research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4-di­bromo-1-(3,4-di­meth­­oxy­phen­yl)-2-aza­buta-1,3-diene-1-carbo­nitrile

aLaboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Département de Chimie, Faculté des Sciences de Monastir, Tunisia, bInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 route de Gray, 25030 Besançon, France, and cICMUB UMR CNRS 6302, University of Bourgogne, 9 avenue Alain Savary, 21078 Dijon, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, marek.kubicki@u-bourgogne.fr

Edited by S. Parkin, University of Kentucky, USA (Received 11 June 2016; accepted 7 July 2016; online 22 July 2016)

The title compound, C12H10Br2N2O2, represents an example of a planar π-con­jugated 2-aza­butadiene mol­ecule, which is both an inter­esting starting material for further organic transformations and a potential ligand in organometallic coordination chemistry. Its metric mol­ecular parameters are typical for the family of 2-aza­buta-1,3-dienes not substituted at the (CH) 3-position. In the crystal, the almost planar (r.m.s. deviation = 0.0658 Å) aza­diene mol­ecules form one-dimensional double-wide ribbons through inter­molecular halogen bonds (C—Br⋯O and C—Br⋯Br—C), which then stack in a slipped manner through weak C—H⋯Br and ππ inter­actions to generate a three-dimensional network.

1. Chemical context

In the context of our inter­est in developing novel π-conjugated di­thio­ether compounds as ligands for coordination chemistry and further organic transformations, we have re­ported on the synthesis and crystal structure of 4,4-di­chloro-1,1-diphenyl-2-aza­buta-1,3-diene [Ph2C=N—C(H)=CCl2] and its conversion to [Ph2C=N—C(H)=C(SR)2] and [Ph2C=N—C(H)=C(OPh)2] by reaction with thiol­ates NaSR or NaOPh, respectively (Jacquot et al., 1999[Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541-1544.], 2000[Jacquot, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2000). Eur. J. Org. Chem. pp. 1235-1239.]; Jacquot-Rousseau et al., 2006[Jacquot-Rousseau, S., Schmitt, G., Khatyr, A., Knorr, M., Kubicki, M. M., Vigier, E. & Blacque, O. (2006). Eur. J. Org. Chem. pp. 2748-2751.]; Kinghat et al., 2016[Kinghat, R., Schmitt, G., Ciamala, K., Khatyr, A., Knorr, M., Jacquot-Rousseau, S., Rousselin, Y. & Kubicki, M. M. (2016). C. R. Chim. 19, 319-331.]). Several crystal structures of these mol­ecules/ligands and their derived transition metal complexes reveal that despite the overall planarity of the π-conjugated chain, one aryl group of the –N=CPh2 imine segment is tilted with respect to the aza­butadienic array (Jacquot et al., 1999[Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541-1544.]; Knorr et al., 2003[Knorr, M., Schmitt, G., Kubicki, M. M. & Vigier, E. (2003). Eur. J. Inorg. Chem. pp. 514-517.]; Kinghat et al., 2008[Kinghat, R., Boudiba, H., Khatyr, A., Knorr, M. & Kubicki, M. M. (2008). Acta Cryst. E64, o370.]). To circumvent this feature and to modulate the stereoelectronic properties, we examined other synthetic strategies for the synthesis of 2-aza­butadienes. Intrigued by a communication briefly mentioning the formation of the nitrile-functionalized compounds [Ph(C≡N)C=N—C(H)=CX2] (X = Cl or Br) by treatment of the α-amino­nitrile H2NCHPhC≡N with chloral or bromal (Sato & Adachi, 1978[Sato, N. & Adachi, J. (1978). J. Org. Chem. 43, 340-341.]), we reinvestigated this reaction to explore the scope for the synthesis of other derivatives. For example, we succeeded in preparing the title compound [C6H3(OMe)2(C≡N)C=N—C(H)=CBr2], (1), bearing two electron-donating meth­oxy groups at the meta- and para-positions of the aryl ring (see Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The reaction scheme for the synthesis of (1).

2. Structural commentary

Compound (1) crystallizes from aceto­nitrile in the triclinic crystal system, space group P[\overline{1}]. The transoid conformation of the aza­butadiene chain found in [Ph2C=N—C(H)=CCl2] (Jacquot et al., 1999[Jacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541-1544.]) is also observed in the crystal structure of (1) (Fig. 2[link]). The aza­diene chain (C9/N1/C11/C12) is essentially planar (r.m.s. deviation = 0.014 Å). The torsion angle C12—C11—N1—C9 is 177.9 (3)°. The aryl ring, as well as the CN substituent, form part of the π-conjugated array. The length of the vinylic C11=C12 bond matches well with that of [Ph2C=N—C(H)=CCl2] [1.332 (4) versus 1.319 (3) Å]. We are not aware of any other structurally characterized aza­butadienes bearing a Br2C=C moiety. For other organic compounds containing this di­bromo­vinyl unit, such as 2,2-di­bromo­vinyl­thio­phene and 2-(2,2-di­bromo­vin­yl)-1-methyl-1H-imidazole-4,5-dicarbo­nitrile, C=C distances of 1.335 (7) and 1.317 (3) Å have been reported (Clément et al., 2011[Clément, S., Guyard, L., Knorr, M., Eckert, P. K. & Strohmann, C. (2011). Acta Cryst. E67, o481.]; Lokaj et al., 2011[Lokaj, J., Moncol, J., Bures, F. & Kulhanek, J. (2011). J. Chem. Crystallogr. 41, 834-837.]). The C9=N1 bond length of the imine group is also comparable with that of [Ph2C=N—C(H)=CCl2] [1.288 (3) versus 1.293 (2) Å].

[Figure 2]
Figure 2
An displacement ellipsoid plot of (1) at the 50% probability level.

3. Supra­molecular features

Each planar mol­ecule of (1) is connected through halogen (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]) bifurcated bonds C12—Br2⋯(O1,O2) to two neighbouring mol­ecules to form a one-dimensional ribbon. The ribbon is further connected through another kind of side halogen bond (C12—Br1⋯Br1—C12) to other neighbouring mol­ecules with the formation of roughly planar one-dimensional double-wide straight chains (Fig. 3[link] and Table 1[link]). These chains then stack in a slipped manner through very weak C—H⋯Br inter­actions (Fig. 4[link] and Table 2[link]) to generate a three-dimensional supra­molecular network (Fig. 5[link]). When projecting the structure down the direction perpendicular to the planes of the planar mol­ecules of (1) (e.g. down from the top in Fig. 4[link]), one sees an inter­esting overlap in a head-to-tail arrangement of zigzagging unsaturated chains that leads to the formation of ππ stacking inter­actions around the symmetry centres located at (0, [1 \over 2], [1 \over 2]) and ([1 \over 2], [1 \over 2], [1 \over 2]). They consist of overlaps between the aza­diene C=C and C=N double bonds and parts of the aryl rings. For clarity, these overlaps are shown separately in Figs. 6[link] and 7[link]. The mean inter­atomic separation between the chains built around ([1 \over 2], [1 \over 2], [1 \over 2]) (Fig. 6[link] and Table 3[link]) is 3.523 (5) Å, while a slightly shorter separation of 3.464 (5) Å is observed for the second couple built around (0, [1 \over 2], [1 \over 2]) (Fig. 7[link] and Table 3[link]).

Table 1
Halogen-bonding parameters (Å, °) for (1)

D Br A D—Br Br⋯A D—Br⋯A
C12 Br2 O1i 1.878 (3) 3.185 (2) 124.26 (9)
C12 Br2 O2i 1.878 (3) 3.153 (2) 167.6 (1)
C12 Br1 Br1ii 1.872 (3) 3.4340 (5) 144.8 (1)
Symmetry codes: (i) x − 1, y, z − 1; (ii) −x + 1, −y + 2, −z + 1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1i 0.98 3.01 3.867 (4) 146
C1—H1B⋯Br2ii 0.98 3.04 3.869 (4) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Table 3
π–π inter­actions (Å) in (1)

Atom A Atom B AB Atom C Atom D C⋯D
C5 C12ii 3.445 (5) C11 O1i 3.455 (4)
C6 C11ii 3.497 (5) N1 C3i 3.556 (4)
C9 N1ii 3.451 (4) C9 C8i 3.523 (5)
      C6 C7i 3.559 (5)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, 1 − y, 1 − z.
[Figure 3]
Figure 3
Part of the crystal structure of (1), showing the formation of double-wide ribbons through halogen C—Br⋯O and C—Br⋯Br—C bonding. [Symmetry codes: (i) x − 1, y, z − 1; (ii) −x + 1, −y + 2, −z + 1.]
[Figure 4]
Figure 4
Part of the crystal structure of (1), showing the C—H⋯Br inter­actions. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z + 1.]
[Figure 5]
Figure 5
Part of the three-dimensional packing in (1) projected down the [101] direction and showing the halogen and weak C–H⋯Br inter­actions detailed in Figs. 3[link] and 4[link].
[Figure 6]
Figure 6
Part of the crystal structure of (1), showing the potential ππ inter­actions in two head-to-tail mol­ecules overlapping around the symmetry centre at ([1 \over 2], [1 \over 2], [1 \over 2]) (see also Fig. 4[link]). H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]
[Figure 7]
Figure 7
Part of the crystal structure of (1), showing the potential ππ inter­actions in two head-to-tail mol­ecules overlapping around the symmetry centre at (0, [1 \over 2], [1 \over 2]) (see also Fig. 4[link]). H atoms have been omitted for clarity. [Symmetry code: (ii) −x, −y + 1, −z + 1.]

4. Database survey

There are several other examples of structurally characterized 2-aza­butadienes bearing cyano (nitrile) substituents attached at the aza­butadienic array. These include 3-cyano-4-(n-meth­oxy­phen­yl)-1,1-diphenyl-2-aza-1,3-butadienes (n = 2, 3 or 4), 3-cyano-4-(4-cyano­phen­yl)-1,1-diphenyl-2-aza-1,3-butadiene, 3-cyano-4-(2,4-di­meth­oxy­phen­yl)-1,1-diphenyl-2-aza-1,3-butadiene, 3-cyano-4-(2,4-di­chloro­phen­yl)-1,1-diphenyl-2-aza-1,3-butadiene and 3-cyano-4-(n-fluoro­phen­yl)-1,1-diphenyl-2-aza-1,3-butadienes (n = 2 or 4) (Angelova et al., 1993a[Angelova, O., Macíček, J. & Dryanska, V. (1993a). Acta Cryst. C49, 1813-1818.],b[Angelova, O., Macíček, J. & Dryanska, V. (1993b). Acta Cryst. C49, 1821-1823.]; Macícek et al., 1993a[Macíček, J., Angelova, O. & Dryanska, V. (1993a). Acta Cryst. C49, 1818-1821.],b[Macíček, J., Angelova, O. & Dryanska, V. (1993b). Acta Cryst. C49, 2169-2173.]; Dryanska et al., 1995[Dryanska, V., Angelova, O., Macicek, J., Shishkova, L., Denkova, P. & Spassov, S. (1995). J. Chem. Res. pp. 268-269.]). Furthermore, the structure of (E)-4,4-di­cyano-3-methyl­thio-1-phenyl-1-(1-pyr­rolidin­yl)-2-aza­buta-1,3-diene has been reported (Lorente et al., 1996[Lorente, A., Casillas, M., Gomez-Sal, P. & Manzanero, A. (1996). Can. J. Chem. 74, 287-294.]). Note that in all these structures there is a significant deviation from linearity of the C=N—C=C chain. This feature is due to the presence of a substituent at the 3-C position of the 2-aza­buta-1,3-diene chain. We also observed and discussed this feature in the structures of [Ar2C=N—C(StBu)=C(H)StBu] (Kinghat et al., 2016[Kinghat, R., Schmitt, G., Ciamala, K., Khatyr, A., Knorr, M., Jacquot-Rousseau, S., Rousselin, Y. & Kubicki, M. M. (2016). C. R. Chim. 19, 319-331.]).

5. Synthesis and crystallization

The required α-amino­nitrile used a starting material was obtained according a literature protocol (Mai & Patil, 1984[Mai, K. & Patil, G. (1984). Tetrahedron Lett. 25, 4583-4586.]). An equimolar mixture of N-(di­bromo­ethylen­yl)-1-imino-1-vertraceto­nitrile (10 mmol) and tri­bromo­acetaldehyde in 10 ml of aceto­nitrile was stirred under reflux for 2 h. The solution was then filtered and all volatiles removed under reduced pressure. The crude residue was recrystallized from aceto­nitrile affording clear-light orange crystals (yield 79%; m.p. 440 K; 1H RMN (CDCl3, 300 MHz): δ 3.95 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 6.93 (d, 1H, J = 9 Hz, 1 Ar-H), 7.65 (s, 2H, 2 Ar-H), 8.04 (s, 1H, =CH); 13C{1H} NMR (CDCl3, 75 MHz): δ 55.9 (OCH3), 56.2 (OCH3), 103.2 (=CBr2), 110.6 (C≡N), 124.3–153.9 (CAr), 137.8 (C=N), 142.2 (CH); λmax = 245 nm (e = 3300 M−1 cm−1), λmax = 353 nm (e = 7580 M−1 cm−1); IR (ATR) cm−1: 2219 (C≡N), 1597 (C=N), 1569 (C=C).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were placed in calculated positions and treated in a riding model. C—H distances were set at 0.95 (aromatic) and 0.98 Å (meth­yl), with Uiso(H) = xUeq(C), where x = 1.5 for idealized methyl H atoms refined as rotating groups and 1.2 for all other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C12H10Br2N2O2
Mr 374.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.6878 (4), 9.2782 (5), 10.8111 (6)
α, β, γ (°) 106.162 (2), 100.887 (2), 110.009 (2)
V3) 660.57 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.13
Crystal size (mm) 0.25 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.537, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23955, 3045, 2442
Rint 0.067
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.03
No. of reflections 3045
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4,4-Dibromo-1-(3,4-dimethoxyphenyl)-2-azabuta-1,3-diene-1-carbonitrile top
Crystal data top
C12H10Br2N2O2Z = 2
Mr = 374.04F(000) = 364
Triclinic, P1Dx = 1.881 Mg m3
a = 7.6878 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2782 (5) ÅCell parameters from 8732 reflections
c = 10.8111 (6) Åθ = 3.0–27.5°
α = 106.162 (2)°µ = 6.13 mm1
β = 100.887 (2)°T = 100 K
γ = 110.009 (2)°Plqte, clear light orange
V = 660.57 (6) Å30.25 × 0.2 × 0.1 mm
Data collection top
Bruker D8 VENTURE
diffractometer
3045 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C2442 reflections with I > 2σ(I)
TRIUMPH curved crystal monochromatorRint = 0.067
φ and ω scans'θmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 910
Tmin = 0.537, Tmax = 0.746k = 1212
23955 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.5386P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3045 reflectionsΔρmax = 0.80 e Å3
165 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Experimental. Absorption correction: SADABS-2014/4 (Bruker,2014) was used for absorption correction. wR2(int) was 0.0938 before and 0.0647 after correction. The Ratio of minimum to maximum transmission is 0.7197. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5229 (4)0.2556 (4)0.9031 (3)0.0198 (6)
H1A0.54020.17160.83460.030*
H1B0.38760.21290.90370.030*
H1C0.61090.28240.99270.030*
C20.6815 (5)0.8341 (4)0.8299 (3)0.0246 (7)
H2A0.71140.83890.74650.037*
H2B0.79090.91960.90880.037*
H2C0.56360.85270.83070.037*
C30.4518 (4)0.3908 (3)0.7558 (3)0.0163 (6)
C40.3008 (4)0.2473 (3)0.6590 (3)0.0160 (6)
H40.27290.14500.67090.019*
C50.1904 (4)0.2535 (3)0.5444 (3)0.0156 (6)
H50.08570.15520.47920.019*
C60.2308 (4)0.4007 (3)0.5242 (3)0.0149 (5)
C70.3852 (4)0.5476 (3)0.6221 (3)0.0154 (6)
H70.41300.64960.60960.019*
C80.4946 (4)0.5419 (3)0.7352 (3)0.0149 (5)
C90.1186 (4)0.4092 (3)0.4029 (3)0.0148 (5)
C100.0396 (4)0.2543 (4)0.3038 (3)0.0210 (6)
C110.0555 (4)0.5495 (3)0.2655 (3)0.0175 (6)
H110.04000.44950.19580.021*
C120.0911 (4)0.6927 (3)0.2490 (3)0.0139 (5)
