research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of fac-tri­carbonyl­chlorido­(6,6′-dihy­dr­oxy-2,2′-bi­pyridine)­rhenium(I) tetra­hydro­furan monosolvate and fac-bromido­tricarbon­yl(6,6′-dihy­dr­oxy-2,2′-bi­pyridine)­manganese(I) tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

aUniversity of Wisconsin Oshkosh, Department of Chemistry, 800 Algoma Blvd., Oshkosh, WI 54902, USA, and bVillanova University, Department of Chemistry, 800 E. Lancaster Avenue, Villanova, PA 19085, USA
*Correspondence e-mail: lenses@uwosh.edu

Edited by H. Ishida, Okayama University, Japan (Received 28 June 2016; accepted 20 July 2016; online 29 July 2016)

The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6′-dihy­droxy-2,2′-bi­pyridine ligand in a distorted octa­hedral geometry. Both complexes co-crystallize with a non-coordinating tetra­hydro­furan (THF) solvent mol­ecule and exhibit inter­molecular but not intra­molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter­molecular hydrogen bonding between a hy­droxy group from the 6,6′-dihy­droxy-2,2′-bi­pyridine ligand and the halide ligand from a neighboring complex. The THF mol­ecule is hydrogen bonded to the remaining hy­droxy group.

1. Chemical context

The fac-[Re(α-di­imine)(CO)3X]n+ and fac-[Mn(α-di­imine)(CO)3X]n+ (X = halide, n = 0 or X = neutral ligand, n = 1) family of complexes are of inter­est as selective catalysts for the reduction of CO2 to CO (Bourrez et al., 2011[Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903-9906.]; Hawecker et al., 1986[Hawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990-2012.]; Smieja et al., 2013[Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484-2491.]; Sampson et al., 2014[Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460-5471.]; Machan et al., 2014[Machan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598-14607.]; Smieja & Kubiak, 2010[Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283-9289.]). Utilizing substituted α-di­imine ligands in these complexes can optimize complexes sterically or electronically to catalyze the reduction of CO2 to CO (Smieja & Kubiak, 2010[Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283-9289.]; Sampson et al., 2014[Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460-5471.]) or facilitate formation of supra­molecular assemblies that promote electrocatalytic reduction of CO2 (Machan et al., 2014[Machan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598-14607.]). The addition of weak Brønsted acids such as water or methanol is necessary for the catalytic turnover of Mn complexes (Smieja et al., 2013[Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484-2491.]) and significantly increases the catalytic rate of Re complexes (Smieja et al., 2012[Smieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646-15650.]). Introducing intra­molecular phenolic groups positioned near the metal atom has been shown to greatly increase the rate at which an iron tetra­phenyl­porphyrin complex catalyzes the reduction of CO2 to CO (Costentin et al., 2012[Costentin, C., Drouet, S., Robert, M. & Savéant, J. M. (2012). Science, 338, 90-94.]). Recently, the complexes fac-[Re(4,4′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl] and fac-[Re(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl] have been synthesized in order to study the effect of proton-responsive ligands in these catalysts and, for the latter complex, the effect of pendant acids positioned near the metal atom (Manbeck et al., 2015[Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457-7466.]). Unexpectedly, these complexes were found to exhibit reductive deprotonation of the hy­droxy groups. While the crystal structure of fac-[Re(4,4′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl] has been reported (Manbeck et al., 2015[Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457-7466.]), fac-[Re(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl] has not been characterized crystallographically. In this paper we report the synthesis and structural characterization of fac-[Re(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl] as well as the synthesis and structural characterization of the related and previously unknown complex, fac-[Mn(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Br]. Both complexes co-crystallize with a tetrahydrofuran (THF) solvent molecule.

[Scheme 1]

2. Structural commentary

Figs. 1[link] and 2[link] show ellipsoid plots of fac-[Re(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl]·THF (I·THF) and [Mn(6,6′-dihy­droxy-2,2′-bi­pyridine)(CO)3Br]·THF (II·THF), respectively. Complexes I and II exhibit distorted octa­hedral geometries and contain primary coord­ination spheres similar to those of other fac-[Re(α-di­imine)(CO)3Cl] and fac-[Mn(α-di­imine)(CO)3Br] complexes, including [Re(bi­pyridine)(CO)3Cl] (III) (Manbeck et al., 2015[Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457-7466.]), [Re(4,4′-dihy­droxy-2,2′-bi­pyridine)(CO)3Cl]·DMSO (IV) (Manbeck et al., 2015[Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457-7466.]) and [Mn(bi­pyridine)(CO)3I] (V) (Stor et al., 1995[Stor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588-1594.]). Many coordination modes are possible for the 2-hy­droxy­pyridine ligand (Parsons & Winpenny, 1997[Parsons, S. & Winpenny, R. E. P. (1997). Acc. Chem. Res. 30, 89-95.]), but the crystal structures confirm bidentate α-di­imine coordination in both complexes. Bond lengths between the metal and bipyridyl nitro­gen atoms are slightly longer in I [2.198 (2) and 2.206 (2) Å] and II [2.0605 (11) and 2.0757 (11) Å] than in complexes III [2.176 (6) and 2.173 (6) Å], IV [2.177 (3) and 2.163 (3) Å] and V [2.05 (1) and 2.03 (2) Å], which do not have substituents in the 6 and 6′ positions on the α-di­imine ligand. The longer bond lengths in I and II may be attributed to increased steric encumbrance due to these substituents. In both I and II, the distances between the oxygen atoms of the hy­droxy substit­uents and the carbon atoms of the carbonyl ligands cis to the α-di­imine ligands fall within the sum of the van der Waals radii for carbon and oxygen (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]). In I, the O(hy­droxy)—C(carbon­yl) distances are 2.800 (3) and 2.813 (4) Å and in II the O(hy­droxy)—C(carbon­yl) distances are 2.660 (2) and 2.615 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of I·THF, with 50% probability displacement ellipsoids for non-H atoms. The O—H⋯O hydrogen bond is shown by a dashed line. For the THF mol­ecule, only one disordered component is shown.
[Figure 2]
Figure 2
The mol­ecular structure of II·THF, with 50% probability displacement ellipsoids for non-H atoms. The O—H⋯O hydrogen bond is shown by a dashed line.

