research communications
Distinct coordination geometries in bis[N,N-bis(2-methoxyethyl)dithiocarbamato-κ2S,S′]diphenyltin(IV) and bis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S′]diphenyltin(IV): crystal structures and Hirshfeld surface analysis
aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Chemical Crystallography, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The crystal and molecular structures of two diphenyltin bis(dithiocarbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the dithiocarbamate ligand coordinates with approximately equal Sn—S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octahedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn—S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn—S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supramolecular layers in the ab plane sustained by methylene-C—H⋯π(Sn–aryl) interactions; these stack along the c-axis direction with no specific interactions between them. In (II), supramolecular chains along the b-axis direction are formed by methylene-C—O(ether) interactions; these pack with no directional interactions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H interactions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the molecular packing above.
1. Chemical context
In a review of the applications and structures of tin/organotin dithiocarbamates (dithiocarbamate is −S2CNRR'; R, R′ = alkyl, aryl), two applications were highlighted, namely, their potential biological activity and their utility as single-source precursors for tin sulfide nanoparticles (Tiekink, 2008). Investigations in both fields continue, e.g. as anti-cancer agents (Khan et al., 2014, 2015; Kadu et al., 2015), as anti-microbials (Zia-ur-Rehman et al., 2011; Ferreira et al., 2012, 2014) and as fungicides (Yu et al., 2014). The use of various tin dithiocarbamate species as precursors for tin sulfide materials also continues to attract significant attention (Ramasamy et al., 2013; Lewis et al., 2014; Kevin et al., 2015). It was during the course of ongoing studies of the anti-tumour potential of organotin dithiocarbamates (Khan et al., 2014, 2015) that attention was directed towards (2-methoxyethyl)dithiocarbamate derivatives. Herein, the crystal and molecular structures of two diphenyltin derivatives, viz. [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NOS2)2], (II), are reported that exhibit quite distinct coordination geometries, along with a Hirshfeld surface analysis to provide more details on the molecular packing.
1.1. Structural commentary
The comprises half a molecule as the tin atom is located on a twofold rotation axis, Fig. 1. The C2S4 donor set is defined by two chelating dithiocarbamate ligands and the ipso-carbon atoms of the tin-bound phenyl substituents. The difference between the Sn—Sshort and Sn—Slong bond lengths, i.e. Δ(Sn—S), is relatively small at 0.06 Å, indicating an essentially symmetric coordination mode. This symmetry is reflected in the near equivalence of the associated C1—S bond lengths with the difference between them being 0.024 Å, Table 1. The longer Sn—S2 bond is approximately trans to the ipso-carbon atom. The overall coordination geometry is based on an octahedron with the ipso-carbon atoms occupying mutually cis positions. The methoxyethyl group is approximately perpendicular to the S2CN core as seen in the value of the C1—N1—C3—C4 torsion angle of 93.8 (2)°. The residue itself is almost planar and adopts an extended conformation as seen in the C5—O1—C4—C3 torsion angle of 175.27 (19)°.
of (I)The molecule in (II), Fig. 2, lies on a general position and has a quite distinct coordination geometry. As for (I), the tin atom is located within a C2S4 donor set. However, the dithiocarbamate ligand is coordinating with significantly greater values of ΔS, i.e. 0.48 and 0.46 Å for the S1- and S3-ligands, respectively, with the Sn—Sshort bonds in (II) being shorter than the equivalent bonds in (I) and at the same time, the Sn—Slong bonds in (II) being longer than those in (I). An interesting consequence of the different modes of coordination of the dithiocarbamate ligands in the two structures is that the Sn—Cbond lengths in (II) are considerably shorter than those in (I), Table 1. As the dithiocarbamate anions are approximately co-planar and the more tightly bound S1 and S3 atoms lie to the same side of the molecule, the S4 donor atoms define a trapezoidal plane. The tin-bound ipso-carbon atoms are disposed over the weaker Sn—S bonds so that the coordination geometry is skewed trapezoidal bipyramidal. Reflecting the significant disparity in the Sn—S bonds, there are large differences in the associated C—S bonds with the shorter of these being associated with the weakly coordinating sulfur atoms, Table 1. As for (I), the methoxyethyl groups lie almost perpendicular to the plane through the S2CN atoms with the greatest deviation being for the O1-containing residue, i.e. the C1—N1—C5—C6 torsion angle is −81.5 (3)°. For each dithiocarbamate ligand, the residues lie to either side of the S2CN plane, and each is as for (I), adopting an almost planar and extended conformation with the O4-residue showing the greatest deviation, albeit marginally, as seen in the C14—O4—C13—C12 torsion angle of 176.3 (2)°.
2. Supramolecular features
Geometric parameters characterizing the intermolecular interactions operating in the crystal structures of (I) and (II) are collected in Tables 2 and 3, respectively. Based on the distance criteria in PLATON (Spek, 2009), the only significant intermolecular contact in the molecular packing of (I) is a methylene-C—H⋯π(Sn–aryl) interaction. From symmetry, there are four such interactions per molecule so that a two-dimensional supramolecular layer in the ab plane ensues, Fig. 3a. These stack along the c axis being separated by hydrophobic interactions, Fig. 3b.
|
In the molecular packing of (II), methylene-C—H⋯O interactions lead to linear supramolecular chains along the b axis, Fig. 4a. These pack into the three-dimensional architecture of the crystal with no directional intermolecular interactions between them, Fig. 4b.
A more detailed analysis of the molecular packing in (I) and (II) is given below in Hirshfeld surface analysis.
3. Hirshfeld surface analysis
Hirshfeld surfaces for (I) and (II) were mapped over dnorm, de, shape-index, curvedness and electrostatic potential with the aid of Crystal Explorer 3.1 (Wolff et al., 2012). The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005), integrated into Crystal Explorer, and were mapped on the Hirshfeld surfaces using the STO-3G basis set at Hartree–Fock level of theory over the range ±0.12 au. The contact distances de and di from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the intermolecular interactions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2007) provides a visual summary of intermolecular contacts in the crystal.
As evident from Fig. 5, the Hirshfeld surfaces for (I) and (II) have quite different shapes reflecting the distinctive coordination geometries, and the dark-red and dark-blue regions assigned to negative and positive potentials are localized near the respective functional groups. The absence of conventional hydrogen bonds in the crystal of (I) is consistent with the non-appearance of characteristic red spots in the calculated Hirshfeld surface mapped over dnorm (not shown). By contrast, in (II), the weak C—H⋯O interaction gives rise to red spots as evident in Fig. 6.
