research communications
of 4,4-dibromo-1-(3,4-dimethoxyphenyl)-2-azabuta-1,3-diene-1-carbonitrile
aLaboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Département de Chimie, Faculté des Sciences de Monastir, Tunisia, bInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 route de Gray, 25030 Besançon, France, and cICMUB UMR CNRS 6302, University of Bourgogne, 9 avenue Alain Savary, 21078 Dijon, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, marek.kubicki@u-bourgogne.fr
The title compound, C12H10Br2N2O2, represents an example of a planar π-conjugated 2-azabutadiene molecule, which is both an interesting starting material for further organic transformations and a potential ligand in organometallic coordination chemistry. Its metric molecular parameters are typical for the family of 2-azabuta-1,3-dienes not substituted at the (CH) 3-position. In the crystal, the almost planar (r.m.s. deviation = 0.0658 Å) azadiene molecules form one-dimensional double-wide ribbons through intermolecular halogen bonds (C—Br⋯O and C—Br⋯Br—C), which then stack in a slipped manner through weak C—H⋯Br and π–π interactions to generate a three-dimensional network.
Keywords: crystal structure; substituted 2-azabuta-1,3-diene; weak hydrogen bonding; halogen bonding; π–π interactions.
CCDC reference: 1491488
1. Chemical context
In the context of our interest in developing novel π-conjugated dithioether compounds as ligands for coordination chemistry and further organic transformations, we have reported on the synthesis and of 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene [Ph2C=N—C(H)=CCl2] and its conversion to [Ph2C=N—C(H)=C(SR)2] and [Ph2C=N—C(H)=C(OPh)2] by reaction with thiolates NaSR or NaOPh, respectively (Jacquot et al., 1999, 2000; Jacquot-Rousseau et al., 2006; Kinghat et al., 2016). Several crystal structures of these molecules/ligands and their derived transition metal complexes reveal that despite the overall planarity of the π-conjugated chain, one aryl group of the –N=CPh2 imine segment is tilted with respect to the azabutadienic array (Jacquot et al., 1999; Knorr et al., 2003; Kinghat et al., 2008). To circumvent this feature and to modulate the stereoelectronic properties, we examined other synthetic strategies for the synthesis of 2-azabutadienes. Intrigued by a communication briefly mentioning the formation of the nitrile-functionalized compounds [Ph(C≡N)C=N—C(H)=CX2] (X = Cl or Br) by treatment of the α-aminonitrile H2NCHPhC≡N with chloral or bromal (Sato & Adachi, 1978), we reinvestigated this reaction to explore the scope for the synthesis of other derivatives. For example, we succeeded in preparing the title compound [C6H3(OMe)2(C≡N)C=N—C(H)=CBr2], (1), bearing two electron-donating methoxy groups at the meta- and para-positions of the aryl ring (see Fig. 1).
2. Structural commentary
Compound (1) crystallizes from acetonitrile in the triclinic P. The transoid conformation of the azabutadiene chain found in [Ph2C=N—C(H)=CCl2] (Jacquot et al., 1999) is also observed in the of (1) (Fig. 2). The azadiene chain (C9/N1/C11/C12) is essentially planar (r.m.s. deviation = 0.014 Å). The torsion angle C12—C11—N1—C9 is 177.9 (3)°. The aryl ring, as well as the CN substituent, form part of the π-conjugated array. The length of the vinylic C11=C12 bond matches well with that of [Ph2C=N—C(H)=CCl2] [1.332 (4) versus 1.319 (3) Å]. We are not aware of any other structurally characterized azabutadienes bearing a Br2C=C moiety. For other organic compounds containing this dibromovinyl unit, such as 2,2-dibromovinylthiophene and 2-(2,2-dibromovinyl)-1-methyl-1H-imidazole-4,5-dicarbonitrile, C=C distances of 1.335 (7) and 1.317 (3) Å have been reported (Clément et al., 2011; Lokaj et al., 2011). The C9=N1 bond length of the imine group is also comparable with that of [Ph2C=N—C(H)=CCl2] [1.288 (3) versus 1.293 (2) Å].