In I, the bi­pyridine rings present a bite angle of 74.09 (8)° to Re, similar to that found in III [74.41 (9)°] and IV [74.9 (2)°]. The bi­pyridine–Mn bite angle in II, 78.35 (4)°, is similar to that in V [79.0 (5)°]. The bi­pyridine ligands are not strictly planar. The dihedral angles between the pyridine rings are 11.68 (9)° in I and 9.49 (5)° in II. Additionally, the bi­pyridine ligands are not oriented strictly perpendicularly to the coordination planes of the metal ions. The dihedral angles between the mean plane through the α-di­imine ligands and the COequatorialM–COequatorial planes are 23.51 (7) and 18.93 (3)° for the Re and Mn complexes, respectively. Neither I·THF nor II·THF exhibit intra­molecular hydrogen bonding.

3. Supra­molecular features

Hydrogen bonds for both structures are listed in Tables 1[link] and 2[link]. In I·THF, a chain of complexes running along the a axis is formed by an O—H⋯Cl hydrogen bond between a hy­droxy group (O16—H16) and the chloride ligand from the neighboring complex. The other hy­droxy group (O26—H26) is hydrogen-bonded to the O atom of the THF mol­ecule. The nearest pyridine rings between neighboring complexes have centroid–centroid distances of 3.9448 (16) Å, longer than the maximum distance typically given for ππ inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). In II·THF, a chain of complexes is formed along the b axis through an O—H·Br hydrogen bond involving the O10—H1group and the bromide ligand of the adjacent mol­ecule, whereas the other hy­droxy group (O20—H2) is hydrogen-bonded to O1S of the solvent THF mol­ecule. There are weak ππ stacking inter­actions between pairs of complexes from neighboring chains. The centroid–centroid distance between pairs of pyridine rings is 3.7019 (9) Å and the angle between the ring normal and the vector between the ring centroids is 9.3°, within the parameters typically given for such ππ inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Packing diagrams are shown in Figs. 3[link], 4[link] and 5[link].

Table 1
Hydrogen-bond geometry (Å, °) for I·THF[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯Cl1i 0.86 (4) 2.16 (4) 3.015 (2) 173 (3)
O26—H26⋯O1S 0.87 (4) 1.84 (4) 2.704 (3) 173 (4)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for II·THF[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯Br1i 0.83 (2) 2.39 (2) 3.2098 (10) 170 (2)
O20—H20⋯O1S 0.80 (2) 1.79 (2) 2.5903 (15) 176 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing diagram of I·THF viewed along the b axis, showing hydrogen bonding (dashed lines) in the structure.
[Figure 4]
Figure 4
Crystal packing diagram of II·THF viewed along the a axis, showing hydrogen bonding (dashed lines) in the structure.
[Figure 5]
Figure 5
Illustration of ππ stacking inter­actions and O—H⋯O hydrogen bonds (dashed lines) in II·THF.

4. Synthesis and crystallization

Methanol was degassed by sparging with N2. THF and diethyl ether were dried over mol­ecular sieves and degassed using the freeze–pump–thaw method. MnBr(CO)5 and ReCl(CO)5 were purchased commercially and used as received. The ligand 6,6′-dihy­droxy-2,2′-bi­pyridine was synthesized according to the synthetic procedure of Umemoto et al. (1998[Umemoto, T., Nagayoshi, M., Adachi, K. & Tomizawa, G. (1998). J. Org. Chem. 63, 3379-3385.]).

I·THF: 6,6′-dihy­droxy-2,2′-bi­pyridine (249 mg, 1.32 mmol) and ReCl(CO)5 (477 mg, 1.32 mmol) were heated at 333 K in 50 mL methanol under nitro­gen for five h. The flask was covered with aluminum foil to keep out light. The reaction was then allowed to cool to room temperature and the solvent was removed under vacuum to give a yellow precipitate. Slow cooling of a hot THF solution of the complex in a glove box under a nitro­gen atmosphere gave yellow plate-shaped crystals suitable for single crystal X-ray diffraction. Due to limited solubility of the complex in THF, this method could not be used for a bulk recrystallization of the complex.

II·THF: 6,6′-dihy­droxy-2,2′-bi­pyridine (100 mg, 0.532 mmol) and MnBr(CO)5 (146 mg, 0.532 mmol) were heated at 333 K in 24 mL methanol under nitro­gen for five h. The flask was covered with aluminum foil to keep out light. The reaction was then allowed to cool to room temperature and the solvent was removed under vacuum to give an orange precipitate. The complex was recrystallized in bulk by layering pentane on a THF solution of the complex in a glove box under a nitro­gen atmosphere at room temperature, giving the pure product in near qu­anti­tative yield. Slow diffusion of diethyl ether into a THF solution of the complex in a glove box under a nitro­gen atmosphere gave yellow rod-shaped crystals suitable for single crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both complexes, the coordinates of H atoms forming hydrogen bonds (the hy­droxy group hydrogens) were refined freely with Uiso(H) = 1.5 Ueq(O). C-bound H atoms were placed in calculated positions and refined with riding coordinates, with Uiso(H) = 1.2 Ueq(C). In I·THF, disorder occurs for one carbon and six hydrogens of the THF solvent with occupancies of 0.748 (11) and 0.252 (11). Rigid bond (DELU) and similar ADP (SIMU) restraints were used for atoms O1S, C1S, C2S, C3T, C3S and C4S.