The overall two-dimensional fingerprint plots for (I) and (II) and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and S⋯H/H⋯S contacts are illustrated in Fig. 7; their relative contributions are summarized in Table 4. The different distribution of points in the overall fingerprint plots for (I) and (II) are due to their different molecular conformations. Also, it is noted that the points are distributed in different (de, di) ranges, i.e. 1.2 to 2.7 Å for (I) and 1.2 to 2.9 Å for (II).
|
As evident from the data in Table 4 and the fingerprint plots in Fig. 7b, H⋯H contacts clearly make the most significant contributions to the Hirshfeld surfaces of both (I) and (II). In the fingerprint plot of (I) delineated into H⋯H contacts (Fig. 7b), all the points are situated at (de, di) distances equal to or greater than their van der Waals separations i.e. 1.2 Å, reflecting zero propensity to form such intermolecular contacts. By contrast, for (II), points at (de, di) distances less than 1.2 Å, with the peak at de = di ∼1.2 Å, resulting from short interatomic H⋯H contacts, Table 5. The 7.4% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface of (II) reflects the presence of an intermolecular C—H⋯O interaction and a short interatomic O⋯H/H⋯O contact (Table 5), showing a forceps-like distribution of points with the tips at de + di ∼2.5 Å in Fig. 7c. The small contribution, i.e. 4.7%, due to analogous interactions in (I) have a low density of points that are generally masked by other contacts in the plot consistent with a low propensity to form.
|
The pair of characteristics wings with the edges at de + di ∼2.9 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts for (I) is due to the contribution of methylene-C—H⋯π(Sn–aryl) interactions, Fig. 7d. The presence of these interactions are also indicated through the pale-orange spots present on the Hirshfeld surface mapped over de, shown within the blue circle in Fig. 8a, and bright-red spots over the front side of shape-indexed surfaces identified with arrows in Fig. 8b. The reciprocal of these C—H⋯π contacts, i.e. π⋯H—C contacts, are seen as blue spots near the ring in Fig. 8b. The fingerprint plot for (II) delineated into C⋯H/H⋯C contacts has a distinct distribution of points with the (de, di) distances greater than their van der Waals separations, confirming the absence of these interactions, Fig. 7d. The conformations of dithiocarbamate ligands in both (I) and (II) limit the sulfur atoms' ability to form significant S⋯H intermolecular interactions; these atoms are separated at distances greater than their van der Waals radii, i.e. 3.0 Å. This observation is despite the nearly symmetrical distributions of points in the respective plots for both (I) and (II), Fig. 7e, and the significant percentage contributions to their Hirshfeld surfaces (Table 5).
4. Database survey
Given the various applications found for tin dithiocarbamates, it is not surprising that there exists a relatively large number of structures for this class of compound. Indeed, a search of the Cambridge Structural Database (CSD; Groom et al., 2016), reveals over 300 `hits'. Structural surveys have revealed that very different coordination geometries can arise in the solid state and, even when a common structural motif is adopted, non-systematic variations in geometric parameters are observed (Tiekink, 2008; Muthalib et al., 2014). Mononuclear diorganotin bis(dithiocarbamate)s, i.e. directly related to (I) and (II) described herein, are well represented, there being about 90 examples. Four distinct structural motifs have been noted previously (Tiekink, 2008), and these are illustrated in Fig. 9. The two most common motifs are skewed trapezoidal bipyramidal as in (II), Fig. 9a, and distorted octahedral, as in (I), Fig. 9c. Less common are five-coordinate, trigonal–bipyramidal species, arising as one dithiocarbamate ligand is monodentate, Fig. 9b, are found, for example, in the structure of (t-Bu)2Sn(S2CNMe2)2 (Kim et al., 1987) and correlated with bulky tin-bound groups, and seven-coordinate species, pentagonal–bipyramidal, owing to additional coordination by a heteroatom of the tin-bound residue, Fig. 9d, as for example in the structure of [MeOC(=O)CH2CH2]2Sn(S2CNMe)2 (Ng et al., 1989).
There are 16 diphenyltin bis(dithiocarbamate) structures included in the CSD and eight of these adopt the motif shown in Fig. 9c, including both the monoclinic (Lindley & Carr, 1974) and twofold symmetric tetragonal (Hook et al., 1994) polymorphs of the archetype compound Ph2Sn(S2CNEt2)2, and eight adopt the motif shown in Fig. 9a, including both independent molecules of Ph2Sn[S2CN(Me)Hex]2 (Ramasamy et al., 2013); the remaining structures are single phase and have one independent molecule. Such an even split suggests a fine energy balance between the adoption of one geometry over the other.
5. Synthesis and crystallization
Synthesis of (I). (2-Methoxyethyl)methylamine (2 mmol) dissolved in ethanol (10 ml) was stirred in an ice-bath for 30 min. A 25% ammonia solution (1–2 ml) was added to generate a basic solution. Then, a cold ethanolic solution of carbon disulfide (2 mmol) was added to the solution and stirred for about 2 h. Next, diphenyltin(IV) dichloride (1 mmol) dissolved in ethanol was added into the solution and further stirred for 2 h. The precipitate that formed was filtered off and washed a few times with cold ethanol to remove impurities. Finally, the precipitate was dried in a desiccator. Recrystallization was by dissolving the compound with chloroform and ethanol (2:1 v/v) ratio. This mixture was allowed to slowly evaporate at room temperature yielding colourless crystals of (I). m.p. 382–384 K. Yield: 78%. IR (cm−1): 1,497 ν(C—N), 988 ν(C—S), 523 ν(Sn—C), 389 ν(Sn—S). 1H NMR (CDCl3): δ 7.28–8.00 (5H, Sn–Ph), 3.97 (2H, OCH2), 3.69 (2H, NCH2), 3.44 (3H, NMe), 3.36 (3H, OCH3). 13C NMR (CDCl3): δ 199.88 (S2C), 128.24–151.24 (Sn–Ar), 69.96 (OCH2), 59.06 (NCH2), 57.84 (OCH3), 45.45 (NCH3).
Compound (II) was prepared and recrystallized in essentially the same manner but using bis(2-methoxyethyl)amine (10 mmol) in place of (2-methoxyethyl)methylamine. m.p. 333–335 K. Yield: 76%. IR (cm−1): 1,482 ν(C—N), 985 ν(C—S), 571 ν(Sn—C), 381 ν(Sn—S). 1H NMR (CDCl3): 7.38–7.89 (5H, Sn–Ph), 4.07 (2H, OCH2), 3.77 (2H, NCH2), 3.35 (OCH3). 13C NMR (CDCl3): δ 200.16 (S2C), 128.26–150.89 (Sn–Ar), 69.90 (OCH2), 59.02 (NCH2), 56.72 (OCH3).
6. Refinement
Crystal data, data collection and structure . Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989016011385/hb7599sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011385/hb7599Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016011385/hb7599IIsup3.hkl
For both compounds, data collection: CrysAlis PRO (Agilent, 2015); cell
CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006). Software used to prepare material for publication: publCIF (Westrip, 2010) for (I); SHELXL2014 (Sheldrick, 2015) for (II).[Sn(C6H5)2(C5H10NOS2)2] | F(000) = 1224 |
Mr = 601.41 | Dx = 1.559 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.3808 (14) Å | Cell parameters from 3633 reflections |
b = 8.2809 (4) Å | θ = 4.2–29.9° |
c = 19.083 (3) Å | µ = 1.34 mm−1 |
β = 118.071 (8)° | T = 293 K |
V = 2562.9 (5) Å3 | Block, colourless |
Z = 4 | 0.25 × 0.25 × 0.20 mm |
Agilent Technologies SuperNova Dual diffractometer with Atlas detector | 3383 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3051 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 30.4°, θmin = 4.0° |
ω scan | h = −26→18 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) | k = −11→11 |
Tmin = 0.815, Tmax = 1.000 | l = −25→26 |
7357 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0284P)2 + 0.8262P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3383 reflections | Δρmax = 0.47 e Å−3 |
143 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.5000 | 0.56549 (2) | 0.7500 | 0.03252 (7) | |
S1 | 0.65567 (3) | 0.64166 (6) | 0.82876 (3) | 0.04210 (12) | |
S2 | 0.52661 (3) | 0.81055 (7) | 0.84973 (4) | 0.04728 (13) | |
O1 | 0.77790 (11) | 1.16594 (19) | 0.88988 (10) | 0.0563 (4) | |
N1 | 0.68188 (11) | 0.90857 (19) | 0.91561 (10) | 0.0391 (4) | |
C1 | 0.62737 (11) | 0.8001 (2) | 0.87001 (11) | 0.0350 (4) | |
C2 | 0.65719 (17) | 1.0454 (3) | 0.94849 (16) | 0.0568 (6) | |
H2A | 0.6227 | 1.1170 | 0.9063 | 0.068* | |
H2B | 0.7054 | 1.1024 | 0.9858 | 0.068* | |
H2C | 0.6273 | 1.0063 | 0.9749 | 0.068* | |
C3 | 0.76876 (13) | 0.9020 (3) | 0.93400 (13) | 0.0458 (5) | |
H3A | 0.7836 | 0.7905 | 0.9316 | 0.055* | |
H3B | 0.8025 | 0.9398 | 0.9879 | 0.055* | |
C4 | 0.78779 (13) | 1.0011 (3) | 0.87883 (13) | 0.0464 (5) | |
H4A | 0.8440 | 0.9808 | 0.8893 | 0.056* | |
H4B | 0.7511 | 0.9709 | 0.8243 | 0.056* | |
C5 | 0.80091 (16) | 1.2685 (3) | 0.84467 (16) | 0.0630 (7) | |
H5A | 0.8589 | 1.2570 | 0.8620 | 0.095* | |
H5B | 0.7890 | 1.3784 | 0.8516 | 0.095* | |
H5C | 0.7705 | 1.2398 | 0.7896 | 0.095* | |
C11 | 0.52133 (11) | 0.3974 (2) | 0.67451 (11) | 0.0337 (4) | |
C12 | 0.57526 (14) | 0.2710 (3) | 0.71091 (13) | 0.0470 (5) | |
H12 | 0.6002 | 0.2605 | 0.7659 | 0.056* | |
C13 | 0.59275 (15) | 0.1597 (3) | 0.66667 (15) | 0.0552 (6) | |
H13 | 0.6294 | 0.0758 | 0.6920 | 0.066* | |
C14 | 0.55615 (14) | 0.1732 (3) | 0.58582 (15) | 0.0525 (6) | |
H14 | 0.5679 | 0.0986 | 0.5561 | 0.063* | |
C15 | 0.50225 (14) | 0.2964 (3) | 0.54873 (13) | 0.0512 (5) | |
H15 | 0.4771 | 0.3052 | 0.4937 | 0.061* | |
C16 | 0.48494 (13) | 0.4085 (3) | 0.59275 (12) | 0.0425 (4) | |
H16 | 0.4483 | 0.4923 | 0.5669 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.03241 (10) | 0.03268 (10) | 0.03421 (10) | 0.000 | 0.01712 (7) | 0.000 |
S1 | 0.0349 (2) | 0.0430 (3) | 0.0492 (3) | 0.0002 (2) | 0.0205 (2) | −0.0098 (2) |
S2 | 0.0413 (3) | 0.0423 (3) | 0.0667 (4) | −0.0031 (2) | 0.0324 (3) | −0.0114 (2) |
O1 | 0.0732 (11) | 0.0438 (8) | 0.0706 (11) | −0.0030 (8) | 0.0492 (9) | 0.0028 (7) |
N1 | 0.0423 (9) | 0.0359 (8) | 0.0404 (9) | −0.0064 (7) | 0.0205 (7) | −0.0038 (7) |
C1 | 0.0380 (9) | 0.0340 (9) | 0.0363 (9) | −0.0004 (8) | 0.0202 (8) | 0.0018 (7) |
C2 | 0.0753 (17) | 0.0458 (12) | 0.0653 (15) | −0.0149 (12) | 0.0464 (14) | −0.0188 (11) |
C3 | 0.0362 (10) | 0.0428 (11) | 0.0470 (12) | −0.0037 (9) | 0.0102 (8) | 0.0021 (9) |
C4 | 0.0399 (10) | 0.0475 (11) | 0.0539 (12) | −0.0014 (10) | 0.0238 (9) | −0.0044 (10) |
C5 | 0.0649 (16) | 0.0613 (15) | 0.0704 (17) | −0.0060 (13) | 0.0381 (13) | 0.0137 (13) |
C11 | 0.0331 (9) | 0.0349 (9) | 0.0345 (9) | −0.0020 (8) | 0.0171 (7) | −0.0019 (7) |
C12 | 0.0529 (12) | 0.0457 (11) | 0.0374 (10) | 0.0098 (10) | 0.0169 (9) | 0.0000 (9) |
C13 | 0.0552 (13) | 0.0432 (12) | 0.0634 (15) | 0.0122 (11) | 0.0248 (11) | −0.0053 (10) |
C14 | 0.0552 (13) | 0.0515 (13) | 0.0627 (14) | −0.0112 (11) | 0.0377 (11) | −0.0230 (11) |
C15 | 0.0549 (13) | 0.0636 (14) | 0.0371 (11) | −0.0127 (12) | 0.0234 (9) | −0.0111 (10) |
C16 | 0.0391 (10) | 0.0483 (11) | 0.0371 (10) | 0.0014 (9) | 0.0153 (8) | 0.0016 (8) |
Sn—C11 | 2.1677 (18) | C3—H3B | 0.9700 |
Sn—C11i | 2.1678 (18) | C4—H4A | 0.9700 |
Sn—S1 | 2.6071 (6) | C4—H4B | 0.9700 |
Sn—S1i | 2.6071 (6) | C5—H5A | 0.9600 |
Sn—S2i | 2.6653 (6) | C5—H5B | 0.9600 |
Sn—S2 | 2.6653 (6) | C5—H5C | 0.9600 |
S1—C1 | 1.7311 (19) | C11—C16 | 1.381 (3) |
S2—C1 | 1.7067 (19) | C11—C12 | 1.383 (3) |
O1—C4 | 1.406 (3) | C12—C13 | 1.386 (3) |
O1—C5 | 1.410 (3) | C12—H12 | 0.9300 |
N1—C1 | 1.322 (2) | C13—C14 | 1.367 (3) |
N1—C3 | 1.466 (3) | C13—H13 | 0.9300 |
N1—C2 | 1.467 (3) | C14—C15 | 1.365 (3) |
C2—H2A | 0.9600 | C14—H14 | 0.9300 |
C2—H2B | 0.9600 | C15—C16 | 1.386 (3) |
C2—H2C | 0.9600 | C15—H15 | 0.9300 |
C3—C4 | 1.500 (3) | C16—H16 | 0.9300 |
C3—H3A | 0.9700 | ||
C11—Sn—C11i | 100.07 (10) | N1—C3—H3B | 108.9 |
C11—Sn—S1 | 92.63 (5) | C4—C3—H3B | 108.9 |
C11i—Sn—S1 | 105.36 (5) | H3A—C3—H3B | 107.7 |
C11—Sn—S1i | 105.36 (5) | O1—C4—C3 | 109.68 (18) |
C11i—Sn—S1i | 92.63 (5) | O1—C4—H4A | 109.7 |
S1—Sn—S1i | 152.00 (2) | C3—C4—H4A | 109.7 |
C11—Sn—S2i | 92.54 (5) | O1—C4—H4B | 109.7 |
C11i—Sn—S2i | 159.03 (5) | C3—C4—H4B | 109.7 |
S1—Sn—S2i | 90.591 (19) | H4A—C4—H4B | 108.2 |
S1i—Sn—S2i | 67.742 (17) | O1—C5—H5A | 109.5 |
C11—Sn—S2 | 159.03 (5) | O1—C5—H5B | 109.5 |
C11i—Sn—S2 | 92.54 (5) | H5A—C5—H5B | 109.5 |
S1—Sn—S2 | 67.744 (17) | O1—C5—H5C | 109.5 |
S1i—Sn—S2 | 90.590 (19) | H5A—C5—H5C | 109.5 |
S2i—Sn—S2 | 80.82 (3) | H5B—C5—H5C | 109.5 |
C1—S1—Sn | 87.84 (6) | C16—C11—C12 | 118.01 (18) |
C1—S2—Sn | 86.46 (7) | C16—C11—Sn | 124.38 (14) |
C4—O1—C5 | 113.31 (18) | C12—C11—Sn | 117.61 (14) |
C1—N1—C3 | 122.35 (17) | C11—C12—C13 | 120.9 (2) |
C1—N1—C2 | 121.01 (18) | C11—C12—H12 | 119.5 |
C3—N1—C2 | 116.62 (18) | C13—C12—H12 | 119.5 |
N1—C1—S2 | 121.35 (15) | C14—C13—C12 | 120.1 (2) |
N1—C1—S1 | 121.16 (14) | C14—C13—H13 | 120.0 |
S2—C1—S1 | 117.49 (11) | C12—C13—H13 | 120.0 |
N1—C2—H2A | 109.5 | C15—C14—C13 | 119.87 (19) |
N1—C2—H2B | 109.5 | C15—C14—H14 | 120.1 |
H2A—C2—H2B | 109.5 | C13—C14—H14 | 120.1 |
N1—C2—H2C | 109.5 | C14—C15—C16 | 120.3 (2) |
H2A—C2—H2C | 109.5 | C14—C15—H15 | 119.9 |
H2B—C2—H2C | 109.5 | C16—C15—H15 | 119.9 |
N1—C3—C4 | 113.51 (17) | C11—C16—C15 | 120.8 (2) |
N1—C3—H3A | 108.9 | C11—C16—H16 | 119.6 |
C4—C3—H3A | 108.9 | C15—C16—H16 | 119.6 |
C3—N1—C1—S2 | 179.88 (15) | C5—O1—C4—C3 | 175.27 (19) |
C2—N1—C1—S2 | −2.0 (3) | N1—C3—C4—O1 | 67.0 (2) |
C3—N1—C1—S1 | 0.0 (3) | C16—C11—C12—C13 | 0.5 (3) |
C2—N1—C1—S1 | 178.13 (16) | Sn—C11—C12—C13 | −179.24 (17) |
Sn—S2—C1—N1 | 173.67 (16) | C11—C12—C13—C14 | −0.4 (4) |
Sn—S2—C1—S1 | −6.47 (10) | C12—C13—C14—C15 | −0.1 (3) |
Sn—S1—C1—N1 | −173.53 (16) | C13—C14—C15—C16 | 0.4 (3) |
Sn—S1—C1—S2 | 6.60 (10) | C12—C11—C16—C15 | −0.2 (3) |
C1—N1—C3—C4 | 93.8 (2) | Sn—C11—C16—C15 | 179.59 (16) |
C2—N1—C3—C4 | −84.4 (2) | C14—C15—C16—C11 | −0.3 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Cg1 is the centroid of the C11–C16 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···Cg1ii | 0.97 | 2.86 | 3.730 (3) | 150 |
Symmetry code: (ii) x+1, −y, z+1/2. |
[Sn(C6H5)2(C7H14NO2S2)2] | Z = 2 |
Mr = 689.51 | F(000) = 708 |
Triclinic, P1 | Dx = 1.422 Mg m−3 |
a = 7.4386 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.3334 (8) Å | Cell parameters from 6877 reflections |
c = 16.5398 (10) Å | θ = 3.8–29.7° |
α = 110.320 (5)° | µ = 1.09 mm−1 |
β = 91.282 (5)° | T = 293 K |
γ = 101.865 (4)° | Block, colourless |
V = 1609.93 (17) Å3 | 0.30 × 0.25 × 0.25 mm |
Agilent Technologies SuperNova Dual diffractometer with Atlas detector | 8354 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 6973 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 30.4°, θmin = 3.3° |
ω scan | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) | k = −19→19 |
Tmin = 0.756, Tmax = 1.000 | l = −22→18 |
17063 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0774P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
8354 reflections | Δρmax = 0.66 e Å−3 |
338 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.53321 (2) | 0.25616 (2) | 0.25381 (2) | 0.04036 (6) | |
S1 | 0.34463 (8) | 0.37273 (4) | 0.23099 (4) | 0.05095 (14) | |
S2 | 0.75066 (8) | 0.44734 (5) | 0.23709 (5) | 0.05550 (15) | |
S3 | 0.22105 (8) | 0.15139 (4) | 0.26109 (4) | 0.04817 (14) | |
S4 | 0.53671 (8) | 0.06041 (4) | 0.27883 (4) | 0.04702 (13) | |
O1 | 0.3430 (3) | 0.61622 (18) | 0.10117 (16) | 0.1049 (8) | |
O2 | 0.6103 (3) | 0.75288 (15) | 0.38247 (15) | 0.0899 (7) | |
O3 | −0.0963 (3) | −0.19679 (12) | 0.15238 (12) | 0.0705 (5) | |
O4 | 0.1455 (3) | −0.09606 (15) | 0.42343 (13) | 0.0737 (5) | |
N1 | 0.5046 (3) | 0.55831 (13) | 0.23494 (13) | 0.0504 (4) | |
N2 | 0.1846 (2) | −0.03099 (12) | 0.27492 (12) | 0.0426 (4) | |
C1 | 0.5361 (3) | 0.46932 (15) | 0.23417 (14) | 0.0437 (5) | |
C2 | 0.3173 (4) | 0.57560 (18) | 0.22800 (18) | 0.0601 (6) | |
H2A | 0.3202 | 0.6469 | 0.2604 | 0.072* | |
H2B | 0.2358 | 0.5348 | 0.2542 | 0.072* | |
C3 | 0.2400 (4) | 0.5493 (2) | 0.1363 (2) | 0.0750 (8) | |
H3A | 0.2446 | 0.4796 | 0.1022 | 0.090* | |
H3B | 0.1121 | 0.5544 | 0.1349 | 0.090* | |
C4 | 0.2821 (6) | 0.5939 (3) | 0.0126 (3) | 0.1359 (18) | |
H4A | 0.2869 | 0.5249 | −0.0211 | 0.204* | |
H4B | 0.3609 | 0.6400 | −0.0090 | 0.204* | |
H4C | 0.1575 | 0.6016 | 0.0082 | 0.204* | |
C5 | 0.6601 (4) | 0.64484 (18) | 0.24329 (19) | 0.0653 (7) | |
H5A | 0.6178 | 0.6911 | 0.2202 | 0.078* | |
H5B | 0.7560 | 0.6194 | 0.2093 | 0.078* | |
C6 | 0.7398 (4) | 0.70258 (18) | 0.3363 (2) | 0.0707 (8) | |
H6A | 0.7695 | 0.6555 | 0.3620 | 0.085* | |
H6B | 0.8526 | 0.7520 | 0.3387 | 0.085* | |
C7 | 0.6699 (6) | 0.8058 (3) | 0.4717 (3) | 0.1109 (13) | |
H7A | 0.7157 | 0.7615 | 0.4951 | 0.166* | |
H7B | 0.5680 | 0.8271 | 0.5018 | 0.166* | |
H7C | 0.7665 | 0.8647 | 0.4787 | 0.166* | |
C8 | 0.3058 (3) | 0.05076 (14) | 0.27243 (13) | 0.0379 (4) | |
C9 | −0.0177 (3) | −0.03932 (16) | 0.27130 (16) | 0.0485 (5) | |
H9A | −0.0407 | 0.0288 | 0.2931 | 0.058* | |
H9B | −0.0687 | −0.0744 | 0.3092 | 0.058* | |
C10 | −0.1160 (3) | −0.09513 (17) | 0.18215 (17) | 0.0562 (6) | |
H10A | −0.2459 | −0.0940 | 0.1833 | 0.067* | |
H10B | −0.0646 | −0.0617 | 0.1432 | 0.067* | |
C11 | −0.1881 (5) | −0.2554 (2) | 0.0696 (2) | 0.0932 (10) | |
H11A | −0.3185 | −0.2603 | 0.0715 | 0.140* | |
H11B | −0.1642 | −0.3226 | 0.0516 | 0.140* | |
H11C | −0.1445 | −0.2235 | 0.0293 | 0.140* | |
C12 | 0.2468 (3) | −0.11869 (16) | 0.28315 (16) | 0.0517 (6) | |
H12A | 0.3521 | −0.1291 | 0.2503 | 0.062* | |
H12B | 0.1485 | −0.1796 | 0.2581 | 0.062* | |
C13 | 0.3001 (4) | −0.10467 (19) | 0.37586 (18) | 0.0602 (6) | |
H13A | 0.3463 | −0.1626 | 0.3775 | 0.072* | |
H13B | 0.3977 | −0.0436 | 0.4017 | 0.072* | |
C14 | 0.1853 (5) | −0.0891 (3) | 0.5099 (2) | 0.0997 (11) | |
H14A | 0.2197 | −0.1503 | 0.5095 | 0.150* | |
H14B | 0.0779 | −0.0812 | 0.5404 | 0.150* | |
H14C | 0.2852 | −0.0313 | 0.5383 | 0.150* | |
C21 | 0.6777 (3) | 0.32313 (15) | 0.38043 (14) | 0.0465 (5) | |
C22 | 0.5984 (5) | 0.3759 (3) | 0.4491 (2) | 0.0928 (11) | |
H22 | 0.4791 | 0.3839 | 0.4411 | 0.111* | |
C23 | 0.6951 (7) | 0.4189 (3) | 0.5326 (2) | 0.1190 (14) | |
H23 | 0.6389 | 0.4546 | 0.5795 | 0.143* | |
C24 | 0.8694 (6) | 0.4084 (3) | 0.5450 (2) | 0.0970 (11) | |
H24 | 0.9330 | 0.4362 | 0.6001 | 0.116* | |
C25 | 0.9485 (5) | 0.3575 (3) | 0.4769 (2) | 0.0938 (10) | |
H25 | 1.0692 | 0.3514 | 0.4846 | 0.113* | |
C26 | 0.8533 (4) | 0.3138 (2) | 0.3950 (2) | 0.0783 (8) | |
H26 | 0.9102 | 0.2773 | 0.3489 | 0.094* | |
C31 | 0.6273 (3) | 0.18363 (15) | 0.13244 (14) | 0.0434 (5) | |
C32 | 0.7940 (4) | 0.1564 (2) | 0.12717 (18) | 0.0705 (7) | |
H32 | 0.8682 | 0.1699 | 0.1777 | 0.085* | |
C33 | 0.8533 (5) | 0.1092 (2) | 0.0478 (2) | 0.0849 (9) | |
H33 | 0.9680 | 0.0926 | 0.0452 | 0.102* | |
C34 | 0.7435 (5) | 0.0869 (2) | −0.0269 (2) | 0.0854 (10) | |
H34 | 0.7827 | 0.0541 | −0.0802 | 0.102* | |
C35 | 0.5772 (5) | 0.1128 (3) | −0.02322 (19) | 0.0885 (9) | |
H35 | 0.5030 | 0.0979 | −0.0741 | 0.106* | |
C36 | 0.5176 (4) | 0.1613 (2) | 0.05655 (17) | 0.0679 (7) | |
H36 | 0.4037 | 0.1788 | 0.0588 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.04240 (9) | 0.04311 (9) | 0.03293 (9) | 0.01125 (6) | 0.00010 (6) | 0.00979 (6) |
S1 | 0.0453 (3) | 0.0431 (3) | 0.0648 (4) | 0.0074 (2) | −0.0022 (3) | 0.0219 (3) |
S2 | 0.0474 (3) | 0.0555 (3) | 0.0646 (4) | 0.0082 (3) | 0.0016 (3) | 0.0251 (3) |
S3 | 0.0418 (3) | 0.0453 (3) | 0.0620 (4) | 0.0144 (2) | 0.0033 (3) | 0.0225 (3) |
S4 | 0.0401 (3) | 0.0506 (3) | 0.0527 (3) | 0.0140 (2) | 0.0016 (2) | 0.0195 (3) |
O1 | 0.1032 (17) | 0.1125 (17) | 0.1005 (19) | −0.0200 (14) | −0.0375 (14) | 0.0683 (15) |
O2 | 0.0898 (15) | 0.0732 (12) | 0.0901 (16) | 0.0321 (12) | −0.0235 (13) | 0.0031 (11) |
O3 | 0.0802 (13) | 0.0559 (9) | 0.0617 (12) | 0.0067 (9) | −0.0153 (10) | 0.0105 (8) |
O4 | 0.0601 (11) | 0.1001 (13) | 0.0594 (12) | 0.0032 (10) | −0.0044 (9) | 0.0357 (11) |
N1 | 0.0556 (11) | 0.0430 (9) | 0.0524 (12) | 0.0066 (9) | −0.0052 (9) | 0.0202 (8) |
N2 | 0.0421 (9) | 0.0402 (8) | 0.0448 (11) | 0.0111 (8) | 0.0011 (8) | 0.0136 (7) |
C1 | 0.0486 (12) | 0.0456 (11) | 0.0344 (11) | 0.0073 (10) | −0.0027 (9) | 0.0136 (9) |
C2 | 0.0646 (16) | 0.0489 (12) | 0.0689 (18) | 0.0157 (12) | −0.0036 (13) | 0.0227 (12) |
C3 | 0.0669 (17) | 0.0748 (17) | 0.086 (2) | 0.0054 (15) | −0.0199 (16) | 0.0403 (16) |
C4 | 0.133 (4) | 0.164 (4) | 0.107 (3) | −0.033 (3) | −0.053 (3) | 0.087 (3) |
C5 | 0.0717 (17) | 0.0493 (13) | 0.077 (2) | 0.0013 (12) | −0.0020 (15) | 0.0326 (13) |
C6 | 0.0644 (16) | 0.0480 (13) | 0.090 (2) | −0.0012 (13) | −0.0163 (16) | 0.0221 (13) |
C7 | 0.108 (3) | 0.094 (2) | 0.100 (3) | 0.030 (2) | −0.032 (2) | −0.003 (2) |
C8 | 0.0403 (10) | 0.0401 (10) | 0.0314 (10) | 0.0118 (9) | 0.0005 (8) | 0.0090 (8) |
C9 | 0.0394 (11) | 0.0484 (11) | 0.0567 (15) | 0.0088 (10) | 0.0086 (10) | 0.0182 (10) |
C10 | 0.0425 (12) | 0.0621 (14) | 0.0610 (16) | 0.0094 (11) | −0.0017 (11) | 0.0205 (12) |
C11 | 0.112 (3) | 0.0767 (19) | 0.065 (2) | −0.0041 (19) | −0.0185 (19) | 0.0101 (15) |
C12 | 0.0549 (13) | 0.0387 (11) | 0.0620 (16) | 0.0134 (10) | 0.0037 (12) | 0.0172 (10) |
C13 | 0.0572 (15) | 0.0578 (13) | 0.0698 (18) | 0.0119 (12) | −0.0072 (13) | 0.0296 (13) |
C14 | 0.091 (2) | 0.139 (3) | 0.065 (2) | −0.006 (2) | −0.0112 (18) | 0.051 (2) |
C21 | 0.0552 (13) | 0.0422 (10) | 0.0364 (12) | 0.0048 (10) | −0.0065 (10) | 0.0113 (9) |
C22 | 0.078 (2) | 0.129 (3) | 0.0483 (18) | 0.027 (2) | −0.0008 (16) | 0.0015 (18) |
C23 | 0.134 (4) | 0.152 (4) | 0.0401 (19) | 0.031 (3) | 0.005 (2) | −0.002 (2) |
C24 | 0.120 (3) | 0.095 (2) | 0.053 (2) | −0.011 (2) | −0.034 (2) | 0.0211 (17) |
C25 | 0.085 (2) | 0.103 (2) | 0.083 (3) | 0.008 (2) | −0.038 (2) | 0.032 (2) |
C26 | 0.0730 (18) | 0.093 (2) | 0.0608 (19) | 0.0302 (17) | −0.0145 (15) | 0.0118 (15) |
C31 | 0.0480 (12) | 0.0468 (11) | 0.0353 (11) | 0.0125 (10) | 0.0057 (9) | 0.0135 (9) |
C32 | 0.0602 (16) | 0.102 (2) | 0.0458 (16) | 0.0309 (16) | 0.0052 (13) | 0.0150 (14) |
C33 | 0.0707 (19) | 0.113 (2) | 0.070 (2) | 0.0390 (19) | 0.0278 (18) | 0.0204 (18) |
C34 | 0.099 (2) | 0.102 (2) | 0.0453 (18) | 0.026 (2) | 0.0291 (18) | 0.0118 (16) |
C35 | 0.097 (2) | 0.124 (3) | 0.0359 (16) | 0.029 (2) | 0.0013 (16) | 0.0161 (16) |
C36 | 0.0669 (16) | 0.0914 (19) | 0.0438 (15) | 0.0282 (15) | −0.0009 (13) | 0.0169 (13) |
Sn—C31 | 2.124 (2) | C7—H7C | 0.9600 |
Sn—C21 | 2.131 (2) | C9—C10 | 1.497 (3) |
Sn—S1 | 2.5060 (6) | C9—H9A | 0.9700 |
Sn—S3 | 2.5230 (6) | C9—H9B | 0.9700 |
Sn—S4 | 2.9800 (6) | C10—H10A | 0.9700 |
Sn—S2 | 2.9875 (6) | C10—H10B | 0.9700 |
S1—C1 | 1.756 (2) | C11—H11A | 0.9600 |
S2—C1 | 1.692 (2) | C11—H11B | 0.9600 |
S3—C8 | 1.752 (2) | C11—H11C | 0.9600 |
S4—C8 | 1.692 (2) | C12—C13 | 1.508 (4) |
O1—C3 | 1.396 (3) | C12—H12A | 0.9700 |
O1—C4 | 1.428 (4) | C12—H12B | 0.9700 |
O2—C6 | 1.403 (3) | C13—H13A | 0.9700 |
O2—C7 | 1.416 (4) | C13—H13B | 0.9700 |
O3—C11 | 1.403 (3) | C14—H14A | 0.9600 |
O3—C10 | 1.407 (3) | C14—H14B | 0.9600 |
O4—C13 | 1.410 (3) | C14—H14C | 0.9600 |
O4—C14 | 1.419 (3) | C21—C22 | 1.351 (4) |
N1—C1 | 1.339 (3) | C21—C26 | 1.364 (4) |
N1—C2 | 1.474 (3) | C22—C23 | 1.410 (5) |
N1—C5 | 1.476 (3) | C22—H22 | 0.9300 |
N2—C8 | 1.337 (2) | C23—C24 | 1.355 (5) |
N2—C12 | 1.472 (3) | C23—H23 | 0.9300 |
N2—C9 | 1.483 (3) | C24—C25 | 1.335 (5) |
C2—C3 | 1.499 (4) | C24—H24 | 0.9300 |
C2—H2A | 0.9700 | C25—C26 | 1.383 (4) |
C2—H2B | 0.9700 | C25—H25 | 0.9300 |
C3—H3A | 0.9700 | C26—H26 | 0.9300 |
C3—H3B | 0.9700 | C31—C32 | 1.370 (3) |
C4—H4A | 0.9600 | C31—C36 | 1.383 (3) |
C4—H4B | 0.9600 | C32—C33 | 1.381 (4) |
C4—H4C | 0.9600 | C32—H32 | 0.9300 |
C5—C6 | 1.509 (4) | C33—C34 | 1.367 (5) |
C5—H5A | 0.9700 | C33—H33 | 0.9300 |
C5—H5B | 0.9700 | C34—C35 | 1.359 (5) |
C6—H6A | 0.9700 | C34—H34 | 0.9300 |
C6—H6B | 0.9700 | C35—C36 | 1.392 (4) |
C7—H7A | 0.9600 | C35—H35 | 0.9300 |
C7—H7B | 0.9600 | C36—H36 | 0.9300 |
C31—Sn—C21 | 130.12 (9) | N2—C9—H9A | 108.8 |
C31—Sn—S1 | 106.70 (6) | C10—C9—H9A | 108.8 |
C21—Sn—S1 | 109.72 (6) | N2—C9—H9B | 108.8 |
C31—Sn—S3 | 108.44 (6) | C10—C9—H9B | 108.8 |
C21—Sn—S3 | 108.85 (6) | H9A—C9—H9B | 107.7 |
S1—Sn—S3 | 82.873 (18) | O3—C10—C9 | 109.5 (2) |
C31—Sn—S4 | 83.63 (5) | O3—C10—H10A | 109.8 |
C21—Sn—S4 | 83.60 (6) | C9—C10—H10A | 109.8 |
S1—Sn—S4 | 147.433 (18) | O3—C10—H10B | 109.8 |
S3—Sn—S4 | 64.591 (16) | C9—C10—H10B | 109.8 |
C31—Sn—S2 | 83.87 (5) | H10A—C10—H10B | 108.2 |
C21—Sn—S2 | 81.92 (6) | O3—C11—H11A | 109.5 |
S1—Sn—S2 | 64.922 (18) | O3—C11—H11B | 109.5 |
S3—Sn—S2 | 147.742 (18) | H11A—C11—H11B | 109.5 |
S4—Sn—S2 | 147.642 (17) | O3—C11—H11C | 109.5 |
C1—S1—Sn | 94.83 (7) | H11A—C11—H11C | 109.5 |
C1—S2—Sn | 80.40 (7) | H11B—C11—H11C | 109.5 |
C8—S3—Sn | 95.15 (7) | N2—C12—C13 | 112.95 (19) |
C8—S4—Sn | 81.36 (7) | N2—C12—H12A | 109.0 |
C3—O1—C4 | 113.0 (3) | C13—C12—H12A | 109.0 |
C6—O2—C7 | 113.3 (2) | N2—C12—H12B | 109.0 |
C11—O3—C10 | 113.3 (2) | C13—C12—H12B | 109.0 |
C13—O4—C14 | 112.2 (2) | H12A—C12—H12B | 107.8 |
C1—N1—C2 | 122.75 (19) | O4—C13—C12 | 109.9 (2) |
C1—N1—C5 | 120.5 (2) | O4—C13—H13A | 109.7 |
C2—N1—C5 | 116.75 (18) | C12—C13—H13A | 109.7 |
C8—N2—C12 | 121.08 (17) | O4—C13—H13B | 109.7 |
C8—N2—C9 | 123.23 (17) | C12—C13—H13B | 109.7 |
C12—N2—C9 | 115.69 (17) | H13A—C13—H13B | 108.2 |
N1—C1—S2 | 122.83 (17) | O4—C14—H14A | 109.5 |
N1—C1—S1 | 117.81 (17) | O4—C14—H14B | 109.5 |
S2—C1—S1 | 119.36 (12) | H14A—C14—H14B | 109.5 |
N1—C2—C3 | 113.2 (2) | O4—C14—H14C | 109.5 |
N1—C2—H2A | 108.9 | H14A—C14—H14C | 109.5 |
C3—C2—H2A | 108.9 | H14B—C14—H14C | 109.5 |
N1—C2—H2B | 108.9 | C22—C21—C26 | 117.7 (3) |
C3—C2—H2B | 108.9 | C22—C21—Sn | 121.2 (2) |
H2A—C2—H2B | 107.8 | C26—C21—Sn | 121.12 (19) |
O1—C3—C2 | 109.5 (2) | C21—C22—C23 | 120.5 (3) |
O1—C3—H3A | 109.8 | C21—C22—H22 | 119.7 |
C2—C3—H3A | 109.8 | C23—C22—H22 | 119.7 |
O1—C3—H3B | 109.8 | C24—C23—C22 | 120.3 (3) |
C2—C3—H3B | 109.8 | C24—C23—H23 | 119.8 |
H3A—C3—H3B | 108.2 | C22—C23—H23 | 119.8 |
O1—C4—H4A | 109.5 | C25—C24—C23 | 119.1 (3) |
O1—C4—H4B | 109.5 | C25—C24—H24 | 120.5 |
H4A—C4—H4B | 109.5 | C23—C24—H24 | 120.5 |
O1—C4—H4C | 109.5 | C24—C25—C26 | 120.8 (3) |
H4A—C4—H4C | 109.5 | C24—C25—H25 | 119.6 |
H4B—C4—H4C | 109.5 | C26—C25—H25 | 119.6 |
N1—C5—C6 | 112.0 (2) | C21—C26—C25 | 121.5 (3) |
N1—C5—H5A | 109.2 | C21—C26—H26 | 119.2 |
C6—C5—H5A | 109.2 | C25—C26—H26 | 119.2 |
N1—C5—H5B | 109.2 | C32—C31—C36 | 118.6 (2) |
C6—C5—H5B | 109.2 | C32—C31—Sn | 121.56 (18) |
H5A—C5—H5B | 107.9 | C36—C31—Sn | 119.81 (17) |
O2—C6—C5 | 109.2 (2) | C31—C32—C33 | 120.9 (3) |
O2—C6—H6A | 109.8 | C31—C32—H32 | 119.5 |
C5—C6—H6A | 109.8 | C33—C32—H32 | 119.5 |
O2—C6—H6B | 109.8 | C34—C33—C32 | 120.0 (3) |
C5—C6—H6B | 109.8 | C34—C33—H33 | 120.0 |
H6A—C6—H6B | 108.3 | C32—C33—H33 | 120.0 |
O2—C7—H7A | 109.5 | C35—C34—C33 | 120.1 (3) |
O2—C7—H7B | 109.5 | C35—C34—H34 | 120.0 |
H7A—C7—H7B | 109.5 | C33—C34—H34 | 120.0 |
O2—C7—H7C | 109.5 | C34—C35—C36 | 120.1 (3) |
H7A—C7—H7C | 109.5 | C34—C35—H35 | 119.9 |
H7B—C7—H7C | 109.5 | C36—C35—H35 | 119.9 |
N2—C8—S4 | 122.77 (15) | C31—C36—C35 | 120.2 (3) |
N2—C8—S3 | 118.40 (15) | C31—C36—H36 | 119.9 |
S4—C8—S3 | 118.83 (11) | C35—C36—H36 | 119.9 |
N2—C9—C10 | 113.64 (18) | ||
C2—N1—C1—S2 | 176.85 (18) | C8—N2—C9—C10 | 95.7 (2) |
C5—N1—C1—S2 | −3.4 (3) | C12—N2—C9—C10 | −85.3 (2) |
C2—N1—C1—S1 | −3.7 (3) | C11—O3—C10—C9 | 178.7 (2) |
C5—N1—C1—S1 | 176.03 (18) | N2—C9—C10—O3 | 63.3 (2) |
Sn—S2—C1—N1 | 173.13 (19) | C8—N2—C12—C13 | 84.5 (3) |
Sn—S2—C1—S1 | −6.27 (11) | C9—N2—C12—C13 | −94.4 (2) |
Sn—S1—C1—N1 | −172.02 (16) | C14—O4—C13—C12 | 176.3 (2) |
Sn—S1—C1—S2 | 7.40 (13) | N2—C12—C13—O4 | 62.5 (3) |
C1—N1—C2—C3 | −90.2 (3) | C26—C21—C22—C23 | −0.4 (5) |
C5—N1—C2—C3 | 90.0 (3) | Sn—C21—C22—C23 | 179.4 (3) |
C4—O1—C3—C2 | 177.9 (3) | C21—C22—C23—C24 | 0.4 (6) |
N1—C2—C3—O1 | −66.0 (3) | C22—C23—C24—C25 | 0.6 (7) |
C1—N1—C5—C6 | −81.5 (3) | C23—C24—C25—C26 | −1.6 (6) |
C2—N1—C5—C6 | 98.3 (3) | C22—C21—C26—C25 | −0.6 (5) |
C7—O2—C6—C5 | 177.4 (2) | Sn—C21—C26—C25 | 179.6 (2) |
N1—C5—C6—O2 | −68.2 (3) | C24—C25—C26—C21 | 1.7 (5) |
C12—N2—C8—S4 | −0.3 (3) | C36—C31—C32—C33 | 1.1 (4) |
C9—N2—C8—S4 | 178.62 (16) | Sn—C31—C32—C33 | 179.9 (2) |
C12—N2—C8—S3 | 179.16 (16) | C31—C32—C33—C34 | −1.5 (5) |
C9—N2—C8—S3 | −2.0 (3) | C32—C33—C34—C35 | 1.1 (5) |
Sn—S4—C8—N2 | 177.09 (18) | C33—C34—C35—C36 | −0.4 (5) |
Sn—S4—C8—S3 | −2.32 (11) | C32—C31—C36—C35 | −0.4 (4) |
Sn—S3—C8—N2 | −176.72 (15) | Sn—C31—C36—C35 | −179.3 (2) |
Sn—S3—C8—S4 | 2.72 (13) | C34—C35—C36—C31 | 0.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···O2i | 0.97 | 2.52 | 3.404 (4) | 151 |
Symmetry code: (i) x, y−1, z. |
Parameter | (I) | (II) |
Sn—S1 | 2.6071 (6) | 2.5060 (6) |
Sn—S2 | 2.6653 (6) | 2.9875 (6) |
Sn—S3 | – | 2.5230 (6) |
Sn—S4 | – | 2.9800 (6) |
Sn—C11 | 2.1677 (18) | – |
Sn—C21 | – | 2.131 (2) |
Sn—C31 | – | 2.124 (2) |
C1—S1 | 1.7311 (19) | 1.756 (2) |
C1—S2 | 1.7067 (19) | 1.692 (2) |
C8—S3 | – | 1.752 (2) |
C8—S4 | – | 1.692 (2) |
S1i—Sn—S2i | 67.742 (17) | 64.922 (18) |
S3—Sn—S4 | – | 64.591 (16) |
S1—Sn—S1i | 152.00 (2) | – |
S2i—Sn—C11i | 159.03 (5) | – |
S1—Sn—S3 | – | 82.873 (18) |
S2—Sn—S4 | – | 147.642 (17) |
C—Sn—C | 100.07 (10) | 130.12 (9) |
Symmetry code: (i) 1 - x, y, 3/2-z. |
Contact | % contribution in (I) | % contribution in (II) |
H···H | 61.8 | 66.1 |
C···H/H···C | 15.6 | 11.4 |
O···H/H···O | 4.7 | 7.4 |
S···H/H···S | 15.6 | 13.5 |
C···S/S···C | 1.3 | 0.0 |
N···H/H···N | 1.0 | 0.4 |
C···C | 0.0 | 1.0 |
S···S | 0.0 | 0.1 |
C···O/O···C | 0.0 | 0.1 |
Contact | distance | symmetry operation |
O4···H6B | 2.69 | -1 - x, y, z |
H7C···H14B | 2.37 | 1 + x, y, z |
H10B···H34 | 2.36 | 1 - x, -y, -z |
Footnotes
‡Additional correspondence author, e-mail: awang_normah@yahoo.com.
Acknowledgements
This work was supported by grant FRGS/2/2013/SKK10/UKM/02/1. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty Science and Technology, Universiti Kebangsaan Malaysia for technical support. Intensity data were collected in the University of Malaya Crystallographic Laboratory.
References
Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493–503. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161–169. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311. CrossRef CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746–755. Web of Science CrossRef CAS Google Scholar
Kevin, P., Lewis, D. J., Raftery, J., Malik, M. A. & O'Brien, P. (2015). J. Cryst. Growth, 415, 93–99. CrossRef CAS Google Scholar
Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410. CSD CrossRef CAS Google Scholar
Khan, N., Farina, Y., Lo, K. M., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760. CSD CrossRef CAS Google Scholar
Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Lewis, D. J., Kevin, P., Bakr, O., Muryn, C. A., Malik, M. A. & O'Brien, P. (2014). Inorg. Chem. Front. 1, 577–598. CrossRef CAS Google Scholar
Lindley, P. F. & Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173–185. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46. Google Scholar
Ng, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75–82. CSD CrossRef CAS Web of Science Google Scholar
Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
Yu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274–281. Web of Science CSD CrossRef CAS Google Scholar
Zia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381–388. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.