C21—C24—C25 | 13.9 (5) |
Cd—S4—C7—N2 | 179.5 (2) | C21—C24—C25—C26 | −174.9 (3) |
Cd—S4—C7—S3 | −0.78 (15) | C24—C25—C26—C27 | 0.4 (5) |
C7—N2—C8—C9 | 81.4 (3) | C24—C25—C26—C30 | 177.9 (3) |
C10—N2—C8—C9 | −103.6 (3) | C30—C26—C27—C28 | −2.4 (5) |
N2—C8—C9—O2 | 168.5 (2) | C25—C26—C27—C28 | 175.1 (3) |
C7—N2—C10—C11 | −131.1 (3) | C29—N5—C28—C27 | 2.3 (5) |
C8—N2—C10—C11 | 53.9 (4) | C26—C27—C28—N5 | 0.0 (5) |
C7—N2—C10—C12 | 102.0 (4) | C28—N5—C29—C30 | −2.2 (5) |
C8—N2—C10—C12 | −72.9 (4) | N5—C29—C30—C26 | −0.2 (5) |
C17—N3—C13—C14 | 2.4 (5) | C27—C26—C30—C29 | 2.5 (5) |
Cd—N3—C13—C14 | −167.9 (3) | C25—C26—C30—C29 | −175.1 (3) |
N3—C13—C14—C15 | 0.6 (6) |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N5ii | 0.83 (4) | 1.82 (4) | 2.655 (4) | 177 (3) |
O2—H2O···O1iii | 0.84 (3) | 1.87 (3) | 2.689 (3) | 165 (5) |
C25—H25···O2iv | 0.95 | 2.44 | 3.261 (4) | 145 |
C28—H28···N7v | 0.95 | 2.56 | 3.296 (7) | 134 |
Symmetry codes: (ii) x−1, −y+1/2, z−1/2; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+2; (v) x+1, −y+3/2, z+1/2. |
Contact | Distance | Symmetry |
S1···H6A | 2.98 | 2 - x, -y, 2 - z |
S4···H18 | 2.97 | 2 - x, 1/2 + y, 3/2 - z |
O1···H11C | 2.64 | x, -1 + y, z |
O2···H30 | 2.66 | 2 - x, 1 - y, 2 - z |
C1···H20 | 2.83 | 2 - x, -1/2 + y, 3/2 - z |
C3···H2O | 2.69 (3) | x, -1 + y, z |
C24···H3A | 2.72 | 2 - x, -1/2 + y, 3/2 - z |
C28···H1O | 2.83 (3) | 1 + x, 1/2 - y, 1/2 + z |
C29···H1O | 2.67 (4) | 1 + x, 1/2 - y, 1 + z |
C16···C19 | 3.245 (4) | 2 - x, -1/2 + y, 3/2 - z |
C16···C20 | 3.377 (5) | 2 - x, -1/2 + y, 3/2 - z |
H5A···H23 | 2.31 | 2 - x, -y, 2 - z |
Contact | Contribution |
H···H | 51.9 |
O···H/H···O | 6.0 |
C···H/H···C | 15.9 |
N···H/H···N | 10.6 |
C···C | 3.1 |
S···H/H···S | 10.3 |
C···S/S···C | 0.8 |
N···S/S···N | 0.7 |
C···N/N···C | 0.7 |
Contact | ER |
H···H | 0.97 |
O···H/H···O | 1.36 |
N···H/H···N | 1.20 |
C···C | 2.23 |
S···H/H···S | 1.19 |
C···H/H···C | 0.92 |
C···S/S···C | 0.58 |
C···N/N···C | 0.49 |
Footnotes
‡Additional correspondence author, e-mail: mmjotani@rediffmail.com.
References
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1472–m1473. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250. Web of Science CSD CrossRef CAS Google Scholar
Dong, Y. B., Layland, R. C., Smith, M. D., Pschirer, N. G., Bunz, U. H. F. & zur Loye, H.-C. (1999). Inorg. Chem. 38, 3056–3060. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Chem. Crystallogr. 39, 293–298. Web of Science CSD CrossRef CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231. doi: 10.1515/zkri-2016-1943. Google Scholar
Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247–1256. Web of Science CSD CrossRef CAS Google Scholar
Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252. Web of Science CSD CrossRef CAS Google Scholar
Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605. Web of Science CSD CrossRef CAS Google Scholar
Lu, J. Y., Runnels, K. A. & Norman, C. (2001). Inorg. Chem. 40, 4516–4517. Web of Science CSD CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Paul, A. K., Karthik, R. & Natarajan, S. (2011). Cryst. Growth Des. 11, 5741–5749. Web of Science CSD CrossRef CAS Google Scholar
Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rodina, T. A., Ivanov, A. V., Gerasimenko, A. V., Ivanov, M. A., Zaeva, A. S., Philippova, T. S. & Antzutkin, O. N. (2011). Inorg. Chim. Acta, 368, 263–270. Web of Science CSD CrossRef CAS Google Scholar
Safbri, S. A. M., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 158–163. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126. CAS Google Scholar
Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056. Web of Science CSD CrossRef CAS Google Scholar
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. Web of Science CrossRef CAS Google Scholar
Wahab, N. A. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m551–m552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.