Table 3
Experimental details

  I·THF II·THF
Crystal data
Chemical formula [ReCl(C10H8N2O2)(CO)3]·C4H8O [MnBr(C10H8N2O2)(CO)3]·C4H8O
Mr 565.97 479.17
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 6.9661 (6), 8.0082 (6), 16.9007 (13) 10.2401 (12), 13.1783 (15), 14.2480 (16)
α, β, γ (°) 78.907 (2), 79.128 (2), 88.886 (2) 90, 106.228 (3), 90
V3) 908.46 (13) 1846.1 (4)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.87 2.92
Crystal size (mm) 0.20 × 0.10 × 0.01 0.36 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.583, 0.747 0.609, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 37165, 8820, 7416 67915, 7363, 5841
Rint 0.060 0.049
(sin θ/λ)max−1) 0.833 0.781
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.063, 1.01 0.027, 0.061, 1.01
No. of reflections 8820 7363
No. of parameters 260 252
No. of restraints 62 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.71, −1.88 0.62, −0.45
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Re_complex) fac-Tricarbonylchlorido(6,6'-dihydroxy-2,2'-bipyridine)rhenium(I) tetrahydrofuran monosolvate top
Crystal data top
[ReCl(C10H8N2O2)(CO)3]·C4H8OZ = 2
Mr = 565.97F(000) = 544
Triclinic, P1Dx = 2.069 Mg m3
a = 6.9661 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0082 (6) ÅCell parameters from 5671 reflections
c = 16.9007 (13) Åθ = 2.5–32.4°
α = 78.907 (2)°µ = 6.87 mm1
β = 79.128 (2)°T = 100 K
γ = 88.886 (2)°Plate, yellow
V = 908.46 (13) Å30.2 × 0.1 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
8820 independent reflections
Radiation source: sealed tube7416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8 pixels mm-1θmax = 36.3°, θmin = 2.5°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.583, Tmax = 0.747l = 2827
37165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0215P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
8820 reflectionsΔρmax = 1.71 e Å3
260 parametersΔρmin = 1.88 e Å3
62 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.42194 (2)0.68445 (2)0.77393 (2)0.01301 (3)
Cl10.52023 (8)0.69909 (8)0.90827 (4)0.01477 (11)
O160.0490 (3)0.6754 (3)0.84174 (13)0.0186 (4)
H160.170 (5)0.680 (5)0.865 (2)0.028*
O20.2010 (3)1.0152 (3)0.78896 (14)0.0241 (5)
N10.2057 (3)0.4977 (3)0.85218 (14)0.0133 (4)
O1S1.1132 (3)0.3754 (3)0.58779 (15)0.0292 (5)
O10.2709 (4)0.7047 (3)0.61441 (15)0.0359 (6)
O260.8204 (3)0.5231 (3)0.67795 (14)0.0225 (4)
H260.920 (6)0.477 (5)0.652 (2)0.034*
N20.5697 (3)0.4372 (3)0.78476 (14)0.0144 (4)
O30.7668 (3)0.9154 (3)0.67574 (15)0.0294 (5)
C30.6398 (4)0.8253 (4)0.71185 (18)0.0202 (5)
C10.3292 (5)0.6881 (4)0.6741 (2)0.0228 (6)
C120.2792 (4)0.3466 (3)0.88559 (17)0.0144 (5)
C240.7513 (4)0.1272 (4)0.82643 (18)0.0189 (5)
H240.81480.02310.84150.023*
C260.7446 (4)0.4026 (3)0.74160 (17)0.0163 (5)
C230.5671 (4)0.1572 (3)0.86943 (18)0.0171 (5)
H230.50190.07280.91320.021*
C160.0154 (4)0.5269 (3)0.87765 (16)0.0143 (5)
C250.8405 (4)0.2491 (4)0.76204 (18)0.0184 (5)
H250.96560.22980.73170.022*
C20.2812 (4)0.8889 (3)0.78290 (17)0.0157 (5)
C220.4806 (4)0.3117 (3)0.84742 (17)0.0149 (5)
C130.1667 (4)0.2300 (3)0.94723 (18)0.0178 (5)
H130.22220.12740.97080.021*
C150.1072 (4)0.4124 (3)0.93829 (17)0.0166 (5)
H150.24160.43590.95430.020*
C140.0279 (4)0.2646 (3)0.97415 (18)0.0175 (5)
H140.10610.18681.01710.021*
C1S1.3097 (5)0.3276 (5)0.5990 (2)0.0357 (8)
H1SA1.31860.31150.65770.043*
H1SB1.40510.41730.56740.043*
C2S1.3515 (7)0.1634 (5)0.5683 (3)0.0506 (11)
H2SA1.49100.15650.54310.061*0.748 (11)
H2SB1.31470.06330.61300.061*0.748 (11)
H2SC1.44720.18390.51600.061*0.252 (11)
H2SD1.40680.08000.60900.061*0.252 (11)
C4S1.0405 (6)0.2609 (5)0.5432 (2)0.0359 (8)
H4SA0.97410.32420.50000.043*0.748 (11)
H4SB0.94820.17540.58060.043*0.748 (11)
H4SC1.05710.31260.48410.043*0.252 (11)
H4SD0.90010.23420.56490.043*0.252 (11)
C3S1.2233 (10)0.1777 (7)0.5060 (4)0.0479 (17)0.748 (11)
H3SA1.19240.06400.49640.057*0.748 (11)
H3SB1.28700.24870.45330.057*0.748 (11)
C3T1.164 (2)0.0969 (18)0.5559 (11)0.039 (4)0.252 (11)
H3TA1.10150.01330.60460.047*0.252 (11)
H3TB1.18420.04300.50700.047*0.252 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01156 (4)0.01031 (5)0.01605 (5)0.00098 (3)0.00087 (3)0.00155 (3)
Cl10.0108 (2)0.0149 (3)0.0182 (3)0.00042 (19)0.0026 (2)0.0021 (2)
O160.0089 (8)0.0184 (10)0.0256 (11)0.0010 (7)0.0010 (7)0.0009 (8)
O20.0207 (10)0.0160 (10)0.0356 (13)0.0065 (8)0.0050 (9)0.0062 (9)
N10.0126 (9)0.0123 (10)0.0151 (10)0.0001 (7)0.0021 (8)0.0033 (8)
O1S0.0317 (12)0.0209 (11)0.0313 (13)0.0011 (9)0.0069 (10)0.0085 (9)
O10.0600 (18)0.0264 (13)0.0262 (13)0.0014 (11)0.0207 (12)0.0042 (10)
O260.0205 (10)0.0160 (10)0.0242 (11)0.0053 (7)0.0071 (8)0.0014 (8)
N20.0122 (9)0.0123 (10)0.0180 (11)0.0003 (7)0.0007 (8)0.0030 (8)
O30.0298 (12)0.0213 (11)0.0291 (13)0.0128 (9)0.0121 (10)0.0015 (9)
C30.0216 (12)0.0176 (13)0.0199 (14)0.0038 (10)0.0010 (10)0.0050 (10)
C10.0285 (15)0.0139 (13)0.0257 (15)0.0011 (10)0.0056 (12)0.0028 (11)
C120.0122 (10)0.0122 (11)0.0183 (12)0.0001 (8)0.0033 (9)0.0016 (9)
C240.0192 (12)0.0142 (12)0.0242 (14)0.0058 (9)0.0063 (11)0.0041 (10)
C260.0145 (11)0.0140 (12)0.0197 (13)0.0007 (9)0.0010 (9)0.0035 (10)
C230.0150 (11)0.0118 (11)0.0230 (14)0.0006 (9)0.0016 (10)0.0015 (10)
C160.0130 (10)0.0158 (12)0.0145 (12)0.0003 (8)0.0029 (9)0.0032 (9)
C250.0162 (11)0.0160 (12)0.0221 (14)0.0045 (9)0.0006 (10)0.0046 (10)
C20.0129 (10)0.0158 (12)0.0177 (12)0.0002 (9)0.0021 (9)0.0025 (10)
C220.0125 (10)0.0105 (11)0.0220 (13)0.0012 (8)0.0035 (9)0.0033 (9)
C130.0173 (12)0.0116 (11)0.0225 (14)0.0013 (9)0.0013 (10)0.0006 (10)
C150.0128 (11)0.0173 (12)0.0192 (13)0.0022 (9)0.0025 (9)0.0029 (10)
C140.0168 (11)0.0144 (12)0.0200 (13)0.0041 (9)0.0020 (10)0.0008 (10)
C1S0.0332 (17)0.0256 (17)0.043 (2)0.0059 (13)0.0074 (15)0.0073 (15)
C2S0.067 (3)0.033 (2)0.050 (3)0.021 (2)0.004 (2)0.0118 (19)
C4S0.049 (2)0.0251 (17)0.0300 (18)0.0054 (15)0.0007 (16)0.0050 (14)
C3S0.083 (4)0.027 (3)0.031 (3)0.016 (3)0.001 (3)0.010 (2)
C3T0.054 (7)0.018 (6)0.038 (9)0.002 (5)0.015 (6)0.009 (6)
Geometric parameters (Å, º) top
Re1—Cl12.5159 (7)C16—C151.400 (4)
Re1—N12.198 (2)C25—H250.9500
Re1—N22.206 (2)C13—H130.9500
Re1—C31.920 (3)C13—C141.386 (4)
Re1—C11.912 (3)C15—H150.9500
Re1—C21.908 (3)C15—C141.378 (4)
O16—H160.86 (4)C14—H140.9500
O16—C161.337 (3)C1S—H1SA0.9900
O2—C21.158 (3)C1S—H1SB0.9900
N1—C121.366 (3)C1S—C2S1.507 (5)
N1—C161.344 (3)C2S—H2SA0.9900
O1S—C1S1.451 (4)C2S—H2SB0.9900
O1S—C4S1.447 (4)C2S—H2SC0.9900
O1—C11.140 (4)C2S—H2SD0.9900
O26—H260.87 (4)C2S—C3S1.491 (8)
O26—C261.332 (3)C2S—C3T1.484 (18)
N2—C261.350 (3)C4S—H4SA0.9900
N2—C221.372 (3)C4S—H4SB0.9900
O3—C31.152 (4)C4S—H4SC0.9900
C12—C221.475 (3)C4S—H4SD0.9900
C12—C131.385 (4)C4S—C3S1.512 (7)
C24—H240.9500C4S—C3T1.559 (15)
C24—C231.391 (4)C3S—H3SA0.9900
C24—C251.372 (4)C3S—H3SB0.9900
C26—C251.403 (4)C3T—H3TA0.9900
C23—H230.9500C3T—H3TB0.9900
C23—C221.383 (4)
N1—Re1—Cl182.99 (6)C14—C13—H13120.4
N1—Re1—N274.09 (8)C16—C15—H15120.9
N2—Re1—Cl185.17 (6)C14—C15—C16118.3 (2)
C3—Re1—Cl192.47 (9)C14—C15—H15120.9
C3—Re1—N1171.39 (10)C13—C14—H14120.2
C3—Re1—N298.30 (10)C15—C14—C13119.7 (3)
C1—Re1—Cl1174.77 (9)C15—C14—H14120.2
C1—Re1—N196.46 (11)O1S—C1S—H1SA110.3
C1—Re1—N299.71 (11)O1S—C1S—H1SB110.3
C1—Re1—C388.72 (13)O1S—C1S—C2S106.9 (3)
C2—Re1—Cl187.58 (8)H1SA—C1S—H1SB108.6
C2—Re1—N199.67 (10)C2S—C1S—H1SA110.3
C2—Re1—N2170.95 (10)C2S—C1S—H1SB110.3
C2—Re1—C387.40 (11)C1S—C2S—H2SA111.5
C2—Re1—C187.38 (12)C1S—C2S—H2SB111.5
C16—O16—H16106 (2)C1S—C2S—H2SC110.2
C12—N1—Re1115.69 (16)C1S—C2S—H2SD110.2
C16—N1—Re1125.85 (17)H2SA—C2S—H2SB109.3
C16—N1—C12117.9 (2)H2SC—C2S—H2SD108.5
C4S—O1S—C1S109.3 (3)C3S—C2S—C1S101.4 (3)
C26—O26—H26105 (3)C3S—C2S—H2SA111.5
C26—N2—Re1126.82 (18)C3S—C2S—H2SB111.5
C26—N2—C22117.6 (2)C3T—C2S—C1S107.7 (6)
C22—N2—Re1115.29 (16)C3T—C2S—H2SC110.2
O3—C3—Re1177.2 (3)C3T—C2S—H2SD110.2
O1—C1—Re1174.1 (3)O1S—C4S—H4SA111.1
N1—C12—C22115.4 (2)O1S—C4S—H4SB111.1
N1—C12—C13121.9 (2)O1S—C4S—H4SC110.6
C13—C12—C22122.6 (2)O1S—C4S—H4SD110.6
C23—C24—H24120.2O1S—C4S—C3S103.5 (4)
C25—C24—H24120.2O1S—C4S—C3T105.8 (7)
C25—C24—C23119.5 (2)H4SA—C4S—H4SB109.0
O26—C26—N2115.8 (2)H4SC—C4S—H4SD108.7
O26—C26—C25121.9 (2)C3S—C4S—H4SA111.1
N2—C26—C25122.3 (2)C3S—C4S—H4SB111.1
C24—C23—H23120.5C3T—C4S—H4SC110.6
C22—C23—C24118.9 (3)C3T—C4S—H4SD110.6
C22—C23—H23120.5C2S—C3S—C4S104.5 (4)
O16—C16—N1115.2 (2)C2S—C3S—H3SA110.9
O16—C16—C15121.9 (2)C2S—C3S—H3SB110.9
N1—C16—C15122.9 (2)C4S—C3S—H3SA110.9
C24—C25—C26119.1 (2)C4S—C3S—H3SB110.9
C24—C25—H25120.4H3SA—C3S—H3SB108.9
C26—C25—H25120.4C2S—C3T—C4S102.5 (9)
O2—C2—Re1177.8 (2)C2S—C3T—H3TA111.3
N2—C22—C12115.6 (2)C2S—C3T—H3TB111.3
N2—C22—C23122.5 (2)C4S—C3T—H3TA111.3
C23—C22—C12121.8 (2)C4S—C3T—H3TB111.3
C12—C13—H13120.4H3TA—C3T—H3TB109.2
C12—C13—C14119.2 (2)
Re1—N1—C12—C2216.1 (3)C12—C13—C14—C151.2 (4)
Re1—N1—C12—C13168.2 (2)C24—C23—C22—N20.1 (4)
Re1—N1—C16—O1610.2 (3)C24—C23—C22—C12174.8 (3)
Re1—N1—C16—C15168.8 (2)C26—N2—C22—C12172.3 (2)
Re1—N2—C26—O2610.9 (4)C26—N2—C22—C232.9 (4)
Re1—N2—C26—C25169.5 (2)C23—C24—C25—C260.8 (4)
Re1—N2—C22—C1213.6 (3)C16—N1—C12—C22172.0 (2)
Re1—N2—C22—C23171.2 (2)C16—N1—C12—C133.7 (4)
O16—C16—C15—C14177.9 (3)C16—C15—C14—C132.7 (4)
N1—C12—C22—N21.6 (4)C25—C24—C23—C221.7 (4)
N1—C12—C22—C23173.7 (3)C22—N2—C26—O26175.7 (2)
N1—C12—C13—C142.1 (4)C22—N2—C26—C253.9 (4)
N1—C16—C15—C141.0 (4)C22—C12—C13—C14173.4 (3)
O1S—C1S—C2S—C3S27.5 (5)C13—C12—C22—N2177.3 (3)
O1S—C1S—C2S—C3T11.9 (8)C13—C12—C22—C232.0 (4)
O1S—C4S—C3S—C2S34.3 (5)C1S—O1S—C4S—C3S16.8 (4)
O1S—C4S—C3T—C2S28.0 (10)C1S—O1S—C4S—C3T21.7 (7)
O26—C26—C25—C24177.5 (3)C1S—C2S—C3S—C4S37.6 (5)
N2—C26—C25—C242.2 (4)C1S—C2S—C3T—C4S24.0 (11)
C12—N1—C16—O16178.8 (2)C4S—O1S—C1S—C2S6.7 (4)
C12—N1—C16—C152.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···Cl1i0.86 (4)2.16 (4)3.015 (2)173 (3)
O26—H26···O1S0.87 (4)1.84 (4)2.704 (3)173 (4)
Symmetry code: (i) x1, y, z.
(Mn_complex) fac-Bromidotricarbonyl(6,6'-dihydroxy-2,2'-bipyridine)manganese(I) tetrahydrofuran monosolvate top
Crystal data top
[MnBr(C10H8N2O2)(CO)3]·C4H8OF(000) = 960
Mr = 479.17Dx = 1.724 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2401 (12) ÅCell parameters from 9928 reflections
b = 13.1783 (15) Åθ = 2.7–33.9°
c = 14.2480 (16) ŵ = 2.92 mm1
β = 106.228 (3)°T = 100 K
V = 1846.1 (4) Å3Rod, yellow
Z = 40.36 × 0.13 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7363 independent reflections
Radiation source: sealed tube5841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8 pixels mm-1θmax = 33.7°, θmin = 2.1°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 2020
Tmin = 0.609, Tmax = 0.747l = 2222
67915 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.8571P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7363 reflectionsΔρmax = 0.62 e Å3
252 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43600 (2)0.46594 (2)0.34466 (2)0.01541 (4)
Mn10.30177 (2)0.52808 (2)0.17547 (2)0.01092 (4)
O10.21509 (11)0.71004 (8)0.26247 (8)0.0207 (2)
C10.25680 (14)0.64158 (10)0.23009 (10)0.0145 (2)
O20.13075 (11)0.60489 (9)0.01225 (8)0.0236 (2)
C20.20034 (14)0.57322 (10)0.05953 (10)0.0153 (2)
O30.05516 (11)0.44992 (9)0.21988 (8)0.0239 (2)
C30.15176 (14)0.47493 (10)0.20007 (10)0.0161 (2)
O100.45262 (10)0.74298 (7)0.18113 (8)0.0179 (2)
H100.487 (2)0.8003 (18)0.1820 (17)0.044 (6)*
N110.48726 (11)0.57633 (8)0.15938 (8)0.01234 (19)
C120.54018 (14)0.66975 (10)0.17494 (9)0.0138 (2)
C130.67743 (14)0.69023 (11)0.18420 (11)0.0174 (3)
H130.71230.75720.19670.021*
C140.76061 (15)0.61113 (11)0.17475 (11)0.0197 (3)
H140.85470.62250.18260.024*
C150.70589 (14)0.51419 (11)0.15355 (11)0.0176 (3)
H150.76140.45900.14520.021*
C160.56946 (14)0.49991 (10)0.14487 (9)0.0132 (2)
O200.16632 (11)0.31944 (8)0.08940 (9)0.0237 (2)
H200.128 (2)0.2669 (19)0.0706 (18)0.047 (7)*
N210.36778 (11)0.40010 (8)0.11925 (8)0.01280 (19)
C220.29616 (14)0.31508 (10)0.08977 (10)0.0153 (2)
C230.35367 (15)0.22793 (10)0.06115 (10)0.0173 (3)
H230.30140.16780.04360.021*
C240.48671 (15)0.23105 (10)0.05895 (10)0.0175 (3)
H240.52780.17300.03970.021*
C250.56093 (15)0.32024 (10)0.08525 (10)0.0161 (2)
H250.65210.32460.08180.019*
C260.49997 (13)0.40221 (10)0.11640 (9)0.0128 (2)
O1S0.03314 (10)0.15416 (8)0.02750 (8)0.01819 (19)
C1S0.07218 (16)0.14179 (12)0.07676 (12)0.0229 (3)
H1SA0.07610.20200.11740.027*
H1SB0.05390.08110.11950.027*
C2S0.20485 (16)0.12945 (12)0.00295 (13)0.0261 (3)
H2SA0.25360.19490.01790.031*
H2SB0.26480.07930.01610.031*
C3S0.15910 (16)0.09175 (12)0.08984 (12)0.0255 (3)
H3SA0.14530.01730.08710.031*
H3SB0.22570.10980.15260.031*
C4S0.02636 (17)0.14755 (13)0.07673 (11)0.0245 (3)
H4SA0.03410.10970.10770.029*
H4SB0.04260.21610.10610.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02180 (7)0.01121 (5)0.01197 (6)0.00286 (5)0.00268 (5)0.00115 (4)
Mn10.01186 (9)0.00999 (8)0.01105 (8)0.00139 (7)0.00341 (7)0.00011 (7)
O10.0232 (5)0.0170 (5)0.0247 (5)0.0028 (4)0.0110 (4)0.0031 (4)
C10.0152 (6)0.0146 (5)0.0138 (6)0.0007 (5)0.0044 (5)0.0015 (4)
O20.0215 (5)0.0314 (6)0.0158 (5)0.0088 (4)0.0020 (4)0.0028 (4)
C20.0154 (6)0.0152 (6)0.0170 (6)0.0015 (5)0.0075 (5)0.0020 (5)
O30.0221 (5)0.0279 (6)0.0248 (5)0.0059 (4)0.0115 (5)0.0049 (4)
C30.0187 (6)0.0156 (6)0.0143 (6)0.0009 (5)0.0050 (5)0.0025 (5)
O100.0188 (5)0.0100 (4)0.0261 (5)0.0005 (4)0.0082 (4)0.0000 (4)
N110.0138 (5)0.0116 (5)0.0121 (5)0.0019 (4)0.0044 (4)0.0015 (4)
C120.0157 (6)0.0127 (5)0.0127 (5)0.0010 (4)0.0039 (5)0.0012 (4)
C130.0163 (6)0.0167 (6)0.0190 (6)0.0034 (5)0.0044 (5)0.0001 (5)
C140.0141 (6)0.0231 (7)0.0222 (7)0.0012 (5)0.0055 (5)0.0003 (5)
C150.0152 (6)0.0184 (6)0.0201 (6)0.0027 (5)0.0064 (5)0.0003 (5)
C160.0153 (6)0.0136 (5)0.0108 (5)0.0025 (4)0.0040 (5)0.0012 (4)
O200.0153 (5)0.0188 (5)0.0360 (6)0.0021 (4)0.0057 (5)0.0110 (5)
N210.0134 (5)0.0122 (4)0.0120 (5)0.0021 (4)0.0022 (4)0.0006 (4)
C220.0151 (6)0.0147 (6)0.0149 (6)0.0008 (5)0.0024 (5)0.0024 (5)
C230.0216 (7)0.0123 (5)0.0172 (6)0.0011 (5)0.0041 (5)0.0028 (5)
C240.0238 (7)0.0130 (6)0.0172 (6)0.0048 (5)0.0081 (5)0.0006 (5)
C250.0191 (6)0.0140 (5)0.0171 (6)0.0029 (5)0.0082 (5)0.0006 (5)
C260.0156 (6)0.0129 (5)0.0100 (5)0.0023 (4)0.0039 (5)0.0008 (4)
O1S0.0168 (5)0.0190 (5)0.0194 (5)0.0015 (4)0.0060 (4)0.0021 (4)
C1S0.0224 (7)0.0264 (7)0.0229 (7)0.0003 (6)0.0114 (6)0.0015 (6)
C2S0.0174 (7)0.0230 (7)0.0388 (9)0.0006 (6)0.0095 (7)0.0029 (6)
C3S0.0230 (7)0.0209 (7)0.0285 (8)0.0017 (6)0.0008 (6)0.0052 (6)
C4S0.0294 (8)0.0264 (8)0.0185 (7)0.0050 (6)0.0078 (6)0.0020 (6)
Geometric parameters (Å, º) top
Br1—Mn12.5532 (3)N21—C221.3407 (17)
Mn1—C11.8043 (14)N21—C261.3658 (17)
Mn1—C21.7895 (14)C22—C231.4023 (18)
Mn1—C31.8093 (14)C23—H230.9500
Mn1—N112.0757 (11)C23—C241.372 (2)
Mn1—N212.0605 (11)C24—H240.9500
O1—C11.1487 (16)C24—C251.393 (2)
O2—C21.1492 (17)C25—H250.9500
O3—C31.1503 (17)C25—C261.3815 (18)
O10—H100.83 (2)O1S—C1S1.4510 (17)
O10—C121.3368 (16)O1S—C4S1.4416 (18)
N11—C121.3384 (17)C1S—H1SA0.9900
N11—C161.3648 (16)C1S—H1SB0.9900
C12—C131.4007 (19)C1S—C2S1.516 (2)
C13—H130.9500C2S—H2SA0.9900
C13—C141.376 (2)C2S—H2SB0.9900
C14—H140.9500C2S—C3S1.524 (2)
C14—C151.394 (2)C3S—H3SA0.9900
C15—H150.9500C3S—H3SB0.9900
C15—C161.3806 (19)C3S—C4S1.510 (2)
C16—C261.4721 (19)C4S—H4SA0.9900
O20—H200.80 (2)C4S—H4SB0.9900
O20—C221.3294 (17)
C1—Mn1—Br189.64 (4)O20—C22—N21115.09 (12)
C1—Mn1—C384.52 (6)O20—C22—C23122.35 (12)
C1—Mn1—N1198.36 (5)N21—C22—C23122.56 (13)
C1—Mn1—N21175.75 (5)C22—C23—H23120.6
C2—Mn1—Br1176.95 (4)C24—C23—C22118.85 (13)
C2—Mn1—C188.30 (6)C24—C23—H23120.6
C2—Mn1—C390.13 (6)C23—C24—H24120.3
C2—Mn1—N1196.27 (5)C23—C24—C25119.32 (12)
C2—Mn1—N2194.71 (5)C25—C24—H24120.3
C3—Mn1—Br187.43 (5)C24—C25—H25120.5
C3—Mn1—N11173.04 (5)C26—C25—C24118.99 (13)
C3—Mn1—N2198.45 (5)C26—C25—H25120.5
N11—Mn1—Br186.26 (3)N21—C26—C16114.61 (11)
N21—Mn1—Br187.48 (3)N21—C26—C25122.29 (12)
N21—Mn1—N1178.35 (4)C25—C26—C16123.05 (12)
O1—C1—Mn1173.11 (12)C4S—O1S—C1S109.52 (11)
O2—C2—Mn1176.22 (12)O1S—C1S—H1SA110.5
O3—C3—Mn1173.41 (12)O1S—C1S—H1SB110.5
C12—O10—H10111.3 (16)O1S—C1S—C2S106.33 (12)
C12—N11—Mn1127.17 (9)H1SA—C1S—H1SB108.7
C12—N11—C16117.75 (11)C2S—C1S—H1SA110.5
C16—N11—Mn1114.38 (9)C2S—C1S—H1SB110.5
O10—C12—N11115.28 (12)C1S—C2S—H2SA111.1
O10—C12—C13121.90 (12)C1S—C2S—H2SB111.1
N11—C12—C13122.82 (12)C1S—C2S—C3S103.23 (12)
C12—C13—H13120.8H2SA—C2S—H2SB109.1
C14—C13—C12118.49 (13)C3S—C2S—H2SA111.1
C14—C13—H13120.8C3S—C2S—H2SB111.1
C13—C14—H14120.2C2S—C3S—H3SA111.3
C13—C14—C15119.54 (13)C2S—C3S—H3SB111.3
C15—C14—H14120.2H3SA—C3S—H3SB109.2
C14—C15—H15120.7C4S—C3S—C2S102.18 (12)
C16—C15—C14118.67 (13)C4S—C3S—H3SA111.3
C16—C15—H15120.7C4S—C3S—H3SB111.3
N11—C16—C15122.50 (12)O1S—C4S—C3S105.28 (12)
N11—C16—C26114.58 (11)O1S—C4S—H4SA110.7
C15—C16—C26122.89 (12)O1S—C4S—H4SB110.7
C22—O20—H20111.0 (17)C3S—C4S—H4SA110.7
C22—N21—Mn1126.56 (9)C3S—C4S—H4SB110.7
C22—N21—C26117.88 (11)H4SA—C4S—H4SB108.8
C26—N21—Mn1115.50 (8)
Mn1—N11—C12—O1015.18 (17)C15—C16—C26—C257.6 (2)
Mn1—N11—C12—C13164.82 (10)C16—N11—C12—O10175.02 (11)
Mn1—N11—C16—C15165.73 (11)C16—N11—C12—C134.98 (19)
Mn1—N11—C16—C2616.04 (14)O20—C22—C23—C24176.82 (14)
Mn1—N21—C22—O206.44 (18)N21—C22—C23—C243.0 (2)
Mn1—N21—C22—C23173.72 (10)C22—N21—C26—C16176.89 (11)
Mn1—N21—C26—C165.87 (14)C22—N21—C26—C250.53 (19)
Mn1—N21—C26—C25176.72 (10)C22—C23—C24—C250.1 (2)
O10—C12—C13—C14178.55 (13)C23—C24—C25—C262.4 (2)
N11—C12—C13—C141.4 (2)C24—C25—C26—C16179.43 (12)
N11—C16—C26—N216.80 (16)C24—C25—C26—N212.2 (2)
N11—C16—C26—C25170.60 (12)C26—N21—C22—O20176.65 (12)
C12—N11—C16—C155.36 (19)C26—N21—C22—C233.18 (19)
C12—N11—C16—C26172.87 (11)O1S—C1S—C2S—C3S23.09 (16)
C12—C13—C14—C151.9 (2)C1S—O1S—C4S—C3S21.18 (16)
C13—C14—C15—C161.5 (2)C1S—C2S—C3S—C4S34.94 (16)
C14—C15—C16—N112.2 (2)C2S—C3S—C4S—O1S34.76 (16)
C14—C15—C16—C26175.91 (13)C4S—O1S—C1S—C2S1.46 (16)
C15—C16—C26—N21174.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···Br1i0.83 (2)2.39 (2)3.2098 (10)170 (2)
O20—H20···O1S0.80 (2)1.79 (2)2.5903 (15)176 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

SL wishes to thank the American Chemical Society Petroleum Research Fund (PRF# 54833-UNI3) for the funding to perform this study.

References

First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903–9906.  CrossRef CAS Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostentin, C., Drouet, S., Robert, M. & Savéant, J. M. (2012). Science, 338, 90–94.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990–2012.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMachan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598–14607.  CrossRef CAS PubMed Google Scholar
First citationManbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457–7466.  CrossRef CAS PubMed Google Scholar
First citationParsons, S. & Winpenny, R. E. P. (1997). Acc. Chem. Res. 30, 89–95.  CrossRef CAS Google Scholar
First citationSampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460–5471.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646–15650.  CrossRef CAS PubMed Google Scholar
First citationSmieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283–9289.  CrossRef CAS PubMed Google Scholar
First citationSmieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484–2491.  CrossRef CAS PubMed Google Scholar
First citationStor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588–1594.  CrossRef CAS Google Scholar
First citationUmemoto, T., Nagayoshi, M., Adachi, K. & Tomizawa, G. (1998). J. Org. Chem. 63, 3379–3385.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds