research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2-oxo-N-(quinolin-6-yl)-2H-chromene-3-carboxamide: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aFP–ENAS–Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dCIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 July 2016; accepted 7 July 2016; online 12 July 2016)

The title coumarin derivative, C20H14N2O3, displays intra­molecular N—H⋯O and weak C—H⋯O hydrogen bonds, which probably contribute to the approximate planarity of the mol­ecule [dihedral angle between the coumarin and quinoline ring systems = 6.08 (6)°]. The supra­molecular structures feature C—H⋯O hydrogen bonds and ππ inter­actions, as confirmed by Hirshfeld surface analyses.

1. Chemical context

Coumarin and its derivatives are widely recognized by their unique biological properties (Matos et al., 2014[Matos, M. J., Janeiro, P., Gonz\'alez Franco, R. M., Vilar, S., Tatonetti, N. P., Santana, L., Uriarte, E., Borges, F., Fontenla, J. A. & Viña, D. (2014). Future Med. Chem. 6, 371-383.]; Vazquez-Rodriguez et al., 2013[Vazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K. N. (2013). J. Pharm. Pharmacol. 65, 607-703.]; Chimenti et al., 2010[Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Rivanera, D., Zicari, A., Scaltrito, M. M. & Sisto, F. (2010). Bioorg. Med. Chem. Lett. 20, 4922-4926.]). Our work in this area has shown that coumarin is a valid scaffold for the development of new drugs for aging related diseases, specifically within the class of mono­amino oxidase B inhibitors (Matos et al., 2009[Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268-3270.]). On the other hand, quinoline is a nitro­gen heterocycle also often used in drug-discovery programs due to its remarkable biological properties, some of them related to neurodegenerative diseases (Sridharan et al., 2011[Sridharan, V., Suryavanshi, P. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157-7259.]), for instance, as γ-secretase and acetyl­cholinesterase inhibitors (Camps et al., 2009[Camps, P., Formosa, X., Galdeano, C., Muñoz-Torrero, D., Ramírez, L., Gómez, E., Isambert, N., Lavilla, R., Badia, A., Clos, M. V., Bartolini, M., Mancini, F., Andrisano, V., Arce, M. P., Rodríguez-Franco, M. I., Huertas, O., Dafni, T. & Luque, F. J. (2009). J. Med. Chem. 52, 5365-5379.]). As part of our ongoing studies in this area (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]), we describe the synthesis and crystal structure of the title coumarin–quinoline hybrid, 6-methyl-2-oxo-N-(quinolin-6-yl)-2H-chromene-3-carboxamide, (1) (see Scheme).

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows an ellipsoid plot of the mol­ecular structure of (1). An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C3—C4 [1.3609 (15) Å] and C3—C2 [1.4600 (18) Å)] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond, suggesting that the electronic density is rather located near the C3—C4 bond at the pyrone ring, as occurs in other coumarin-3-carboxamide derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]). Also, the C3—C31 bond length [1.5075 (18) Å] is similar to the mean value displayed by other coumarin-3-carboxamide derivatives previously characterized (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]) and is of the same order as a Csp3—Csp3 bond.

[Figure 1]
Figure 1
A view of the asymmetric unit of (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

The C—N rotamer of the amide group governs the conformation of the mol­ecule: the −anti orientation where the N atom is −cis positioned with respect to the oxo O atom of the coumarin system allows the establishment of an intra­molecular N32—H32⋯O2 hydrogen bond between the amino group of the carboxamide and the oxo group of the coumarin system, and of a weak intra­molecular C317—H317⋯O31 hydrogen bond that connects the quinoline ring with the O atom of the carboxamide group (Table 1[link]). Both these inter­actions form S(6) rings and connect the spacer carboxamide group with the heteroaromatic rings, probably constraining the rotation/bending of those rings with respect to the plane formed by the amide atoms. In fact, the mol­ecule is roughly planar, as may be evaluated by the set of values for the dihedral angles which are less than 7° (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C314—H314⋯O31i 0.95 2.50 3.278 (2) 139
C8—H8⋯N311ii 0.95 2.68 3.394 (3) 133
C317—H317⋯O31 0.95 2.29 2.903 (2) 122
N32—H32⋯O2 0.907 (18) 1.879 (18) 2.686 (2) 147.3 (15)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Table 2
Selected dihedral angles (°)

Compound θ1 (°) θ2 (°) θ3 (°)
(1) 6.08 (6) 5.0 (12) 1.73 (11)
Notes: θ1 is the dihedral angle between the mean planes of the coumarin and quinoline rings; θ2 is the dihedral angle between the mean plane of the coumarin ring and the plane defined by atoms O31/C31/N32; θ3 is the dihedral angle between the mean plane of the quinoline ring and the plane defined by atoms O31/C31/N32.

3. Supra­molecular features

In the crystal of (1), mol­ecules are linked by a weak C314—H314⋯O31i hydrogen bond to form a C(8) chain, which runs parallel to the a axis (Fig. 2[link] and Table 1[link]). There are several ππ contacts that will be described below.

[Figure 2]
Figure 2
The simple C4 chain in compound (1) formed by the weak C314—H314⋯O3i hydrogen bond. This chain extends by unit translation along the a axis. H atoms not involved in the hydrogen bonding have been omitted. [Symmetry codes: (i) x − 1, y, z; (ii) x + 1,y, z.]

4. Hirshfeld surface analyses

The Hirshfeld surfaces and two-dimensional fingerprint (FP) plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 451-4525.]) were generated using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). Compound (1) has three O atoms and an N atom that can potentially act as acceptors for hydrogen bonds, but one of the lone pairs of the oxo O atoms of the coumarin nucleus and of the amide moiety are involved in the establishment of intra­molecular hydrogen bonds, as discussed above. As such, they contribute to the electronic density of the pro-mol­ecule in the calculation of the Hirshfeld surface, leaving only the remaining pairs available for participation in the supra­molecular structure formation. The surface mapped over dnorm displays several red spots that correspond to areas of close contacts between the surface and the neighbouring environment, and the FP plot is presented in Fig. 3[link].

[Figure 3]
Figure 3
Views of the Hirshfeld surface mapped over dnorm (left) and fingerprint plot (right, FP) for (1). The highlighted red spots on the top face of the surfaces indicate contact points with the atoms participating in the inter­molecular C—H⋯O inter­actions, whereas those on the middle of the surface corresponds to C⋯C contacts consequent of the ππ stacking. The C⋯C contacts contribute to the higher frequency of the pixels at de/di at 1.8° on the FP plot (yellow spot). The FP plot displays two light-blue spikes (external ends corresponding to C⋯ H contacts).

The contributions from various contacts, listed in Table 3[link], were selected by partial analysis of the FP plot. Taking out the H⋯H contacts on the surface that are inherent to organic mol­ecules, the most significant contacts can be divided in three groups: (i) H⋯O/O⋯H together with H⋯N/N⋯H that correspond to weak C—H⋯O/N inter­molecular inter­actions (24.5%); (ii) C⋯C and N⋯C/C⋯N contacts that are related with ππ stacking (17.9%): (iii) H⋯C/C⋯H contacts (14.3%).

Table 3
Percentages of atom–atom contacts for (1) (%)

Contact H⋯H H⋯O/O⋯H H⋯N/N⋯H C⋯C N⋯C/C⋯N H⋯C/C⋯H
(%) 40.6 21.2 3.3 13.2 4.7 14.3

The H⋯N/O contacts appear as three highlighted red spots on the top and bottom edges of the surface which form pairs of spots of comlementary size, indicating the contact points of the labelled atoms participating in the C–H⋯N/O inter­actions (Fig. 3[link]). The strongest spots correspond to oxo atom O31 of the carboxamide acceptor and donor atom H314, which forms the C314—H314⋯O31i hydrogen bond (Table 1[link]), and the other spots correspond to very weak hydrogen-bond contacts, one involving pyrone atom O1 and a H atom of the methyl group (C61—H61B⋯O1ii; Table 1[link]), and the other appearing perpendicular to the quinoline N atom indicating a very weak C8—H8⋯N311ii contact (Table 1[link]). In spite of the weakness of these contacts, their relative strength is reflected in the FP plots where the pair of sharp spikes pointing to south-west is highlighted in light blue.