3. Supramolecular features
Each planar molecule of (1) is connected through halogen (Cavallo et al., 2016) bifurcated bonds C12—Br2⋯(O1,O2) to two neighbouring molecules to form a one-dimensional ribbon. The ribbon is further connected through another kind of side halogen bond (C12—Br1⋯Br1—C12) to other neighbouring molecules with the formation of roughly planar one-dimensional double-wide straight chains (Fig. 3 and Table 1). These chains then stack in a slipped manner through very weak C—H⋯Br interactions (Fig. 4 and Table 2) to generate a three-dimensional supramolecular network (Fig. 5). When projecting the structure down the direction perpendicular to the planes of the planar molecules of (1) (e.g. down from the top in Fig. 4), one sees an interesting overlap in a head-to-tail arrangement of zigzagging unsaturated chains that leads to the formation of π–π stacking interactions around the symmetry centres located at (0, , ) and (, , ). They consist of overlaps between the azadiene C=C and C=N double bonds and parts of the aryl rings. For clarity, these overlaps are shown separately in Figs. 6 and 7. The mean interatomic separation between the chains built around (, , ) (Fig. 6 and Table 3) is 3.523 (5) Å, while a slightly shorter separation of 3.464 (5) Å is observed for the second couple built around (0, , ) (Fig. 7 and Table 3).
|
4. Database survey
There are several other examples of structurally characterized 2-azabutadienes bearing cyano (nitrile) substituents attached at the azabutadienic array. These include 3-cyano-4-(n-methoxyphenyl)-1,1-diphenyl-2-aza-1,3-butadienes (n = 2, 3 or 4), 3-cyano-4-(4-cyanophenyl)-1,1-diphenyl-2-aza-1,3-butadiene, 3-cyano-4-(2,4-dimethoxyphenyl)-1,1-diphenyl-2-aza-1,3-butadiene, 3-cyano-4-(2,4-dichlorophenyl)-1,1-diphenyl-2-aza-1,3-butadiene and 3-cyano-4-(n-fluorophenyl)-1,1-diphenyl-2-aza-1,3-butadienes (n = 2 or 4) (Angelova et al., 1993a,b; Macícek et al., 1993a,b; Dryanska et al., 1995). Furthermore, the structure of (E)-4,4-dicyano-3-methylthio-1-phenyl-1-(1-pyrrolidinyl)-2-azabuta-1,3-diene has been reported (Lorente et al., 1996). Note that in all these structures there is a significant deviation from linearity of the C=N—C=C chain. This feature is due to the presence of a substituent at the 3-C position of the 2-azabuta-1,3-diene chain. We also observed and discussed this feature in the structures of [Ar2C=N—C(StBu)=C(H)StBu] (Kinghat et al., 2016).
5. Synthesis and crystallization
The required α-aminonitrile used a starting material was obtained according a literature protocol (Mai & Patil, 1984). An equimolar mixture of N-(dibromoethylenyl)-1-imino-1-vertracetonitrile (10 mmol) and tribromoacetaldehyde in 10 ml of acetonitrile was stirred under reflux for 2 h. The solution was then filtered and all volatiles removed under reduced pressure. The crude residue was recrystallized from acetonitrile affording clear-light orange crystals (yield 79%; m.p. 440 K; 1H RMN (CDCl3, 300 MHz): δ 3.95 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 6.93 (d, 1H, J = 9 Hz, 1 Ar-H), 7.65 (s, 2H, 2 Ar-H), 8.04 (s, 1H, =CH); 13C{1H} NMR (CDCl3, 75 MHz): δ 55.9 (OCH3), 56.2 (OCH3), 103.2 (=CBr2), 110.6 (C≡N), 124.3–153.9 (CAr), 137.8 (C=N), 142.2 (CH); λmax = 245 nm (e = 3300 M−1 cm−1), λmax = 353 nm (e = 7580 M−1 cm−1); IR (ATR) cm−1: 2219 (C≡N), 1597 (C=N), 1569 (C=C).
6. details
Crystal data, data collection and structure . All H atoms were placed in calculated positions and treated in a riding model. C—H distances were set at 0.95 (aromatic) and 0.98 Å (methyl), with Uiso(H) = xUeq(C), where x = 1.5 for idealized methyl H atoms refined as rotating groups and 1.2 for all other H atoms.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1491488
https://doi.org/10.1107/S2056989016011075/pk2582sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011075/pk2582Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016011075/pk2582Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H10Br2N2O2 | Z = 2 |
Mr = 374.04 | F(000) = 364 |
Triclinic, P1 | Dx = 1.881 Mg m−3 |
a = 7.6878 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2782 (5) Å | Cell parameters from 8732 reflections |
c = 10.8111 (6) Å | θ = 3.0–27.5° |
α = 106.162 (2)° | µ = 6.13 mm−1 |
β = 100.887 (2)° | T = 100 K |
γ = 110.009 (2)° | Plqte, clear light orange |
V = 660.57 (6) Å3 | 0.25 × 0.2 × 0.1 mm |
Bruker D8 VENTURE diffractometer | 3045 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C | 2442 reflections with I > 2σ(I) |
TRIUMPH curved crystal monochromator | Rint = 0.067 |
φ and ω scans' | θmax = 27.6°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −9→10 |
Tmin = 0.537, Tmax = 0.746 | k = −12→12 |
23955 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.5386P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3045 reflections | Δρmax = 0.80 e Å−3 |
165 parameters | Δρmin = −0.42 e Å−3 |
0 restraints |
Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014) was used for absorption correction. wR2(int) was 0.0938 before and 0.0647 after correction. The Ratio of minimum to maximum transmission is 0.7197. The λ/2 correction factor is 0.00150. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5229 (4) | 0.2556 (4) | 0.9031 (3) | 0.0198 (6) | |
H1A | 0.5402 | 0.1716 | 0.8346 | 0.030* | |
H1B | 0.3876 | 0.2129 | 0.9037 | 0.030* | |
H1C | 0.6109 | 0.2824 | 0.9927 | 0.030* | |
C2 | 0.6815 (5) | 0.8341 (4) | 0.8299 (3) | 0.0246 (7) | |
H2A | 0.7114 | 0.8389 | 0.7465 | 0.037* | |
H2B | 0.7909 | 0.9196 | 0.9088 | 0.037* | |
H2C | 0.5636 | 0.8527 | 0.8307 | 0.037* | |
C3 | 0.4518 (4) | 0.3908 (3) | 0.7558 (3) | 0.0163 (6) | |
C4 | 0.3008 (4) | 0.2473 (3) | 0.6590 (3) | 0.0160 (6) | |
H4 | 0.2729 | 0.1450 | 0.6709 | 0.019* | |
C5 | 0.1904 (4) | 0.2535 (3) | 0.5444 (3) | 0.0156 (6) | |
H5 | 0.0857 | 0.1552 | 0.4792 | 0.019* | |
C6 | 0.2308 (4) | 0.4007 (3) | 0.5242 (3) | 0.0149 (5) | |
C7 | 0.3852 (4) | 0.5476 (3) | 0.6221 (3) | 0.0154 (6) | |
H7 | 0.4130 | 0.6496 | 0.6096 | 0.019* | |
C8 | 0.4946 (4) | 0.5419 (3) | 0.7352 (3) | 0.0149 (5) | |
C9 | 0.1186 (4) | 0.4092 (3) | 0.4029 (3) | 0.0148 (5) | |
C10 | −0.0396 (4) | 0.2543 (4) | 0.3038 (3) | 0.0210 (6) | |
C11 | 0.0555 (4) | 0.5495 (3) | 0.2655 (3) | 0.0175 (6) | |
H11 | −0.0400 | 0.4495 | 0.1958 | 0.021* | |
C12 | 0.0911 (4) | 0.6927 (3) | 0.2490 (3) | 0.0139 (5) | |
N1 | 0.1576 (3) | 0.5463 (3) | 0.3839 (2) | 0.0145 (5) | |
N2 | −0.1661 (4) | 0.1374 (3) | 0.2229 (3) | 0.0356 (7) | |
O1 | 0.5666 (3) | 0.4013 (2) | 0.8715 (2) | 0.0195 (4) | |
O2 | 0.6500 (3) | 0.6752 (2) | 0.8351 (2) | 0.0195 (4) | |
Br1 | 0.27146 (4) | 0.89631 (3) | 0.38235 (3) | 0.01976 (9) | |
Br2 | −0.04365 (4) | 0.69810 (3) | 0.08743 (3) | 0.01900 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0209 (14) | 0.0221 (14) | 0.0233 (16) | 0.0103 (12) | 0.0097 (12) | 0.0148 (13) |
C2 | 0.0258 (16) | 0.0142 (14) | 0.0254 (17) | 0.0023 (12) | 0.0012 (13) | 0.0074 (13) |
C3 | 0.0145 (13) | 0.0177 (14) | 0.0202 (15) | 0.0082 (11) | 0.0082 (11) | 0.0086 (12) |
C4 | 0.0180 (14) | 0.0152 (13) | 0.0194 (15) | 0.0087 (11) | 0.0095 (12) | 0.0083 (11) |
C5 | 0.0121 (13) | 0.0167 (13) | 0.0147 (14) | 0.0043 (11) | 0.0038 (11) | 0.0035 (11) |
C6 | 0.0142 (12) | 0.0161 (13) | 0.0146 (14) | 0.0071 (10) | 0.0062 (11) | 0.0038 (11) |
C7 | 0.0168 (13) | 0.0137 (13) | 0.0144 (14) | 0.0050 (11) | 0.0058 (11) | 0.0044 (11) |
C8 | 0.0132 (13) | 0.0142 (13) | 0.0152 (14) | 0.0039 (10) | 0.0046 (11) | 0.0048 (11) |
C9 | 0.0133 (13) | 0.0151 (13) | 0.0146 (14) | 0.0061 (10) | 0.0055 (11) | 0.0025 (11) |
C10 | 0.0226 (15) | 0.0186 (14) | 0.0217 (16) | 0.0076 (13) | 0.0050 (13) | 0.0099 (13) |
C11 | 0.0171 (14) | 0.0170 (14) | 0.0141 (14) | 0.0069 (11) | 0.0033 (11) | 0.0012 (11) |
C12 | 0.0133 (12) | 0.0179 (13) | 0.0104 (13) | 0.0064 (11) | 0.0042 (11) | 0.0053 (11) |
N1 | 0.0157 (11) | 0.0160 (11) | 0.0117 (12) | 0.0072 (9) | 0.0049 (9) | 0.0038 (9) |
N2 | 0.0337 (16) | 0.0205 (14) | 0.0371 (18) | 0.0036 (12) | −0.0042 (14) | 0.0087 (13) |
O1 | 0.0191 (10) | 0.0185 (10) | 0.0202 (11) | 0.0059 (8) | 0.0025 (8) | 0.0110 (9) |
O2 | 0.0203 (10) | 0.0130 (9) | 0.0174 (11) | 0.0017 (8) | −0.0006 (8) | 0.0053 (8) |
Br1 | 0.02102 (15) | 0.01428 (14) | 0.01661 (16) | 0.00322 (11) | 0.00125 (12) | 0.00357 (11) |
Br2 | 0.02026 (15) | 0.02270 (16) | 0.01424 (16) | 0.01035 (12) | 0.00265 (12) | 0.00730 (12) |
C1—H1A | 0.9800 | C5—C6 | 1.383 (4) |
C1—H1B | 0.9800 | C6—C7 | 1.415 (4) |
C1—H1C | 0.9800 | C6—C9 | 1.464 (4) |
C1—O1 | 1.431 (3) | C7—H7 | 0.9500 |
C2—H2A | 0.9800 | C7—C8 | 1.372 (4) |
C2—H2B | 0.9800 | C8—O2 | 1.372 (3) |
C2—H2C | 0.9800 | C9—C10 | 1.465 (4) |
C2—O2 | 1.430 (3) | C9—N1 | 1.288 (3) |
C3—C4 | 1.387 (4) | C10—N2 | 1.147 (4) |
C3—C8 | 1.418 (4) | C11—H11 | 0.9500 |
C3—O1 | 1.345 (3) | C11—C12 | 1.332 (4) |
C4—H4 | 0.9500 | C11—N1 | 1.384 (4) |
C4—C5 | 1.391 (4) | C12—Br1 | 1.872 (3) |
C5—H5 | 0.9500 | C12—Br2 | 1.878 (3) |
H1A—C1—H1B | 109.5 | C5—C6—C9 | 121.7 (2) |
H1A—C1—H1C | 109.5 | C7—C6—C9 | 118.7 (2) |
H1B—C1—H1C | 109.5 | C6—C7—H7 | 120.2 |
O1—C1—H1A | 109.5 | C8—C7—C6 | 119.6 (3) |
O1—C1—H1B | 109.5 | C8—C7—H7 | 120.2 |
O1—C1—H1C | 109.5 | C7—C8—C3 | 120.5 (3) |
H2A—C2—H2B | 109.5 | O2—C8—C3 | 114.7 (2) |
H2A—C2—H2C | 109.5 | O2—C8—C7 | 124.8 (2) |
H2B—C2—H2C | 109.5 | C6—C9—C10 | 117.0 (2) |
O2—C2—H2A | 109.5 | N1—C9—C6 | 121.6 (2) |
O2—C2—H2B | 109.5 | N1—C9—C10 | 121.5 (3) |
O2—C2—H2C | 109.5 | N2—C10—C9 | 176.7 (3) |
C4—C3—C8 | 119.4 (3) | C12—C11—H11 | 120.0 |
O1—C3—C4 | 125.4 (3) | C12—C11—N1 | 120.0 (3) |
O1—C3—C8 | 115.1 (2) | N1—C11—H11 | 120.0 |
C3—C4—H4 | 120.1 | C11—C12—Br1 | 123.0 (2) |
C3—C4—C5 | 119.8 (3) | C11—C12—Br2 | 120.4 (2) |
C5—C4—H4 | 120.1 | Br1—C12—Br2 | 116.65 (14) |
C4—C5—H5 | 119.5 | C9—N1—C11 | 120.4 (2) |
C6—C5—C4 | 120.9 (3) | C3—O1—C1 | 118.0 (2) |
C6—C5—H5 | 119.5 | C8—O2—C2 | 116.8 (2) |
C5—C6—C7 | 119.6 (3) | ||
C3—C4—C5—C6 | 1.1 (4) | C7—C6—C9—C10 | 179.8 (2) |
C3—C8—O2—C2 | −171.0 (2) | C7—C6—C9—N1 | 0.0 (4) |
C4—C3—C8—C7 | 1.5 (4) | C7—C8—O2—C2 | 9.3 (4) |
C4—C3—C8—O2 | −178.2 (2) | C8—C3—C4—C5 | −1.4 (4) |
C4—C3—O1—C1 | −4.4 (4) | C8—C3—O1—C1 | 175.8 (2) |
C4—C5—C6—C7 | −0.7 (4) | C9—C6—C7—C8 | −178.7 (2) |
C4—C5—C6—C9 | 178.7 (3) | C10—C9—N1—C11 | −2.9 (4) |
C5—C6—C7—C8 | 0.8 (4) | C12—C11—N1—C9 | 177.2 (3) |
C5—C6—C9—C10 | 0.3 (4) | N1—C11—C12—Br1 | −1.7 (4) |
C5—C6—C9—N1 | −179.5 (3) | N1—C11—C12—Br2 | 179.0 (2) |
C6—C7—C8—C3 | −1.2 (4) | O1—C3—C4—C5 | 178.8 (3) |
C6—C7—C8—O2 | 178.5 (2) | O1—C3—C8—C7 | −178.7 (3) |
C6—C9—N1—C11 | 176.9 (2) | O1—C3—C8—O2 | 1.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Br1i | 0.98 | 3.01 | 3.867 (4) | 146 |
C1—H1B···Br2ii | 0.98 | 3.04 | 3.869 (4) | 143 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
D | Br | A | D—Br | Br···A | D—Br···A |
C12 | Br2 | O1i | 1.878 (3) | 3.185 (2) | 124.26 (9) |
C12 | Br2 | O2i | 1.878 (3) | 3.153 (2) | 167.6 (1) |
C12 | Br1 | Br1ii | 1.872 (3) | 3.4340 (5) | 144.8 (1) |
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+2, -z+1. |
Atom A | Atom B | Distance A···B | Atom C | Atom D | Distance C···D |
C5 | C12ii | 3.445 (5) | C11 | O1i | 3.455 (4) |
C6 | C11ii | 3.497 (5) | N1 | C3i | 3.556 (4) |
C9 | N1ii | 3.451 (4) | C9 | C8i | 3.523 (5) |
C6 | C7i | 3.559 (5) |
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 1-z. |
Acknowledgements
We are grateful to the Universities of Franche–Comté and Bourgogne and the CNRS for financial support.
References
Angelova, O., Macíček, J. & Dryanska, V. (1993a). Acta Cryst. C49, 1813–1818. CSD CrossRef CAS IUCr Journals Google Scholar
Angelova, O., Macíček, J. & Dryanska, V. (1993b). Acta Cryst. C49, 1821–1823. CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Clément, S., Guyard, L., Knorr, M., Eckert, P. K. & Strohmann, C. (2011). Acta Cryst. E67, o481. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dryanska, V., Angelova, O., Macicek, J., Shishkova, L., Denkova, P. & Spassov, S. (1995). J. Chem. Res. pp. 268–269. Google Scholar
Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541–1544. CrossRef Google Scholar
Jacquot, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2000). Eur. J. Org. Chem. pp. 1235–1239. CrossRef Google Scholar
Jacquot-Rousseau, S., Schmitt, G., Khatyr, A., Knorr, M., Kubicki, M. M., Vigier, E. & Blacque, O. (2006). Eur. J. Org. Chem. pp. 2748–2751. Google Scholar
Kinghat, R., Boudiba, H., Khatyr, A., Knorr, M. & Kubicki, M. M. (2008). Acta Cryst. E64, o370. CSD CrossRef IUCr Journals Google Scholar
Kinghat, R., Schmitt, G., Ciamala, K., Khatyr, A., Knorr, M., Jacquot-Rousseau, S., Rousselin, Y. & Kubicki, M. M. (2016). C. R. Chim. 19, 319–331. CSD CrossRef CAS Google Scholar
Knorr, M., Schmitt, G., Kubicki, M. M. & Vigier, E. (2003). Eur. J. Inorg. Chem. pp. 514–517. CSD CrossRef Google Scholar
Lokaj, J., Moncol, J., Bures, F. & Kulhanek, J. (2011). J. Chem. Crystallogr. 41, 834–837. CSD CrossRef CAS Google Scholar
Lorente, A., Casillas, M., Gomez-Sal, P. & Manzanero, A. (1996). Can. J. Chem. 74, 287–294. CSD CrossRef CAS Google Scholar
Macíček, J., Angelova, O. & Dryanska, V. (1993a). Acta Cryst. C49, 1818–1821. CSD CrossRef IUCr Journals Google Scholar
Macíček, J., Angelova, O. & Dryanska, V. (1993b). Acta Cryst. C49, 2169–2173. CSD CrossRef IUCr Journals Google Scholar
Mai, K. & Patil, G. (1984). Tetrahedron Lett. 25, 4583–4586. CrossRef CAS Google Scholar
Sato, N. & Adachi, J. (1978). J. Org. Chem. 43, 340–341. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.