N10.1576 (3)0.5463 (3)0.3839 (2)0.0145 (5)
N20.1661 (4)0.1374 (3)0.2229 (3)0.0356 (7)
O10.5666 (3)0.4013 (2)0.8715 (2)0.0195 (4)
O20.6500 (3)0.6752 (2)0.8351 (2)0.0195 (4)
Br10.27146 (4)0.89631 (3)0.38235 (3)0.01976 (9)
Br20.04365 (4)0.69810 (3)0.08743 (3)0.01900 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (14)0.0221 (14)0.0233 (16)0.0103 (12)0.0097 (12)0.0148 (13)
C20.0258 (16)0.0142 (14)0.0254 (17)0.0023 (12)0.0012 (13)0.0074 (13)
C30.0145 (13)0.0177 (14)0.0202 (15)0.0082 (11)0.0082 (11)0.0086 (12)
C40.0180 (14)0.0152 (13)0.0194 (15)0.0087 (11)0.0095 (12)0.0083 (11)
C50.0121 (13)0.0167 (13)0.0147 (14)0.0043 (11)0.0038 (11)0.0035 (11)
C60.0142 (12)0.0161 (13)0.0146 (14)0.0071 (10)0.0062 (11)0.0038 (11)
C70.0168 (13)0.0137 (13)0.0144 (14)0.0050 (11)0.0058 (11)0.0044 (11)
C80.0132 (13)0.0142 (13)0.0152 (14)0.0039 (10)0.0046 (11)0.0048 (11)
C90.0133 (13)0.0151 (13)0.0146 (14)0.0061 (10)0.0055 (11)0.0025 (11)
C100.0226 (15)0.0186 (14)0.0217 (16)0.0076 (13)0.0050 (13)0.0099 (13)
C110.0171 (14)0.0170 (14)0.0141 (14)0.0069 (11)0.0033 (11)0.0012 (11)
C120.0133 (12)0.0179 (13)0.0104 (13)0.0064 (11)0.0042 (11)0.0053 (11)
N10.0157 (11)0.0160 (11)0.0117 (12)0.0072 (9)0.0049 (9)0.0038 (9)
N20.0337 (16)0.0205 (14)0.0371 (18)0.0036 (12)0.0042 (14)0.0087 (13)
O10.0191 (10)0.0185 (10)0.0202 (11)0.0059 (8)0.0025 (8)0.0110 (9)
O20.0203 (10)0.0130 (9)0.0174 (11)0.0017 (8)0.0006 (8)0.0053 (8)
Br10.02102 (15)0.01428 (14)0.01661 (16)0.00322 (11)0.00125 (12)0.00357 (11)
Br20.02026 (15)0.02270 (16)0.01424 (16)0.01035 (12)0.00265 (12)0.00730 (12)
Geometric parameters (Å, º) top
C1—H1A0.9800C5—C61.383 (4)
C1—H1B0.9800C6—C71.415 (4)
C1—H1C0.9800C6—C91.464 (4)
C1—O11.431 (3)C7—H70.9500
C2—H2A0.9800C7—C81.372 (4)
C2—H2B0.9800C8—O21.372 (3)
C2—H2C0.9800C9—C101.465 (4)
C2—O21.430 (3)C9—N11.288 (3)
C3—C41.387 (4)C10—N21.147 (4)
C3—C81.418 (4)C11—H110.9500
C3—O11.345 (3)C11—C121.332 (4)
C4—H40.9500C11—N11.384 (4)
C4—C51.391 (4)C12—Br11.872 (3)
C5—H50.9500C12—Br21.878 (3)
H1A—C1—H1B109.5C5—C6—C9121.7 (2)
H1A—C1—H1C109.5C7—C6—C9118.7 (2)
H1B—C1—H1C109.5C6—C7—H7120.2
O1—C1—H1A109.5C8—C7—C6119.6 (3)
O1—C1—H1B109.5C8—C7—H7120.2
O1—C1—H1C109.5C7—C8—C3120.5 (3)
H2A—C2—H2B109.5O2—C8—C3114.7 (2)
H2A—C2—H2C109.5O2—C8—C7124.8 (2)
H2B—C2—H2C109.5C6—C9—C10117.0 (2)
O2—C2—H2A109.5N1—C9—C6121.6 (2)
O2—C2—H2B109.5N1—C9—C10121.5 (3)
O2—C2—H2C109.5N2—C10—C9176.7 (3)
C4—C3—C8119.4 (3)C12—C11—H11120.0
O1—C3—C4125.4 (3)C12—C11—N1120.0 (3)
O1—C3—C8115.1 (2)N1—C11—H11120.0
C3—C4—H4120.1C11—C12—Br1123.0 (2)
C3—C4—C5119.8 (3)C11—C12—Br2120.4 (2)
C5—C4—H4120.1Br1—C12—Br2116.65 (14)
C4—C5—H5119.5C9—N1—C11120.4 (2)
C6—C5—C4120.9 (3)C3—O1—C1118.0 (2)
C6—C5—H5119.5C8—O2—C2116.8 (2)
C5—C6—C7119.6 (3)
C3—C4—C5—C61.1 (4)C7—C6—C9—C10179.8 (2)
C3—C8—O2—C2171.0 (2)C7—C6—C9—N10.0 (4)
C4—C3—C8—C71.5 (4)C7—C8—O2—C29.3 (4)
C4—C3—C8—O2178.2 (2)C8—C3—C4—C51.4 (4)
C4—C3—O1—C14.4 (4)C8—C3—O1—C1175.8 (2)
C4—C5—C6—C70.7 (4)C9—C6—C7—C8178.7 (2)
C4—C5—C6—C9178.7 (3)C10—C9—N1—C112.9 (4)
C5—C6—C7—C80.8 (4)C12—C11—N1—C9177.2 (3)
C5—C6—C9—C100.3 (4)N1—C11—C12—Br11.7 (4)
C5—C6—C9—N1179.5 (3)N1—C11—C12—Br2179.0 (2)
C6—C7—C8—C31.2 (4)O1—C3—C4—C5178.8 (3)
C6—C7—C8—O2178.5 (2)O1—C3—C8—C7178.7 (3)
C6—C9—N1—C11176.9 (2)O1—C3—C8—O21.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.983.013.867 (4)146
C1—H1B···Br2ii0.983.043.869 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Halogen-bonding parameters (Å, °) for (1). top
DBrAD—BrBr···AD—Br···A
C12Br2O1i1.878 (3)3.185 (2)124.26 (9)
C12Br2O2i1.878 (3)3.153 (2)167.6 (1)
C12Br1Br1ii1.872 (3)3.4340 (5)144.8 (1)
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+2, -z+1.
ππ interactions (Å) in (1). top
Atom AAtom BDistance A···BAtom CAtom DDistance C···D
C5C12ii3.445 (5)C11O1i3.455 (4)
C6C11ii3.497 (5)N1C3i3.556 (4)
C9N1ii3.451 (4)C9C8i3.523 (5)
C6C7i3.559 (5)
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 1-z.
 

Acknowledgements

We are grateful to the Universities of Franche–Comté and Bourgogne and the CNRS for financial support.

References

First citationAngelova, O., Macíček, J. & Dryanska, V. (1993a). Acta Cryst. C49, 1813–1818.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAngelova, O., Macíček, J. & Dryanska, V. (1993b). Acta Cryst. C49, 1821–1823.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Eckert, P. K. & Strohmann, C. (2011). Acta Cryst. E67, o481.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDryanska, V., Angelova, O., Macicek, J., Shishkova, L., Denkova, P. & Spassov, S. (1995). J. Chem. Res. pp. 268–269.  Google Scholar
First citationJacquot, S., Belaissaoui, A., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (1999). Eur. J. Org. Chem. pp. 1541–1544.  CrossRef Google Scholar
First citationJacquot, S., Schmitt, G., Laude, B., Kubicki, M. M. & Blacque, O. (2000). Eur. J. Org. Chem. pp. 1235–1239.  CrossRef Google Scholar
First citationJacquot-Rousseau, S., Schmitt, G., Khatyr, A., Knorr, M., Kubicki, M. M., Vigier, E. & Blacque, O. (2006). Eur. J. Org. Chem. pp. 2748–2751.  Google Scholar
First citationKinghat, R., Boudiba, H., Khatyr, A., Knorr, M. & Kubicki, M. M. (2008). Acta Cryst. E64, o370.  CSD CrossRef IUCr Journals Google Scholar
First citationKinghat, R., Schmitt, G., Ciamala, K., Khatyr, A., Knorr, M., Jacquot-Rousseau, S., Rousselin, Y. & Kubicki, M. M. (2016). C. R. Chim. 19, 319–331.  CSD CrossRef CAS Google Scholar
First citationKnorr, M., Schmitt, G., Kubicki, M. M. & Vigier, E. (2003). Eur. J. Inorg. Chem. pp. 514–517.  CSD CrossRef Google Scholar
First citationLokaj, J., Moncol, J., Bures, F. & Kulhanek, J. (2011). J. Chem. Crystallogr. 41, 834–837.  CSD CrossRef CAS Google Scholar
First citationLorente, A., Casillas, M., Gomez-Sal, P. & Manzanero, A. (1996). Can. J. Chem. 74, 287–294.  CSD CrossRef CAS Google Scholar
First citationMacíček, J., Angelova, O. & Dryanska, V. (1993a). Acta Cryst. C49, 1818–1821.  CSD CrossRef IUCr Journals Google Scholar
First citationMacíček, J., Angelova, O. & Dryanska, V. (1993b). Acta Cryst. C49, 2169–2173.  CSD CrossRef IUCr Journals Google Scholar
First citationMai, K. & Patil, G. (1984). Tetrahedron Lett. 25, 4583–4586.  CrossRef CAS Google Scholar
First citationSato, N. & Adachi, J. (1978). J. Org. Chem. 43, 340–341.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds