research communications
Crystal structures of fac-tricarbonylchlorido(6,6′-dihydroxy-2,2′-bipyridine)rhenium(I) tetrahydrofuran monosolvate and fac-bromidotricarbonyl(6,6′-dihydroxy-2,2′-bipyridine)manganese(I) tetrahydrofuran monosolvate
aUniversity of Wisconsin Oshkosh, Department of Chemistry, 800 Algoma Blvd., Oshkosh, WI 54902, USA, and bVillanova University, Department of Chemistry, 800 E. Lancaster Avenue, Villanova, PA 19085, USA
*Correspondence e-mail: lenses@uwosh.edu
The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6′-dihydroxy-2,2′-bipyridine ligand in a distorted octahedral geometry. Both complexes co-crystallize with a non-coordinating tetrahydrofuran (THF) solvent molecule and exhibit intermolecular but not intramolecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to intermolecular hydrogen bonding between a hydroxy group from the 6,6′-dihydroxy-2,2′-bipyridine ligand and the halide ligand from a neighboring complex. The THF molecule is hydrogen bonded to the remaining hydroxy group.
1. Chemical context
The fac-[Re(α-diimine)(CO)3X]n+ and fac-[Mn(α-diimine)(CO)3X]n+ (X = halide, n = 0 or X = neutral ligand, n = 1) family of complexes are of interest as selective catalysts for the reduction of CO2 to CO (Bourrez et al., 2011; Hawecker et al., 1986; Smieja et al., 2013; Sampson et al., 2014; Machan et al., 2014; Smieja & Kubiak, 2010). Utilizing substituted α-diimine ligands in these complexes can optimize complexes sterically or electronically to catalyze the reduction of CO2 to CO (Smieja & Kubiak, 2010; Sampson et al., 2014) or facilitate formation of supramolecular assemblies that promote electrocatalytic reduction of CO2 (Machan et al., 2014). The addition of weak Brønsted acids such as water or methanol is necessary for the catalytic turnover of Mn complexes (Smieja et al., 2013) and significantly increases the catalytic rate of Re complexes (Smieja et al., 2012). Introducing intramolecular phenolic groups positioned near the metal atom has been shown to greatly increase the rate at which an iron tetraphenylporphyrin complex catalyzes the reduction of CO2 to CO (Costentin et al., 2012). Recently, the complexes fac-[Re(4,4′-dihydroxy-2,2′-bipyridine)(CO)3Cl] and fac-[Re(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Cl] have been synthesized in order to study the effect of proton-responsive ligands in these catalysts and, for the latter complex, the effect of pendant acids positioned near the metal atom (Manbeck et al., 2015). Unexpectedly, these complexes were found to exhibit reductive deprotonation of the hydroxy groups. While the of fac-[Re(4,4′-dihydroxy-2,2′-bipyridine)(CO)3Cl] has been reported (Manbeck et al., 2015), fac-[Re(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Cl] has not been characterized crystallographically. In this paper we report the synthesis and structural characterization of fac-[Re(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Cl] as well as the synthesis and structural characterization of the related and previously unknown complex, fac-[Mn(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Br]. Both complexes co-crystallize with a tetrahydrofuran (THF) solvent molecule.
2. Structural commentary
Figs. 1 and 2 show ellipsoid plots of fac-[Re(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Cl]·THF (I·THF) and [Mn(6,6′-dihydroxy-2,2′-bipyridine)(CO)3Br]·THF (II·THF), respectively. Complexes I and II exhibit distorted octahedral geometries and contain primary coordination spheres similar to those of other fac-[Re(α-diimine)(CO)3Cl] and fac-[Mn(α-diimine)(CO)3Br] complexes, including [Re(bipyridine)(CO)3Cl] (III) (Manbeck et al., 2015), [Re(4,4′-dihydroxy-2,2′-bipyridine)(CO)3Cl]·DMSO (IV) (Manbeck et al., 2015) and [Mn(bipyridine)(CO)3I] (V) (Stor et al., 1995). Many coordination modes are possible for the 2-hydroxypyridine ligand (Parsons & Winpenny, 1997), but the crystal structures confirm bidentate α-diimine coordination in both complexes. Bond lengths between the metal and bipyridyl nitrogen atoms are slightly longer in I [2.198 (2) and 2.206 (2) Å] and II [2.0605 (11) and 2.0757 (11) Å] than in complexes III [2.176 (6) and 2.173 (6) Å], IV [2.177 (3) and 2.163 (3) Å] and V [2.05 (1) and 2.03 (2) Å], which do not have substituents in the 6 and 6′ positions on the α-diimine ligand. The longer bond lengths in I and II may be attributed to increased steric encumbrance due to these substituents. In both I and II, the distances between the oxygen atoms of the hydroxy substituents and the carbon atoms of the carbonyl ligands cis to the α-diimine ligands fall within the sum of the van der Waals radii for carbon and oxygen (Batsanov, 2001). In I, the O(hydroxy)—C(carbonyl) distances are 2.800 (3) and 2.813 (4) Å and in II the O(hydroxy)—C(carbonyl) distances are 2.660 (2) and 2.615 (2) Å.
In I, the bipyridine rings present a bite angle of 74.09 (8)° to Re, similar to that found in III [74.41 (9)°] and IV [74.9 (2)°]. The bipyridine–Mn bite angle in II, 78.35 (4)°, is similar to that in V [79.0 (5)°]. The bipyridine ligands are not strictly planar. The dihedral angles between the pyridine rings are 11.68 (9)° in I and 9.49 (5)° in II. Additionally, the bipyridine ligands are not oriented strictly perpendicularly to the coordination planes of the metal ions. The dihedral angles between the mean plane through the α-diimine ligands and the COequatorial–M–COequatorial planes are 23.51 (7) and 18.93 (3)° for the Re and Mn complexes, respectively. Neither I·THF nor II·THF exhibit intramolecular hydrogen bonding.
3. Supramolecular features
Hydrogen bonds for both structures are listed in Tables 1 and 2. In I·THF, a chain of complexes running along the a axis is formed by an O—H⋯Cl hydrogen bond between a hydroxy group (O16—H16) and the chloride ligand from the neighboring complex. The other hydroxy group (O26—H26) is hydrogen-bonded to the O atom of the THF molecule. The nearest pyridine rings between neighboring complexes have centroid–centroid distances of 3.9448 (16) Å, longer than the maximum distance typically given for π–π interactions (Janiak, 2000). In II·THF, a chain of complexes is formed along the b axis through an O—H·Br hydrogen bond involving the O10—H1group and the bromide ligand of the adjacent molecule, whereas the other hydroxy group (O20—H2) is hydrogen-bonded to O1S of the solvent THF molecule. There are weak π–π stacking interactions between pairs of complexes from neighboring chains. The centroid–centroid distance between pairs of pyridine rings is 3.7019 (9) Å and the angle between the ring normal and the vector between the ring centroids is 9.3°, within the parameters typically given for such π–π interactions (Janiak, 2000). Packing diagrams are shown in Figs. 3, 4 and 5.
|
4. Synthesis and crystallization
Methanol was degassed by sparging with N2. THF and diethyl ether were dried over molecular sieves and degassed using the freeze–pump–thaw method. MnBr(CO)5 and ReCl(CO)5 were purchased commercially and used as received. The ligand 6,6′-dihydroxy-2,2′-bipyridine was synthesized according to the synthetic procedure of Umemoto et al. (1998).
I·THF: 6,6′-dihydroxy-2,2′-bipyridine (249 mg, 1.32 mmol) and ReCl(CO)5 (477 mg, 1.32 mmol) were heated at 333 K in 50 mL methanol under nitrogen for five h. The flask was covered with aluminum foil to keep out light. The reaction was then allowed to cool to room temperature and the solvent was removed under vacuum to give a yellow precipitate. Slow cooling of a hot THF solution of the complex in a under a nitrogen atmosphere gave yellow plate-shaped crystals suitable for single crystal X-ray diffraction. Due to limited solubility of the complex in THF, this method could not be used for a bulk recrystallization of the complex.
II·THF: 6,6′-dihydroxy-2,2′-bipyridine (100 mg, 0.532 mmol) and MnBr(CO)5 (146 mg, 0.532 mmol) were heated at 333 K in 24 mL methanol under nitrogen for five h. The flask was covered with aluminum foil to keep out light. The reaction was then allowed to cool to room temperature and the solvent was removed under vacuum to give an orange precipitate. The complex was recrystallized in bulk by layering pentane on a THF solution of the complex in a under a nitrogen atmosphere at room temperature, giving the pure product in near quantitative yield. Slow diffusion of diethyl ether into a THF solution of the complex in a under a nitrogen atmosphere gave yellow rod-shaped crystals suitable for single crystal X-ray diffraction.
5. Refinement
Crystal data, data collection and structure . For both complexes, the coordinates of H atoms forming hydrogen bonds (the hydroxy group hydrogens) were refined freely with Uiso(H) = 1.5 Ueq(O). C-bound H atoms were placed in calculated positions and refined with riding coordinates, with Uiso(H) = 1.2 Ueq(C). In I·THF, disorder occurs for one carbon and six hydrogens of the THF solvent with occupancies of 0.748 (11) and 0.252 (11). Rigid bond (DELU) and similar ADP (SIMU) restraints were used for atoms O1S, C1S, C2S, C3T, C3S and C4S.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989016011841/is5457sup1.cif
contains datablocks Re_complex, Mn_complex, global. DOI:Structure factors: contains datablock Re_complex. DOI: https://doi.org/10.1107/S2056989016011841/is5457Re_complexsup4.hkl
Structure factors: contains datablock Mn_complex. DOI: https://doi.org/10.1107/S2056989016011841/is5457Mn_complexsup5.hkl
For both compounds, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[ReCl(C10H8N2O2)(CO)3]·C4H8O | Z = 2 |
Mr = 565.97 | F(000) = 544 |
Triclinic, P1 | Dx = 2.069 Mg m−3 |
a = 6.9661 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0082 (6) Å | Cell parameters from 5671 reflections |
c = 16.9007 (13) Å | θ = 2.5–32.4° |
α = 78.907 (2)° | µ = 6.87 mm−1 |
β = 79.128 (2)° | T = 100 K |
γ = 88.886 (2)° | Plate, yellow |
V = 908.46 (13) Å3 | 0.2 × 0.1 × 0.01 mm |
Bruker APEXII CCD diffractometer | 8820 independent reflections |
Radiation source: sealed tube | 7416 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 8 pixels mm-1 | θmax = 36.3°, θmin = 2.5° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −13→13 |
Tmin = 0.583, Tmax = 0.747 | l = −28→27 |
37165 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0215P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.003 |
8820 reflections | Δρmax = 1.71 e Å−3 |
260 parameters | Δρmin = −1.88 e Å−3 |
62 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re1 | 0.42194 (2) | 0.68445 (2) | 0.77393 (2) | 0.01301 (3) | |
Cl1 | 0.52023 (8) | 0.69909 (8) | 0.90827 (4) | 0.01477 (11) | |
O16 | −0.0490 (3) | 0.6754 (3) | 0.84174 (13) | 0.0186 (4) | |
H16 | −0.170 (5) | 0.680 (5) | 0.865 (2) | 0.028* | |
O2 | 0.2010 (3) | 1.0152 (3) | 0.78896 (14) | 0.0241 (5) | |
N1 | 0.2057 (3) | 0.4977 (3) | 0.85218 (14) | 0.0133 (4) | |
O1S | 1.1132 (3) | 0.3754 (3) | 0.58779 (15) | 0.0292 (5) | |
O1 | 0.2709 (4) | 0.7047 (3) | 0.61441 (15) | 0.0359 (6) | |
O26 | 0.8204 (3) | 0.5231 (3) | 0.67795 (14) | 0.0225 (4) | |
H26 | 0.920 (6) | 0.477 (5) | 0.652 (2) | 0.034* | |
N2 | 0.5697 (3) | 0.4372 (3) | 0.78476 (14) | 0.0144 (4) | |
O3 | 0.7668 (3) | 0.9154 (3) | 0.67574 (15) | 0.0294 (5) | |
C3 | 0.6398 (4) | 0.8253 (4) | 0.71185 (18) | 0.0202 (5) | |
C1 | 0.3292 (5) | 0.6881 (4) | 0.6741 (2) | 0.0228 (6) | |
C12 | 0.2792 (4) | 0.3466 (3) | 0.88559 (17) | 0.0144 (5) | |
C24 | 0.7513 (4) | 0.1272 (4) | 0.82643 (18) | 0.0189 (5) | |
H24 | 0.8148 | 0.0231 | 0.8415 | 0.023* | |
C26 | 0.7446 (4) | 0.4026 (3) | 0.74160 (17) | 0.0163 (5) | |
C23 | 0.5671 (4) | 0.1572 (3) | 0.86943 (18) | 0.0171 (5) | |
H23 | 0.5019 | 0.0728 | 0.9132 | 0.021* | |
C16 | 0.0154 (4) | 0.5269 (3) | 0.87765 (16) | 0.0143 (5) | |
C25 | 0.8405 (4) | 0.2491 (4) | 0.76204 (18) | 0.0184 (5) | |
H25 | 0.9656 | 0.2298 | 0.7317 | 0.022* | |
C2 | 0.2812 (4) | 0.8889 (3) | 0.78290 (17) | 0.0157 (5) | |
C22 | 0.4806 (4) | 0.3117 (3) | 0.84742 (17) | 0.0149 (5) | |
C13 | 0.1667 (4) | 0.2300 (3) | 0.94723 (18) | 0.0178 (5) | |
H13 | 0.2222 | 0.1274 | 0.9708 | 0.021* | |
C15 | −0.1072 (4) | 0.4124 (3) | 0.93829 (17) | 0.0166 (5) | |
H15 | −0.2416 | 0.4359 | 0.9543 | 0.020* | |
C14 | −0.0279 (4) | 0.2646 (3) | 0.97415 (18) | 0.0175 (5) | |
H14 | −0.1061 | 0.1868 | 1.0171 | 0.021* | |
C1S | 1.3097 (5) | 0.3276 (5) | 0.5990 (2) | 0.0357 (8) | |
H1SA | 1.3186 | 0.3115 | 0.6577 | 0.043* | |
H1SB | 1.4051 | 0.4173 | 0.5674 | 0.043* | |
C2S | 1.3515 (7) | 0.1634 (5) | 0.5683 (3) | 0.0506 (11) | |
H2SA | 1.4910 | 0.1565 | 0.5431 | 0.061* | 0.748 (11) |
H2SB | 1.3147 | 0.0633 | 0.6130 | 0.061* | 0.748 (11) |
H2SC | 1.4472 | 0.1839 | 0.5160 | 0.061* | 0.252 (11) |
H2SD | 1.4068 | 0.0800 | 0.6090 | 0.061* | 0.252 (11) |
C4S | 1.0405 (6) | 0.2609 (5) | 0.5432 (2) | 0.0359 (8) | |
H4SA | 0.9741 | 0.3242 | 0.5000 | 0.043* | 0.748 (11) |
H4SB | 0.9482 | 0.1754 | 0.5806 | 0.043* | 0.748 (11) |
H4SC | 1.0571 | 0.3126 | 0.4841 | 0.043* | 0.252 (11) |
H4SD | 0.9001 | 0.2342 | 0.5649 | 0.043* | 0.252 (11) |
C3S | 1.2233 (10) | 0.1777 (7) | 0.5060 (4) | 0.0479 (17) | 0.748 (11) |
H3SA | 1.1924 | 0.0640 | 0.4964 | 0.057* | 0.748 (11) |
H3SB | 1.2870 | 0.2487 | 0.4533 | 0.057* | 0.748 (11) |
C3T | 1.164 (2) | 0.0969 (18) | 0.5559 (11) | 0.039 (4) | 0.252 (11) |
H3TA | 1.1015 | 0.0133 | 0.6046 | 0.047* | 0.252 (11) |
H3TB | 1.1842 | 0.0430 | 0.5070 | 0.047* | 0.252 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01156 (4) | 0.01031 (5) | 0.01605 (5) | 0.00098 (3) | −0.00087 (3) | −0.00155 (3) |
Cl1 | 0.0108 (2) | 0.0149 (3) | 0.0182 (3) | 0.00042 (19) | −0.0026 (2) | −0.0021 (2) |
O16 | 0.0089 (8) | 0.0184 (10) | 0.0256 (11) | 0.0010 (7) | −0.0010 (7) | 0.0009 (8) |
O2 | 0.0207 (10) | 0.0160 (10) | 0.0356 (13) | 0.0065 (8) | −0.0050 (9) | −0.0062 (9) |
N1 | 0.0126 (9) | 0.0123 (10) | 0.0151 (10) | 0.0001 (7) | −0.0021 (8) | −0.0033 (8) |
O1S | 0.0317 (12) | 0.0209 (11) | 0.0313 (13) | −0.0011 (9) | 0.0069 (10) | −0.0085 (9) |
O1 | 0.0600 (18) | 0.0264 (13) | 0.0262 (13) | −0.0014 (11) | −0.0207 (12) | −0.0042 (10) |
O26 | 0.0205 (10) | 0.0160 (10) | 0.0242 (11) | 0.0053 (7) | 0.0071 (8) | 0.0014 (8) |
N2 | 0.0122 (9) | 0.0123 (10) | 0.0180 (11) | −0.0003 (7) | −0.0007 (8) | −0.0030 (8) |
O3 | 0.0298 (12) | 0.0213 (11) | 0.0291 (13) | −0.0128 (9) | 0.0121 (10) | −0.0015 (9) |
C3 | 0.0216 (12) | 0.0176 (13) | 0.0199 (14) | 0.0038 (10) | 0.0010 (10) | −0.0050 (10) |
C1 | 0.0285 (15) | 0.0139 (13) | 0.0257 (15) | 0.0011 (10) | −0.0056 (12) | −0.0028 (11) |
C12 | 0.0122 (10) | 0.0122 (11) | 0.0183 (12) | −0.0001 (8) | −0.0033 (9) | −0.0016 (9) |
C24 | 0.0192 (12) | 0.0142 (12) | 0.0242 (14) | 0.0058 (9) | −0.0063 (11) | −0.0041 (10) |
C26 | 0.0145 (11) | 0.0140 (12) | 0.0197 (13) | 0.0007 (9) | −0.0010 (9) | −0.0035 (10) |
C23 | 0.0150 (11) | 0.0118 (11) | 0.0230 (14) | 0.0006 (9) | −0.0016 (10) | −0.0015 (10) |
C16 | 0.0130 (10) | 0.0158 (12) | 0.0145 (12) | −0.0003 (8) | −0.0029 (9) | −0.0032 (9) |
C25 | 0.0162 (11) | 0.0160 (12) | 0.0221 (14) | 0.0045 (9) | −0.0006 (10) | −0.0046 (10) |
C2 | 0.0129 (10) | 0.0158 (12) | 0.0177 (12) | 0.0002 (9) | −0.0021 (9) | −0.0025 (10) |
C22 | 0.0125 (10) | 0.0105 (11) | 0.0220 (13) | −0.0012 (8) | −0.0035 (9) | −0.0033 (9) |
C13 | 0.0173 (12) | 0.0116 (11) | 0.0225 (14) | −0.0013 (9) | −0.0013 (10) | −0.0006 (10) |
C15 | 0.0128 (11) | 0.0173 (12) | 0.0192 (13) | −0.0022 (9) | −0.0025 (9) | −0.0029 (10) |
C14 | 0.0168 (11) | 0.0144 (12) | 0.0200 (13) | −0.0041 (9) | −0.0020 (10) | −0.0008 (10) |
C1S | 0.0332 (17) | 0.0256 (17) | 0.043 (2) | 0.0059 (13) | 0.0074 (15) | −0.0073 (15) |
C2S | 0.067 (3) | 0.033 (2) | 0.050 (3) | 0.021 (2) | −0.004 (2) | −0.0118 (19) |
C4S | 0.049 (2) | 0.0251 (17) | 0.0300 (18) | −0.0054 (15) | 0.0007 (16) | −0.0050 (14) |
C3S | 0.083 (4) | 0.027 (3) | 0.031 (3) | 0.016 (3) | −0.001 (3) | −0.010 (2) |
C3T | 0.054 (7) | 0.018 (6) | 0.038 (9) | 0.002 (5) | 0.015 (6) | −0.009 (6) |
Re1—Cl1 | 2.5159 (7) | C16—C15 | 1.400 (4) |
Re1—N1 | 2.198 (2) | C25—H25 | 0.9500 |
Re1—N2 | 2.206 (2) | C13—H13 | 0.9500 |
Re1—C3 | 1.920 (3) | C13—C14 | 1.386 (4) |
Re1—C1 | 1.912 (3) | C15—H15 | 0.9500 |
Re1—C2 | 1.908 (3) | C15—C14 | 1.378 (4) |
O16—H16 | 0.86 (4) | C14—H14 | 0.9500 |
O16—C16 | 1.337 (3) | C1S—H1SA | 0.9900 |
O2—C2 | 1.158 (3) | C1S—H1SB | 0.9900 |
N1—C12 | 1.366 (3) | C1S—C2S | 1.507 (5) |
N1—C16 | 1.344 (3) | C2S—H2SA | 0.9900 |
O1S—C1S | 1.451 (4) | C2S—H2SB | 0.9900 |
O1S—C4S | 1.447 (4) | C2S—H2SC | 0.9900 |
O1—C1 | 1.140 (4) | C2S—H2SD | 0.9900 |
O26—H26 | 0.87 (4) | C2S—C3S | 1.491 (8) |
O26—C26 | 1.332 (3) | C2S—C3T | 1.484 (18) |
N2—C26 | 1.350 (3) | C4S—H4SA | 0.9900 |
N2—C22 | 1.372 (3) | C4S—H4SB | 0.9900 |
O3—C3 | 1.152 (4) | C4S—H4SC | 0.9900 |
C12—C22 | 1.475 (3) | C4S—H4SD | 0.9900 |
C12—C13 | 1.385 (4) | C4S—C3S | 1.512 (7) |
C24—H24 | 0.9500 | C4S—C3T | 1.559 (15) |
C24—C23 | 1.391 (4) | C3S—H3SA | 0.9900 |
C24—C25 | 1.372 (4) | C3S—H3SB | 0.9900 |
C26—C25 | 1.403 (4) | C3T—H3TA | 0.9900 |
C23—H23 | 0.9500 | C3T—H3TB | 0.9900 |
C23—C22 | 1.383 (4) | ||
N1—Re1—Cl1 | 82.99 (6) | C14—C13—H13 | 120.4 |
N1—Re1—N2 | 74.09 (8) | C16—C15—H15 | 120.9 |
N2—Re1—Cl1 | 85.17 (6) | C14—C15—C16 | 118.3 (2) |
C3—Re1—Cl1 | 92.47 (9) | C14—C15—H15 | 120.9 |
C3—Re1—N1 | 171.39 (10) | C13—C14—H14 | 120.2 |
C3—Re1—N2 | 98.30 (10) | C15—C14—C13 | 119.7 (3) |
C1—Re1—Cl1 | 174.77 (9) | C15—C14—H14 | 120.2 |
C1—Re1—N1 | 96.46 (11) | O1S—C1S—H1SA | 110.3 |
C1—Re1—N2 | 99.71 (11) | O1S—C1S—H1SB | 110.3 |
C1—Re1—C3 | 88.72 (13) | O1S—C1S—C2S | 106.9 (3) |
C2—Re1—Cl1 | 87.58 (8) | H1SA—C1S—H1SB | 108.6 |
C2—Re1—N1 | 99.67 (10) | C2S—C1S—H1SA | 110.3 |
C2—Re1—N2 | 170.95 (10) | C2S—C1S—H1SB | 110.3 |
C2—Re1—C3 | 87.40 (11) | C1S—C2S—H2SA | 111.5 |
C2—Re1—C1 | 87.38 (12) | C1S—C2S—H2SB | 111.5 |
C16—O16—H16 | 106 (2) | C1S—C2S—H2SC | 110.2 |
C12—N1—Re1 | 115.69 (16) | C1S—C2S—H2SD | 110.2 |
C16—N1—Re1 | 125.85 (17) | H2SA—C2S—H2SB | 109.3 |
C16—N1—C12 | 117.9 (2) | H2SC—C2S—H2SD | 108.5 |
C4S—O1S—C1S | 109.3 (3) | C3S—C2S—C1S | 101.4 (3) |
C26—O26—H26 | 105 (3) | C3S—C2S—H2SA | 111.5 |
C26—N2—Re1 | 126.82 (18) | C3S—C2S—H2SB | 111.5 |
C26—N2—C22 | 117.6 (2) | C3T—C2S—C1S | 107.7 (6) |
C22—N2—Re1 | 115.29 (16) | C3T—C2S—H2SC | 110.2 |
O3—C3—Re1 | 177.2 (3) | C3T—C2S—H2SD | 110.2 |
O1—C1—Re1 | 174.1 (3) | O1S—C4S—H4SA | 111.1 |
N1—C12—C22 | 115.4 (2) | O1S—C4S—H4SB | 111.1 |
N1—C12—C13 | 121.9 (2) | O1S—C4S—H4SC | 110.6 |
C13—C12—C22 | 122.6 (2) | O1S—C4S—H4SD | 110.6 |
C23—C24—H24 | 120.2 | O1S—C4S—C3S | 103.5 (4) |
C25—C24—H24 | 120.2 | O1S—C4S—C3T | 105.8 (7) |
C25—C24—C23 | 119.5 (2) | H4SA—C4S—H4SB | 109.0 |
O26—C26—N2 | 115.8 (2) | H4SC—C4S—H4SD | 108.7 |
O26—C26—C25 | 121.9 (2) | C3S—C4S—H4SA | 111.1 |
N2—C26—C25 | 122.3 (2) | C3S—C4S—H4SB | 111.1 |
C24—C23—H23 | 120.5 | C3T—C4S—H4SC | 110.6 |
C22—C23—C24 | 118.9 (3) | C3T—C4S—H4SD | 110.6 |
C22—C23—H23 | 120.5 | C2S—C3S—C4S | 104.5 (4) |
O16—C16—N1 | 115.2 (2) | C2S—C3S—H3SA | 110.9 |
O16—C16—C15 | 121.9 (2) | C2S—C3S—H3SB | 110.9 |
N1—C16—C15 | 122.9 (2) | C4S—C3S—H3SA | 110.9 |
C24—C25—C26 | 119.1 (2) | C4S—C3S—H3SB | 110.9 |
C24—C25—H25 | 120.4 | H3SA—C3S—H3SB | 108.9 |
C26—C25—H25 | 120.4 | C2S—C3T—C4S | 102.5 (9) |
O2—C2—Re1 | 177.8 (2) | C2S—C3T—H3TA | 111.3 |
N2—C22—C12 | 115.6 (2) | C2S—C3T—H3TB | 111.3 |
N2—C22—C23 | 122.5 (2) | C4S—C3T—H3TA | 111.3 |
C23—C22—C12 | 121.8 (2) | C4S—C3T—H3TB | 111.3 |
C12—C13—H13 | 120.4 | H3TA—C3T—H3TB | 109.2 |
C12—C13—C14 | 119.2 (2) | ||
Re1—N1—C12—C22 | −16.1 (3) | C12—C13—C14—C15 | 1.2 (4) |
Re1—N1—C12—C13 | 168.2 (2) | C24—C23—C22—N2 | −0.1 (4) |
Re1—N1—C16—O16 | 10.2 (3) | C24—C23—C22—C12 | 174.8 (3) |
Re1—N1—C16—C15 | −168.8 (2) | C26—N2—C22—C12 | −172.3 (2) |
Re1—N2—C26—O26 | −10.9 (4) | C26—N2—C22—C23 | 2.9 (4) |
Re1—N2—C26—C25 | 169.5 (2) | C23—C24—C25—C26 | 0.8 (4) |
Re1—N2—C22—C12 | 13.6 (3) | C16—N1—C12—C22 | 172.0 (2) |
Re1—N2—C22—C23 | −171.2 (2) | C16—N1—C12—C13 | −3.7 (4) |
O16—C16—C15—C14 | −177.9 (3) | C16—C15—C14—C13 | −2.7 (4) |
N1—C12—C22—N2 | 1.6 (4) | C25—C24—C23—C22 | −1.7 (4) |
N1—C12—C22—C23 | −173.7 (3) | C22—N2—C26—O26 | 175.7 (2) |
N1—C12—C13—C14 | 2.1 (4) | C22—N2—C26—C25 | −3.9 (4) |
N1—C16—C15—C14 | 1.0 (4) | C22—C12—C13—C14 | −173.4 (3) |
O1S—C1S—C2S—C3S | 27.5 (5) | C13—C12—C22—N2 | 177.3 (3) |
O1S—C1S—C2S—C3T | −11.9 (8) | C13—C12—C22—C23 | 2.0 (4) |
O1S—C4S—C3S—C2S | 34.3 (5) | C1S—O1S—C4S—C3S | −16.8 (4) |
O1S—C4S—C3T—C2S | −28.0 (10) | C1S—O1S—C4S—C3T | 21.7 (7) |
O26—C26—C25—C24 | −177.5 (3) | C1S—C2S—C3S—C4S | −37.6 (5) |
N2—C26—C25—C24 | 2.2 (4) | C1S—C2S—C3T—C4S | 24.0 (11) |
C12—N1—C16—O16 | −178.8 (2) | C4S—O1S—C1S—C2S | −6.7 (4) |
C12—N1—C16—C15 | 2.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···Cl1i | 0.86 (4) | 2.16 (4) | 3.015 (2) | 173 (3) |
O26—H26···O1S | 0.87 (4) | 1.84 (4) | 2.704 (3) | 173 (4) |
Symmetry code: (i) x−1, y, z. |
[MnBr(C10H8N2O2)(CO)3]·C4H8O | F(000) = 960 |
Mr = 479.17 | Dx = 1.724 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2401 (12) Å | Cell parameters from 9928 reflections |
b = 13.1783 (15) Å | θ = 2.7–33.9° |
c = 14.2480 (16) Å | µ = 2.92 mm−1 |
β = 106.228 (3)° | T = 100 K |
V = 1846.1 (4) Å3 | Rod, yellow |
Z = 4 | 0.36 × 0.13 × 0.08 mm |
Bruker SMART APEX CCD area-detector diffractometer | 7363 independent reflections |
Radiation source: sealed tube | 5841 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 8 pixels mm-1 | θmax = 33.7°, θmin = 2.1° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | k = −20→20 |
Tmin = 0.609, Tmax = 0.747 | l = −22→22 |
67915 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0253P)2 + 0.8571P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
7363 reflections | Δρmax = 0.62 e Å−3 |
252 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.43600 (2) | 0.46594 (2) | 0.34466 (2) | 0.01541 (4) | |
Mn1 | 0.30177 (2) | 0.52808 (2) | 0.17547 (2) | 0.01092 (4) | |
O1 | 0.21509 (11) | 0.71004 (8) | 0.26247 (8) | 0.0207 (2) | |
C1 | 0.25680 (14) | 0.64158 (10) | 0.23009 (10) | 0.0145 (2) | |
O2 | 0.13075 (11) | 0.60489 (9) | −0.01225 (8) | 0.0236 (2) | |
C2 | 0.20034 (14) | 0.57322 (10) | 0.05953 (10) | 0.0153 (2) | |
O3 | 0.05516 (11) | 0.44992 (9) | 0.21988 (8) | 0.0239 (2) | |
C3 | 0.15176 (14) | 0.47493 (10) | 0.20007 (10) | 0.0161 (2) | |
O10 | 0.45262 (10) | 0.74298 (7) | 0.18113 (8) | 0.0179 (2) | |
H10 | 0.487 (2) | 0.8003 (18) | 0.1820 (17) | 0.044 (6)* | |
N11 | 0.48726 (11) | 0.57633 (8) | 0.15938 (8) | 0.01234 (19) | |
C12 | 0.54018 (14) | 0.66975 (10) | 0.17494 (9) | 0.0138 (2) | |
C13 | 0.67743 (14) | 0.69023 (11) | 0.18420 (11) | 0.0174 (3) | |
H13 | 0.7123 | 0.7572 | 0.1967 | 0.021* | |
C14 | 0.76061 (15) | 0.61113 (11) | 0.17475 (11) | 0.0197 (3) | |
H14 | 0.8547 | 0.6225 | 0.1826 | 0.024* | |
C15 | 0.70589 (14) | 0.51419 (11) | 0.15355 (11) | 0.0176 (3) | |
H15 | 0.7614 | 0.4590 | 0.1452 | 0.021* | |
C16 | 0.56946 (14) | 0.49991 (10) | 0.14487 (9) | 0.0132 (2) | |
O20 | 0.16632 (11) | 0.31944 (8) | 0.08940 (9) | 0.0237 (2) | |
H20 | 0.128 (2) | 0.2669 (19) | 0.0706 (18) | 0.047 (7)* | |
N21 | 0.36778 (11) | 0.40010 (8) | 0.11925 (8) | 0.01280 (19) | |
C22 | 0.29616 (14) | 0.31508 (10) | 0.08977 (10) | 0.0153 (2) | |
C23 | 0.35367 (15) | 0.22793 (10) | 0.06115 (10) | 0.0173 (3) | |
H23 | 0.3014 | 0.1678 | 0.0436 | 0.021* | |
C24 | 0.48671 (15) | 0.23105 (10) | 0.05895 (10) | 0.0175 (3) | |
H24 | 0.5278 | 0.1730 | 0.0397 | 0.021* | |
C25 | 0.56093 (15) | 0.32024 (10) | 0.08525 (10) | 0.0161 (2) | |
H25 | 0.6521 | 0.3246 | 0.0818 | 0.019* | |
C26 | 0.49997 (13) | 0.40221 (10) | 0.11640 (9) | 0.0128 (2) | |
O1S | 0.03314 (10) | 0.15416 (8) | 0.02750 (8) | 0.01819 (19) | |
C1S | −0.07218 (16) | 0.14179 (12) | 0.07676 (12) | 0.0229 (3) | |
H1SA | −0.0761 | 0.2020 | 0.1174 | 0.027* | |
H1SB | −0.0539 | 0.0811 | 0.1195 | 0.027* | |
C2S | −0.20485 (16) | 0.12945 (12) | −0.00295 (13) | 0.0261 (3) | |
H2SA | −0.2536 | 0.1949 | −0.0179 | 0.031* | |
H2SB | −0.2648 | 0.0793 | 0.0161 | 0.031* | |
C3S | −0.15910 (16) | 0.09175 (12) | −0.08984 (12) | 0.0255 (3) | |
H3SA | −0.1453 | 0.0173 | −0.0871 | 0.031* | |
H3SB | −0.2257 | 0.1098 | −0.1526 | 0.031* | |
C4S | −0.02636 (17) | 0.14755 (13) | −0.07673 (11) | 0.0245 (3) | |
H4SA | 0.0341 | 0.1097 | −0.1077 | 0.029* | |
H4SB | −0.0426 | 0.2161 | −0.1061 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02180 (7) | 0.01121 (5) | 0.01197 (6) | 0.00286 (5) | 0.00268 (5) | 0.00115 (4) |
Mn1 | 0.01186 (9) | 0.00999 (8) | 0.01105 (8) | 0.00139 (7) | 0.00341 (7) | 0.00011 (7) |
O1 | 0.0232 (5) | 0.0170 (5) | 0.0247 (5) | 0.0028 (4) | 0.0110 (4) | −0.0031 (4) |
C1 | 0.0152 (6) | 0.0146 (5) | 0.0138 (6) | −0.0007 (5) | 0.0044 (5) | 0.0015 (4) |
O2 | 0.0215 (5) | 0.0314 (6) | 0.0158 (5) | 0.0088 (4) | 0.0020 (4) | 0.0028 (4) |
C2 | 0.0154 (6) | 0.0152 (6) | 0.0170 (6) | 0.0015 (5) | 0.0075 (5) | −0.0020 (5) |
O3 | 0.0221 (5) | 0.0279 (6) | 0.0248 (5) | −0.0059 (4) | 0.0115 (5) | −0.0049 (4) |
C3 | 0.0187 (6) | 0.0156 (6) | 0.0143 (6) | 0.0009 (5) | 0.0050 (5) | −0.0025 (5) |
O10 | 0.0188 (5) | 0.0100 (4) | 0.0261 (5) | 0.0005 (4) | 0.0082 (4) | 0.0000 (4) |
N11 | 0.0138 (5) | 0.0116 (5) | 0.0121 (5) | 0.0019 (4) | 0.0044 (4) | 0.0015 (4) |
C12 | 0.0157 (6) | 0.0127 (5) | 0.0127 (5) | 0.0010 (4) | 0.0039 (5) | 0.0012 (4) |
C13 | 0.0163 (6) | 0.0167 (6) | 0.0190 (6) | −0.0034 (5) | 0.0044 (5) | 0.0001 (5) |
C14 | 0.0141 (6) | 0.0231 (7) | 0.0222 (7) | −0.0012 (5) | 0.0055 (5) | −0.0003 (5) |
C15 | 0.0152 (6) | 0.0184 (6) | 0.0201 (6) | 0.0027 (5) | 0.0064 (5) | 0.0003 (5) |
C16 | 0.0153 (6) | 0.0136 (5) | 0.0108 (5) | 0.0025 (4) | 0.0040 (5) | 0.0012 (4) |
O20 | 0.0153 (5) | 0.0188 (5) | 0.0360 (6) | −0.0021 (4) | 0.0057 (5) | −0.0110 (5) |
N21 | 0.0134 (5) | 0.0122 (4) | 0.0120 (5) | 0.0021 (4) | 0.0022 (4) | −0.0006 (4) |
C22 | 0.0151 (6) | 0.0147 (6) | 0.0149 (6) | 0.0008 (5) | 0.0024 (5) | −0.0024 (5) |
C23 | 0.0216 (7) | 0.0123 (5) | 0.0172 (6) | 0.0011 (5) | 0.0041 (5) | −0.0028 (5) |
C24 | 0.0238 (7) | 0.0130 (6) | 0.0172 (6) | 0.0048 (5) | 0.0081 (5) | −0.0006 (5) |
C25 | 0.0191 (6) | 0.0140 (5) | 0.0171 (6) | 0.0029 (5) | 0.0082 (5) | 0.0006 (5) |
C26 | 0.0156 (6) | 0.0129 (5) | 0.0100 (5) | 0.0023 (4) | 0.0039 (5) | 0.0008 (4) |
O1S | 0.0168 (5) | 0.0190 (5) | 0.0194 (5) | −0.0015 (4) | 0.0060 (4) | −0.0021 (4) |
C1S | 0.0224 (7) | 0.0264 (7) | 0.0229 (7) | 0.0003 (6) | 0.0114 (6) | 0.0015 (6) |
C2S | 0.0174 (7) | 0.0230 (7) | 0.0388 (9) | 0.0006 (6) | 0.0095 (7) | −0.0029 (6) |
C3S | 0.0230 (7) | 0.0209 (7) | 0.0285 (8) | −0.0017 (6) | 0.0008 (6) | −0.0052 (6) |
C4S | 0.0294 (8) | 0.0264 (8) | 0.0185 (7) | −0.0050 (6) | 0.0078 (6) | −0.0020 (6) |
Br1—Mn1 | 2.5532 (3) | N21—C22 | 1.3407 (17) |
Mn1—C1 | 1.8043 (14) | N21—C26 | 1.3658 (17) |
Mn1—C2 | 1.7895 (14) | C22—C23 | 1.4023 (18) |
Mn1—C3 | 1.8093 (14) | C23—H23 | 0.9500 |
Mn1—N11 | 2.0757 (11) | C23—C24 | 1.372 (2) |
Mn1—N21 | 2.0605 (11) | C24—H24 | 0.9500 |
O1—C1 | 1.1487 (16) | C24—C25 | 1.393 (2) |
O2—C2 | 1.1492 (17) | C25—H25 | 0.9500 |
O3—C3 | 1.1503 (17) | C25—C26 | 1.3815 (18) |
O10—H10 | 0.83 (2) | O1S—C1S | 1.4510 (17) |
O10—C12 | 1.3368 (16) | O1S—C4S | 1.4416 (18) |
N11—C12 | 1.3384 (17) | C1S—H1SA | 0.9900 |
N11—C16 | 1.3648 (16) | C1S—H1SB | 0.9900 |
C12—C13 | 1.4007 (19) | C1S—C2S | 1.516 (2) |
C13—H13 | 0.9500 | C2S—H2SA | 0.9900 |
C13—C14 | 1.376 (2) | C2S—H2SB | 0.9900 |
C14—H14 | 0.9500 | C2S—C3S | 1.524 (2) |
C14—C15 | 1.394 (2) | C3S—H3SA | 0.9900 |
C15—H15 | 0.9500 | C3S—H3SB | 0.9900 |
C15—C16 | 1.3806 (19) | C3S—C4S | 1.510 (2) |
C16—C26 | 1.4721 (19) | C4S—H4SA | 0.9900 |
O20—H20 | 0.80 (2) | C4S—H4SB | 0.9900 |
O20—C22 | 1.3294 (17) | ||
C1—Mn1—Br1 | 89.64 (4) | O20—C22—N21 | 115.09 (12) |
C1—Mn1—C3 | 84.52 (6) | O20—C22—C23 | 122.35 (12) |
C1—Mn1—N11 | 98.36 (5) | N21—C22—C23 | 122.56 (13) |
C1—Mn1—N21 | 175.75 (5) | C22—C23—H23 | 120.6 |
C2—Mn1—Br1 | 176.95 (4) | C24—C23—C22 | 118.85 (13) |
C2—Mn1—C1 | 88.30 (6) | C24—C23—H23 | 120.6 |
C2—Mn1—C3 | 90.13 (6) | C23—C24—H24 | 120.3 |
C2—Mn1—N11 | 96.27 (5) | C23—C24—C25 | 119.32 (12) |
C2—Mn1—N21 | 94.71 (5) | C25—C24—H24 | 120.3 |
C3—Mn1—Br1 | 87.43 (5) | C24—C25—H25 | 120.5 |
C3—Mn1—N11 | 173.04 (5) | C26—C25—C24 | 118.99 (13) |
C3—Mn1—N21 | 98.45 (5) | C26—C25—H25 | 120.5 |
N11—Mn1—Br1 | 86.26 (3) | N21—C26—C16 | 114.61 (11) |
N21—Mn1—Br1 | 87.48 (3) | N21—C26—C25 | 122.29 (12) |
N21—Mn1—N11 | 78.35 (4) | C25—C26—C16 | 123.05 (12) |
O1—C1—Mn1 | 173.11 (12) | C4S—O1S—C1S | 109.52 (11) |
O2—C2—Mn1 | 176.22 (12) | O1S—C1S—H1SA | 110.5 |
O3—C3—Mn1 | 173.41 (12) | O1S—C1S—H1SB | 110.5 |
C12—O10—H10 | 111.3 (16) | O1S—C1S—C2S | 106.33 (12) |
C12—N11—Mn1 | 127.17 (9) | H1SA—C1S—H1SB | 108.7 |
C12—N11—C16 | 117.75 (11) | C2S—C1S—H1SA | 110.5 |
C16—N11—Mn1 | 114.38 (9) | C2S—C1S—H1SB | 110.5 |
O10—C12—N11 | 115.28 (12) | C1S—C2S—H2SA | 111.1 |
O10—C12—C13 | 121.90 (12) | C1S—C2S—H2SB | 111.1 |
N11—C12—C13 | 122.82 (12) | C1S—C2S—C3S | 103.23 (12) |
C12—C13—H13 | 120.8 | H2SA—C2S—H2SB | 109.1 |
C14—C13—C12 | 118.49 (13) | C3S—C2S—H2SA | 111.1 |
C14—C13—H13 | 120.8 | C3S—C2S—H2SB | 111.1 |
C13—C14—H14 | 120.2 | C2S—C3S—H3SA | 111.3 |
C13—C14—C15 | 119.54 (13) | C2S—C3S—H3SB | 111.3 |
C15—C14—H14 | 120.2 | H3SA—C3S—H3SB | 109.2 |
C14—C15—H15 | 120.7 | C4S—C3S—C2S | 102.18 (12) |
C16—C15—C14 | 118.67 (13) | C4S—C3S—H3SA | 111.3 |
C16—C15—H15 | 120.7 | C4S—C3S—H3SB | 111.3 |
N11—C16—C15 | 122.50 (12) | O1S—C4S—C3S | 105.28 (12) |
N11—C16—C26 | 114.58 (11) | O1S—C4S—H4SA | 110.7 |
C15—C16—C26 | 122.89 (12) | O1S—C4S—H4SB | 110.7 |
C22—O20—H20 | 111.0 (17) | C3S—C4S—H4SA | 110.7 |
C22—N21—Mn1 | 126.56 (9) | C3S—C4S—H4SB | 110.7 |
C22—N21—C26 | 117.88 (11) | H4SA—C4S—H4SB | 108.8 |
C26—N21—Mn1 | 115.50 (8) | ||
Mn1—N11—C12—O10 | −15.18 (17) | C15—C16—C26—C25 | −7.6 (2) |
Mn1—N11—C12—C13 | 164.82 (10) | C16—N11—C12—O10 | 175.02 (11) |
Mn1—N11—C16—C15 | −165.73 (11) | C16—N11—C12—C13 | −4.98 (19) |
Mn1—N11—C16—C26 | 16.04 (14) | O20—C22—C23—C24 | 176.82 (14) |
Mn1—N21—C22—O20 | 6.44 (18) | N21—C22—C23—C24 | −3.0 (2) |
Mn1—N21—C22—C23 | −173.72 (10) | C22—N21—C26—C16 | 176.89 (11) |
Mn1—N21—C26—C16 | −5.87 (14) | C22—N21—C26—C25 | −0.53 (19) |
Mn1—N21—C26—C25 | 176.72 (10) | C22—C23—C24—C25 | 0.1 (2) |
O10—C12—C13—C14 | −178.55 (13) | C23—C24—C25—C26 | 2.4 (2) |
N11—C12—C13—C14 | 1.4 (2) | C24—C25—C26—C16 | −179.43 (12) |
N11—C16—C26—N21 | −6.80 (16) | C24—C25—C26—N21 | −2.2 (2) |
N11—C16—C26—C25 | 170.60 (12) | C26—N21—C22—O20 | −176.65 (12) |
C12—N11—C16—C15 | 5.36 (19) | C26—N21—C22—C23 | 3.18 (19) |
C12—N11—C16—C26 | −172.87 (11) | O1S—C1S—C2S—C3S | 23.09 (16) |
C12—C13—C14—C15 | 1.9 (2) | C1S—O1S—C4S—C3S | −21.18 (16) |
C13—C14—C15—C16 | −1.5 (2) | C1S—C2S—C3S—C4S | −34.94 (16) |
C14—C15—C16—N11 | −2.2 (2) | C2S—C3S—C4S—O1S | 34.76 (16) |
C14—C15—C16—C26 | 175.91 (13) | C4S—O1S—C1S—C2S | −1.46 (16) |
C15—C16—C26—N21 | 174.98 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10···Br1i | 0.83 (2) | 2.39 (2) | 3.2098 (10) | 170 (2) |
O20—H20···O1S | 0.80 (2) | 1.79 (2) | 2.5903 (15) | 176 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
SL wishes to thank the American Chemical Society Petroleum Research Fund (PRF# 54833-UNI3) for the funding to perform this study.
References
Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885. Web of Science CrossRef CAS Google Scholar
Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903–9906. CrossRef CAS Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costentin, C., Drouet, S., Robert, M. & Savéant, J. M. (2012). Science, 338, 90–94. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990–2012. CrossRef CAS Web of Science Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Machan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598–14607. CrossRef CAS PubMed Google Scholar
Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457–7466. CrossRef CAS PubMed Google Scholar
Parsons, S. & Winpenny, R. E. P. (1997). Acc. Chem. Res. 30, 89–95. CrossRef CAS Google Scholar
Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460–5471. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646–15650. CrossRef CAS PubMed Google Scholar
Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283–9289. CrossRef CAS PubMed Google Scholar
Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484–2491. CrossRef CAS PubMed Google Scholar
Stor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588–1594. CrossRef CAS Google Scholar
Umemoto, T., Nagayoshi, M., Adachi, K. & Tomizawa, G. (1998). J. Org. Chem. 63, 3379–3385. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.