In this structure, C/N⋯C contacts prevail over the C—H⋯C ones. In fact, the packing in (1) is built up by several ππ inter­actions (Table 4[link]). The red spots in the frontal zone of the surface correspond to these close contacts. Furthermore, the FP plot also reveals an intense cluster at de/di at 1.8 Å characteristic of C⋯C contacts. Also, when the surface is mapped with shape index, several complementary triangular red hollows and blue bumps appear that are characteristic of the six-ring stacking (Fig. 4[link]). The mol­ecules stack in a column in a head-to-tail fashion along the b axis (Fig. 5[link]). The mol­ecules in these stacks lie across centres of symmetry at ([1 \over 2], 1, [1 \over 2]), a centrosymetrically related contact between the pyran and pyridine rings, and across the centre at ([1 \over 2], [1 \over 2], [1 \over 2]), which involves three short centrosymmetrically related contacts: (i) between the pyran and pyridine rings, (ii) between the pyran ring and the quinoline phenyl ring and (iii) between the coumarin phenyl ring and the pyridine ring.

Table 4
Selected π–π contacts

Compound CgI CgJ(aru) CgCg (Å) CgI_Perp (Å) CgJ_Perp (Å) Slippage (Å)
1 Cg1 Cg2(−x + 1, −y, −z − 1) 3.548 (2) 3.1477 (4) 3.3051 (4) 1.290
1 Cg1 Cg2(−x + 1, −y + 1, −z − 1) 3.911 (3) −3.3848 (4) −3.3352 (4) 2.043
1 Cg1 Cg4(−x + 1, −y + 1, −z − 1) 3.525 (2) −3.3851 (4) −3.2952 (4) 1.252
1 Cg2 Cg1(−x + 1, −y, −z − 1) 3.548 (2) 3.3050 (4) 3.1476 (4) 1.637
1 Cg2 Cg1(−x + 1, −y + 1, −z − 1) 3.911 (3) −3.3352 (4) −3.3849 (4) 1.960
1 Cg2 Cg3(−x + 1, −y + 1, −z − 1) 3.797 (3) −3.3389 (4) −3.5276 (5) 1.406
1 Cg3 Cg2(−x + 1, −y + 1, −z − 1) 3.798 (3) −3.5277 (5) −3.3388 (4) 1.809
1 Cg4 Cg1(−x + 1, −y + 1, −z − 1) 3.525 (2) −3.2951 (4) −3.3852 (4) 0.983
Notes: CgI(J) = Plane number I(J); CgCg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I; Slippage = distance between CgI and perpendicular projection of CgJ on ring I.Plane 1 is the plane of the coumarin pyran ring with Cg1 as centroid; Plane 2 is the plane of the quinoline pyridine ring with Cg2 as centroid; Plane 3 is the plane of the coumarin phenyl ring with Cg3 as centroid; Plane 4 is the plane of the quinoline phenyl ring with Cg4 as centroid.Some planes are repeated since they are inclined to each other and as a result give slightly different slippages
[Figure 4]
Figure 4
Shape index plots showing the inter­actions arising from ππ stacking. The upper corresponds to the stacking across ([1 \over 2], 1, [1 \over 2]), while the lower corresponds to the stacking across ([1 \over 2], [1 \over 2], [1 \over 2]).
[Figure 5]
Figure 5
View of the ππ stacking along the b axis.

5. Database survey

As reported by Gomes et al. (2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]), a search made in the Cambridge Structural Database (CSD, Version 35.7; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the existence of 35 deposited compounds (42 mol­ecules) containing the coumarin carboxamide unit, all of which contained the same intra­molecular hydrogen bonds. The present compound also contains these bonds, as described above.

6. Synthesis and crystallization

6-Methyl­coumarin-3-carb­oxy­lic acid (Murata et al.., 2005[Murata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M. & Takadate, A. (2005). Chem. Pharm. Bull. (Tokyo), 53, 750-758.]) (1 mmol) was dissolved in di­chloro­methane and 3-[3-(di­methyl­amino)­prop­yl]-1-ethyl­carbodi­imide (1.10 mmol) and 4-di­methyl­amino­pyridine (1.10 mmol) were added. The mixture was kept under a flux of argon at 273 K for 5 min. 6-Amino­quinoline (1 mmol) was then added in small portions. The reaction mixture was stirred for 4 h at room temperature. The obtained precipitate was filtered off and recrystallized from methanol to give colourless needles of (1). Overall yield: 53%; m.p. 545–546 K.

7. Refinement

H atoms were treated as riding atoms, with aromatic C—H = 0.95 Å, with Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C). The amino H atoms were freely refined. Crystal data, data collection and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

Crystal data
Chemical formula C20H14N2O3
Mr 330.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.799 (3), 7.014 (3), 27.640 (18)
β (°) 90.18 (6)
V3) 1512.0 (13)
Z 4
Radiation type Synchrotron, λ = 0.68891 Å
μ (mm−1) 0.09
Crystal size (mm) 0.18 × 0.01 × 0.004
 
Data collection
Diffractometer Three-circle diffractometer
Absorption correction Empirical (using intensity measurements) (aimless CCP4; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
No. of measured, independent and observed [I > 2σ(I)] reflections 18408, 4587, 3717
Rint 0.060
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.156, 1.13
No. of reflections 4587
No. of parameters 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.25
Computer programs: GDA https://www.opengda.org/OpenGDA.html, XIA2 0.4.0.370-g47f3bc3 (Winter, 2010[Winter, G. (2010). J. Appl. Cryst. 43, 186-190.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: GDA https://www.opengda.org/OpenGDA.html; cell refinement: XIA2 0.4.0.370-g47f3bc3, (Winter, 2010; data reduction: XIA2 0.4.0.370-g47f3bc3 (Winter, 2010; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: ShelXle (Hübschle et al., 2011) SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/17 (Sheldrick, 2015b) PLATON (Spek, 2009).

(I) top
Crystal data top
C20H14N2O3F(000) = 688
Mr = 330.33Dx = 1.451 Mg m3
Monoclinic, P21/nSynchrotron' radiation, λ = 0.68891 Å
a = 7.799 (3) ÅCell parameters from 3773 reflections
b = 7.014 (3) Åθ = 2.6–33.9°
c = 27.640 (18) ŵ = 0.09 mm1
β = 90.18 (6)°T = 100 K
V = 1512.0 (13) Å3Needle, colourless
Z = 40.18 × 0.01 × 0.004 mm
Data collection top
Three-circle
diffractometer
4587 independent reflections
Radiation source: synchrotron, DLS beamline I19, undulator3717 reflections with I > 2σ(I)
Si 111, double crystal monochromatorRint = 0.060
Detector resolution: 5.81 pixels mm-1θmax = 29.5°, θmin = 2.9°
profile data from ω–scansh = 1111
Absorption correction: empirical (using intensity measurements)
aimless ccp4 (Evans, 2006)
k = 1010
l = 3939
18408 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0954P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4587 reflectionsΔρmax = 0.54 e Å3
231 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61633 (10)0.57511 (12)0.33247 (3)0.02193 (19)
O20.42390 (10)0.67655 (12)0.38475 (3)0.0244 (2)
O310.79011 (10)0.65810 (12)0.49728 (3)0.0240 (2)
N320.50968 (12)0.71842 (13)0.47835 (3)0.0186 (2)
N3110.21868 (12)0.98576 (13)0.65151 (3)0.0204 (2)
C20.57274 (14)0.62613 (16)0.37867 (4)0.0196 (2)
C30.70619 (13)0.61438 (15)0.41571 (4)0.0177 (2)
C40.86585 (13)0.55411 (15)0.40316 (4)0.0180 (2)
H40.95190.54510.42750.022*
C51.07250 (14)0.44450 (15)0.33910 (4)0.0200 (2)
H51.16280.43620.36220.024*
C4A0.90818 (14)0.50369 (15)0.35425 (4)0.0182 (2)
C61.10480 (15)0.39806 (16)0.29103 (4)0.0222 (2)
C70.97020 (15)0.41362 (17)0.25763 (4)0.0238 (2)
H70.99040.38210.22470.029*
C80.80789 (15)0.47398 (17)0.27134 (4)0.0230 (2)
H80.71840.48580.24820.028*
C8A0.77937 (14)0.51669 (16)0.31972 (4)0.0195 (2)
C310.67345 (13)0.66578 (15)0.46783 (4)0.0185 (2)
C34A0.18814 (13)0.89163 (15)0.56639 (4)0.0176 (2)
C38A0.28705 (13)0.91692 (15)0.60890 (4)0.0178 (2)
C611.27981 (16)0.3329 (2)0.27477 (5)0.0312 (3)
H61A1.31030.21470.29160.047*
H61B1.36470.43160.28240.047*
H61C1.27810.31010.23980.047*
C3120.05500 (14)1.03063 (16)0.65149 (4)0.0219 (2)
H3120.00751.07950.68060.026*
C3130.05445 (14)1.01098 (16)0.61122 (4)0.0219 (2)
H3130.17171.04660.61330.026*
C3140.01123 (13)0.93934 (16)0.56876 (4)0.0199 (2)
H3140.06090.92200.54130.024*
C3150.26757 (13)0.82186 (15)0.52375 (4)0.0183 (2)
H3150.20060.80370.49540.022*
C3160.44016 (14)0.78004 (15)0.52286 (4)0.0178 (2)
C3170.53856 (14)0.80040 (16)0.56555 (4)0.0197 (2)
H3170.65690.76830.56550.024*
C3180.46224 (14)0.86712 (16)0.60735 (4)0.0198 (2)
H3180.52970.87980.63580.024*
H320.440 (2)0.709 (3)0.4521 (6)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (4)0.0271 (4)0.0199 (4)0.0001 (3)0.0003 (3)0.0025 (3)
O20.0186 (4)0.0295 (5)0.0250 (4)0.0018 (3)0.0007 (3)0.0027 (3)
O310.0209 (4)0.0295 (5)0.0216 (4)0.0024 (3)0.0005 (3)0.0043 (3)
N320.0184 (4)0.0194 (5)0.0180 (4)0.0012 (3)0.0018 (3)0.0009 (3)
N3110.0226 (4)0.0201 (5)0.0186 (5)0.0011 (3)0.0019 (3)0.0011 (3)
C20.0200 (5)0.0186 (5)0.0203 (5)0.0020 (4)0.0014 (4)0.0007 (4)
C30.0185 (5)0.0164 (5)0.0183 (5)0.0012 (4)0.0012 (4)0.0004 (4)
C40.0192 (5)0.0155 (5)0.0193 (5)0.0012 (4)0.0008 (4)0.0000 (4)
C50.0208 (5)0.0178 (5)0.0214 (5)0.0001 (4)0.0019 (4)0.0001 (4)
C4A0.0199 (5)0.0154 (5)0.0194 (5)0.0022 (4)0.0021 (4)0.0006 (4)
C60.0242 (5)0.0197 (5)0.0227 (5)0.0012 (4)0.0046 (4)0.0018 (4)
C70.0273 (5)0.0240 (6)0.0202 (5)0.0030 (4)0.0042 (4)0.0024 (4)
C80.0248 (5)0.0258 (6)0.0185 (5)0.0030 (4)0.0011 (4)0.0013 (4)
C8A0.0188 (5)0.0193 (5)0.0202 (5)0.0024 (4)0.0021 (4)0.0007 (4)
C310.0194 (5)0.0151 (5)0.0212 (5)0.0009 (4)0.0025 (4)0.0005 (4)
C34A0.0178 (5)0.0144 (5)0.0205 (5)0.0002 (3)0.0016 (4)0.0011 (4)
C38A0.0194 (5)0.0158 (5)0.0181 (5)0.0013 (4)0.0016 (4)0.0003 (4)
C610.0253 (6)0.0408 (8)0.0274 (6)0.0069 (5)0.0052 (5)0.0060 (5)
C3120.0238 (5)0.0204 (5)0.0214 (5)0.0012 (4)0.0057 (4)0.0012 (4)
C3130.0188 (5)0.0216 (5)0.0251 (6)0.0002 (4)0.0032 (4)0.0006 (4)
C3140.0180 (5)0.0202 (5)0.0215 (5)0.0006 (4)0.0001 (4)0.0015 (4)
C3150.0195 (5)0.0167 (5)0.0188 (5)0.0004 (4)0.0001 (4)0.0003 (4)
C3160.0201 (5)0.0148 (5)0.0185 (5)0.0001 (4)0.0029 (4)0.0006 (4)
C3170.0183 (5)0.0203 (5)0.0206 (5)0.0010 (4)0.0016 (4)0.0002 (4)
C3180.0204 (5)0.0207 (5)0.0185 (5)0.0005 (4)0.0011 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—C21.3701 (16)C7—H70.9500
O1—C8A1.3827 (14)C8—C8A1.3887 (18)
O2—C21.2255 (14)C8—H80.9500
O31—C311.2201 (16)C34A—C38A1.4149 (18)
N32—C311.3618 (14)C34A—C3151.4200 (17)
N32—C3161.4136 (16)C34A—C3141.4214 (15)
N32—H320.907 (18)C38A—C3181.4111 (16)
N311—C3121.3147 (15)C61—H61A0.9800
N311—C38A1.3814 (16)C61—H61B0.9800
C2—C31.4600 (18)C61—H61C0.9800
C3—C41.3609 (15)C312—C3131.4075 (19)
C3—C311.5075 (18)C312—H3120.9500
C4—C4A1.4368 (17)C313—C3141.3769 (17)
C4—H40.9500C313—H3130.9500
C5—C61.3918 (18)C314—H3140.9500
C5—C4A1.4119 (16)C315—C3161.3779 (15)
C5—H50.9500C315—H3150.9500
C4A—C8A1.3866 (18)C316—C3171.4128 (18)
C6—C71.4000 (19)C317—C3181.3830 (17)
C6—C611.5092 (17)C317—H3170.9500
C7—C81.3886 (17)C318—H3180.9500
C2—O1—C8A123.10 (10)N32—C31—C3115.51 (11)
C31—N32—C316129.15 (11)C38A—C34A—C315119.63 (10)
C31—N32—H32111.5 (11)C38A—C34A—C314117.32 (10)
C316—N32—H32119.3 (11)C315—C34A—C314123.05 (11)
C312—N311—C38A117.43 (11)N311—C38A—C318119.26 (11)
O2—C2—O1116.17 (11)N311—C38A—C34A122.75 (10)
O2—C2—C3126.42 (11)C318—C38A—C34A117.98 (10)
O1—C2—C3117.42 (10)C6—C61—H61A109.5
C4—C3—C2119.32 (11)C6—C61—H61B109.5
C4—C3—C31118.40 (11)H61A—C61—H61B109.5
C2—C3—C31122.28 (10)C6—C61—H61C109.5
C3—C4—C4A121.96 (11)H61A—C61—H61C109.5
C3—C4—H4119.0H61B—C61—H61C109.5
C4A—C4—H4119.0N311—C312—C313124.28 (11)
C6—C5—C4A121.27 (12)N311—C312—H312117.9
C6—C5—H5119.4C313—C312—H312117.9
C4A—C5—H5119.4C314—C313—C312118.92 (10)
C8A—C4A—C5118.13 (11)C314—C313—H313120.5
C8A—C4A—C4117.61 (11)C312—C313—H313120.5
C5—C4A—C4124.25 (11)C313—C314—C34A119.27 (11)
C5—C6—C7118.28 (11)C313—C314—H314120.4
C5—C6—C61121.45 (12)C34A—C314—H314120.4
C7—C6—C61120.28 (11)C316—C315—C34A121.13 (11)
C8—C7—C6121.73 (11)C316—C315—H315119.4
C8—C7—H7119.1C34A—C315—H315119.4
C6—C7—H7119.1C315—C316—C317119.45 (11)
C7—C8—C8A118.52 (12)C315—C316—N32117.26 (11)
C7—C8—H8120.7C317—C316—N32123.29 (10)
C8A—C8—H8120.7C318—C317—C316119.86 (10)
O1—C8A—C4A120.59 (10)C318—C317—H317120.1
O1—C8A—C8117.36 (11)C316—C317—H317120.1
C4A—C8A—C8122.06 (11)C317—C318—C38A121.90 (11)
O31—C31—N32124.57 (11)C317—C318—H318119.0
O31—C31—C3119.91 (10)C38A—C318—H318119.0
C8A—O1—C2—O2179.41 (9)C4—C3—C31—O312.12 (16)
C8A—O1—C2—C30.94 (15)C2—C3—C31—O31178.23 (10)
O2—C2—C3—C4179.54 (11)C4—C3—C31—N32177.74 (9)
O1—C2—C3—C40.06 (15)C2—C3—C31—N321.91 (15)
O2—C2—C3—C310.09 (18)C312—N311—C38A—C318179.98 (10)
O1—C2—C3—C31179.70 (9)C312—N311—C38A—C34A0.77 (16)
C2—C3—C4—C4A0.81 (16)C315—C34A—C38A—N311179.40 (10)
C31—C3—C4—C4A179.54 (9)C314—C34A—C38A—N3110.32 (16)
C6—C5—C4A—C8A0.76 (16)C315—C34A—C38A—C3181.34 (15)
C6—C5—C4A—C4179.86 (10)C314—C34A—C38A—C318178.94 (10)
C3—C4—C4A—C8A0.58 (16)C38A—N311—C312—C3130.74 (17)
C3—C4—C4A—C5178.52 (10)N311—C312—C313—C3140.39 (18)
C4A—C5—C6—C70.76 (17)C312—C313—C314—C34A1.51 (16)
C4A—C5—C6—C61179.40 (11)C38A—C34A—C314—C3131.45 (15)
C5—C6—C7—C80.15 (18)C315—C34A—C314—C313178.25 (10)
C61—C6—C7—C8179.69 (11)C38A—C34A—C315—C3160.68 (16)
C6—C7—C8—C8A1.03 (18)C314—C34A—C315—C316179.02 (10)
C2—O1—C8A—C4A1.19 (16)C34A—C315—C316—C3172.29 (16)
C2—O1—C8A—C8178.25 (10)C34A—C315—C316—N32177.58 (9)
C5—C4A—C8A—O1179.57 (9)C31—N32—C316—C315178.87 (10)
C4—C4A—C8A—O10.41 (15)C31—N32—C316—C3171.27 (18)
C5—C4A—C8A—C80.15 (17)C315—C316—C317—C3181.86 (16)
C4—C4A—C8A—C8179.00 (10)N32—C316—C317—C318178.01 (10)
C7—C8—C8A—O1179.54 (10)C316—C317—C318—C38A0.20 (17)
C7—C8—C8A—C4A1.03 (18)N311—C38A—C318—C317178.93 (10)
C316—N32—C31—O312.43 (19)C34A—C38A—C318—C3171.78 (16)
C316—N32—C31—C3177.72 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C314—H314···O31i0.952.503.278 (2)139
C8—H8···N311ii0.952.683.394 (3)133
C317—H317···O310.952.292.903 (2)122
N32—H32···O20.907 (18)1.879 (18)2.686 (2)147.3 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z1/2.
Selected dihedral angles (°) top
Compoundθ1 (°)θ2 (°)θ3 (°)
(1)6.08 (6)5.0 (12)1.73 (11)
Notes: θ1 is the dihedral angle between the mean planes of the coumarin ring and quinoline ring; θ2 is the dihedral angle between the mean plane of the coumarin ring and the plane defined by atoms O31/C31/N32; θ3 is the dihedral angle between the mean plane of the quinoline ring and the plane defined by atoms O31/C31/N32.
Selected ππ contacts top
CompoundCgICgJ(aru)CgCg (Å)CgI_Perp (Å)CgJ_Perp (Å)Slippage (Å)
1Cg1Cg2(-x+1, -y, -z-1)3.548 (2)3.1477 (4)3.3051 (4)1.290
1Cg1Cg2(-x+1, -y+1, -z-1)3.911 (3)-3.3848 (4)-3.3352 (4)2.043
1Cg1Cg4(-x+1, -y+1, -z-1)3.525 (2)-3.3851 (4)-3.2952 (4)1.252
1Cg2Cg1(-x+1, -y, -z-1)3.548 (2)3.3050 (4)3.1476 (4)1.637
1Cg2Cg1(-x+1, -y+1, -z-1)3.911 (3)-3.3352 (4)-3.3849 (4)1.960
1Cg2Cg3(-x+1, -y+1, -z-1)3.797 (3)-3.3389 (4)-3.5276 (5)1.406
1Cg3Cg2(-x+1, -y+1, -z-1)3.798 (3)-3.5277 (5)-3.3388 (4)1.809
1Cg4Cg1(-x+1, -y+1, -z-1)3.525 (2)-3.2951 (4)-3.3852 (4)0.983
Notes: CgI(J) = Plane number I(J); CgCg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I; Slippage = distance between CgI and perpendicular projection of CgJ on ring I.

Plane 1 is the plane of the coumarin pyran ring with Cg1 as centroid; Plane 2 is the plane of the quinoline pyridine ring with Cg2 as centroid; Plane 3 is the plane of the coumarin phenyl ring with Cg3 as centroid; Plane 4 is the plane of the quinoline phenyl ring with Cg4 as centroid.

Some planes are repeated since they are inclined to each other and as a result give slightly different slippages
Percentages of atom–atom contacts for (1) (%) top
ContactH···HH···O/O···HH···N/N···HC···CN···C/C···NH···C/C···H
(%)40.621.23.313.24.714.3
Selected dihedral angles (°) top
Compoundθ1 (°)θ2 (°)θ3 (°)
(1)6.08 (6)5.0 (12)1.73 (11)
Notes: θ1 is the dihedral angle between the mean planes of the coumarin ring and quinoline ring; θ2 is the dihedral angle between the mean plane of the coumarin ring and the plane defined by atoms O31/C31/N32; θ3 is the dihedral angle between the mean plane of the quinoline ring and the plane defined by atoms O31/C31/N32.
Selected ππ contacts top
CompoundCgICgJ(aru)CgCg (Å)CgI_Perp (Å)CgJ_Perp (Å)Slippage (Å)
1Cg1Cg2(-x+1, -y, -z-1)3.548 (2)3.1477 (4)3.3051 (4)1.290
1Cg1Cg2(-x+1, -y+1, -z-1)3.911 (3)-3.3848 (4)-3.3352 (4)2.043
1Cg1Cg4(-x+1, -y+1, -z-1)3.525 (2)-3.3851 (4)-3.2952 (4)1.252
1Cg2Cg1(-x+1, -y, -z-1)3.548 (2)3.3050 (4)3.1476 (4)1.637
1Cg2Cg1(-x+1, -y+1, -z-1)3.911 (3)-3.3352 (4)-3.3849 (4)1.960
1Cg2Cg3(-x+1, -y+1, -z-1)3.797 (3)-3.3389 (4)-3.5276 (5)1.406
1Cg3Cg2(-x+1, -y+1, -z-1)3.798 (3)-3.5277 (5)-3.3388 (4)1.809
1Cg4Cg1(-x+1, -y+1, -z-1)3.525 (2)-3.2951 (4)-3.3852 (4)0.983
Notes: CgI(J) = Plane number I(J); CgCg = distance between ring centroids; CgI_Perp = perpendicular distance of CgI on ring J; CgJ_Perp = perpendicular distance of CgJ on ring I; Slippage = distance between CgI and perpendicular projection of CgJ on ring I.

Plane 1 is the plane of the coumarin pyran ring with Cg1 as centroid; Plane 2 is the plane of the quinoline pyridine ring with Cg2 as centroid; Plane 3 is the plane of the coumarin phenyl ring with Cg3 as centroid; Plane 4 is the plane of the quinoline phenyl ring with Cg4 as centroid.

Some planes are repeated since they are inclined to each other and as a result give slightly different slippages
Percentages of atom–atom contacts for (1) (%) top
ContactH···HH···O/O···HH···N/N···HC···CN···C/C···NH···C/C···H
(%)40.621.23.313.24.714.3
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), and the Foundation for Science and Technology (FCT) and FEDER/COMPETE2020 (UID/QUι00081/2015 and POCI-01–0145-FEDER-006980). AF (SFRH/BD/80831/2011) and MJM (SFRH/BPD/95345/2013) were supported by grants from FCT, POPH and QREN.

References

First citationCamps, P., Formosa, X., Galdeano, C., Muñoz-Torrero, D., Ramírez, L., Gómez, E., Isambert, N., Lavilla, R., Badia, A., Clos, M. V., Bartolini, M., Mancini, F., Andrisano, V., Arce, M. P., Rodríguez-Franco, M. I., Huertas, O., Dafni, T. & Luque, F. J. (2009). J. Med. Chem. 52, 5365–5379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Rivanera, D., Zicari, A., Scaltrito, M. M. & Sisto, F. (2010). Bioorg. Med. Chem. Lett. 20, 4922–4926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatos, M. J., Janeiro, P., Gonz\'alez Franco, R. M., Vilar, S., Tatonetti, N. P., Santana, L., Uriarte, E., Borges, F., Fontenla, J. A. & Viña, D. (2014). Future Med. Chem. 6, 371–383.  Google Scholar
First citationMatos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M. & Takadate, A. (2005). Chem. Pharm. Bull. (Tokyo), 53, 750–758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 451–4525.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, V., Suryavanshi, P. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157–7259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K. N. (2013). J. Pharm. Pharmacol. 65, 607–703.  Google Scholar
First citationWinter, G. (2010). J. Appl. Cryst. 43, 186–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds