research communications
N-[(E)-(5-nitrothiophen-2-yl)methylidene]aniline
and computational study of 2,4-dichloro-aYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Correspondence e-mail: hbulbul@omu.edu.tr
The title compound, C11H6Cl2N2O2S, is a Schiff base that incorporates an N-bound 2,4-dichlorophenyl and a C-bound 5-nitrothiophene ring. The molecule is approximately planar, the maximum deviation from the mean plane being 0.233 (4) Å for the C=N N atom. The dihedral angle between the benzene and thiophene rings is 9.7 (2)°. The C=N double bond has an E configuration. The features C—H⋯O hydrogen bonds,forming sheets parallel to (10-1), and π–π stacking interactions between symmetry-related thiophene and benzene rings, in which the distance between adjacent ring centroids is 3.707 (4) Å, forming a three-dimensional supramolecular structure. Geometric parameters from quantum-chemical calculations are in good agreement with experimental X-ray diffraction results.
Keywords: crystal structure; Schiff base; nitrothiophene; π–π interactions; quantum-chemical calculations.
CCDC reference: 1494850
1. Chemical context
et al., 2001) and often possess very important biological activities, such as anti-inflammatory and analgesic properties (Sondhi et al., 2006). In addition, nitrothiophene and its derivatives also exhibit many biological activities, including antibacterial and antifungal (Kalluraya et al., 1994; Kalluraya & Shetty, 1997) properties. We report the synthesis, structural analysis and theoretical calculations of the title compound, C11H6Cl2N2O2S (I), which is a new Schiff base that includes a nitrothiophene group.
which contain C=N double bonds, are well known starting materials for the synthesis of many drugs (Aydoğan2. Structural commentary
The title compound (Fig. 1) is nearly planar, the maximum deviation from the mean plane of 0.233 (4) Å is for atom N2. that are derived from salicylaldehyde show thermochromism and properties that are dependent upon planarity or non-planarity of the molecules (Cohen et al., 1964; Hadjoudis et al., 1987). Since the dihedral angle between the benzene and thiophene rings is 9.7 (2)°, the title compound may exhibit thermochromic features. The slight twist of the molecule is caused by a steric repulsion of atoms H5 and H7. The C7=N2 double-bond distance is 1.267 (6)Å, which is comparable to those of reported structures (Özdemir Tarı & Işık, 2012; Ceylan et al., 2012). The C8—C7—N2—C6 torsion angle is 178.5 (5)°.
3. Supramolecular features
In the and Table 1) with atom O1 acting as a bifurcated acceptor from both C5 and C7 (x − 1, y, z − 1), creating an R21(7) motif, and forming sheets parallel to (10). π–π stacking interactions are present between the benzene (centroid Cg2) and thiophene (centroid Cg1) rings of symmetry-related molecules [Cg1⋯Cg2(x, − y, + z) = 3.707 (4) Å, forming a three-dimensional supramolecular structure.
there are weak C—H⋯O hydrogen bonds (Fig. 24. Theoretical Calculations
Quantum-chemical calculations were performed to compare with the experimental analysis. Ab initio Hartree–Fock (HF) and density functional DFT(B3LYP) methods were used with the standard basis set of 6-31+G(d) (Becke, 1993; Lee et al., 1988; Schlegel, 1982; Peng et al., 1996) using the Gaussian 03 software package (Frisch et al., 2004; Dennington et al., 2007) to obtain the optimized molecular structure. The computational results are consistent with experimental crystallographic data. The C7=N2 bond length was calculated to be 1.25 and 1.28 Å using HF and DFT(B3LYP) methods, respectively. The torsion angle C8—C7—N2—C6 was calculated to be −177.98 and −176.09° by HF and DFT(B3LYP) methods, respectively.
5. Synthesis and crystallization
The compound 2,4-dichloro-N-[(E)-(5-nitrothiophen-2-yl)methylidene]aniline was prepared by refluxing a mixture of a solution containing 5-nitro-2-thiophenecarboxaldehyde (0.0180 g, 0.114 mmol) in 20 ml ethanol and a solution containing 2,4-dichloroaniline (0.0185 g, 0.114 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1h under reflux. Crystals suitable for X-ray analysis were obtained from a solution in ethanol by slow evaporation (yield 65%; m.p 443–445 K).
IR (KBr/cm−1): 3102.59 (C—H), 1602.71 (C=N), 1503.00 (NO2), 1231.00 (C—N, methylene), 1192.05 (C—N, thiophene), 1039.60 (C—H, thiophene), 1124.10 (C—H, methylene), 957.96 (C—H, methylene), 787.73 (C—H, 957.96)
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically with C—H = 0.93 Å and refined with using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1494850
https://doi.org/10.1107/S2056989016011816/pk2586sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011816/pk2586Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016011816/pk2586Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C11H6Cl2N2O2S | F(000) = 608 |
Mr = 301.14 | Dx = 1.623 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5731 (9) Å | Cell parameters from 612 reflections |
b = 22.1795 (16) Å | θ = 3.2–28.4° |
c = 8.3093 (16) Å | µ = 0.69 mm−1 |
β = 117.967 (10)° | T = 293 K |
V = 1232.7 (3) Å3 | Block, red |
Z = 4 | 0.18 × 0.15 × 0.10 mm |
Agilent SuperNova (Single source at offset) Eos diffractometer | 2201 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1119 reflections with I > 2σ(I) |
Detector resolution: 16.0454 pixels mm-1 | Rint = 0.033 |
ω scans | θmax = 26.0°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −7→9 |
Tmin = 0.712, Tmax = 1.000 | k = −27→12 |
3059 measured reflections | l = −10→5 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.019P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2201 reflections | Δρmax = 0.38 e Å−3 |
163 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.4933 (2) | 0.69183 (7) | 0.38617 (19) | 0.0450 (4) | |
Cl1 | 0.3105 (3) | 0.89412 (7) | 0.2025 (2) | 0.0612 (5) | |
Cl2 | −0.2711 (3) | 0.95859 (7) | −0.4521 (2) | 0.0720 (6) | |
C6 | 0.0675 (8) | 0.8117 (2) | −0.0461 (7) | 0.0369 (14) | |
C7 | 0.1939 (9) | 0.7153 (3) | 0.0411 (7) | 0.0473 (16) | |
H7 | 0.1199 | 0.7042 | −0.0806 | 0.057* | |
C5 | −0.0926 (8) | 0.7988 (3) | −0.2169 (7) | 0.0443 (15) | |
H5 | −0.1307 | 0.7588 | −0.2472 | 0.053* | |
C2 | 0.0113 (9) | 0.9185 (3) | −0.1289 (7) | 0.0468 (16) | |
H2 | 0.0445 | 0.9588 | −0.0990 | 0.056* | |
C4 | −0.1955 (9) | 0.8429 (3) | −0.3414 (7) | 0.0446 (15) | |
H4 | −0.3005 | 0.8328 | −0.4545 | 0.053* | |
O1 | 0.8046 (7) | 0.6438 (2) | 0.7224 (6) | 0.0768 (15) | |
N2 | 0.1847 (7) | 0.7692 (2) | 0.0870 (6) | 0.0429 (12) | |
C10 | 0.4560 (10) | 0.5791 (3) | 0.3021 (8) | 0.0499 (16) | |
H10 | 0.4750 | 0.5376 | 0.3102 | 0.060* | |
N1 | 0.7237 (8) | 0.6023 (2) | 0.6127 (7) | 0.0538 (14) | |
C1 | 0.1141 (8) | 0.8726 (2) | −0.0056 (7) | 0.0395 (14) | |
O2 | 0.7734 (7) | 0.5493 (2) | 0.6444 (6) | 0.0761 (15) | |
C9 | 0.3146 (9) | 0.6094 (3) | 0.1475 (7) | 0.0495 (17) | |
H9 | 0.2288 | 0.5902 | 0.0393 | 0.059* | |
C11 | 0.5608 (9) | 0.6182 (3) | 0.4372 (8) | 0.0450 (15) | |
C8 | 0.3165 (9) | 0.6706 (3) | 0.1730 (7) | 0.0445 (15) | |
C3 | −0.1422 (9) | 0.9020 (3) | −0.2976 (7) | 0.0436 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0440 (10) | 0.0394 (9) | 0.0480 (9) | 0.0004 (8) | 0.0184 (8) | 0.0007 (7) |
Cl1 | 0.0617 (12) | 0.0609 (11) | 0.0451 (9) | −0.0060 (9) | 0.0118 (9) | −0.0096 (8) |
Cl2 | 0.0749 (15) | 0.0527 (10) | 0.0616 (11) | 0.0061 (10) | 0.0096 (11) | 0.0135 (9) |
C6 | 0.041 (4) | 0.038 (3) | 0.036 (3) | 0.004 (3) | 0.022 (3) | 0.004 (3) |
C7 | 0.051 (4) | 0.050 (4) | 0.037 (3) | 0.000 (3) | 0.017 (3) | 0.002 (3) |
C5 | 0.037 (4) | 0.039 (3) | 0.046 (3) | 0.003 (3) | 0.009 (3) | 0.002 (3) |
C2 | 0.051 (4) | 0.042 (4) | 0.053 (4) | −0.009 (3) | 0.029 (4) | −0.003 (3) |
C4 | 0.041 (4) | 0.047 (4) | 0.033 (3) | 0.001 (3) | 0.007 (3) | 0.001 (3) |
O1 | 0.069 (4) | 0.067 (3) | 0.060 (3) | −0.008 (3) | 0.001 (3) | −0.003 (3) |
N2 | 0.042 (3) | 0.037 (3) | 0.045 (3) | −0.005 (2) | 0.016 (3) | −0.001 (2) |
C10 | 0.064 (5) | 0.036 (3) | 0.060 (4) | 0.006 (3) | 0.038 (4) | 0.003 (3) |
N1 | 0.049 (4) | 0.055 (4) | 0.061 (4) | 0.004 (3) | 0.029 (3) | 0.007 (3) |
C1 | 0.037 (4) | 0.044 (4) | 0.036 (3) | −0.006 (3) | 0.016 (3) | −0.004 (3) |
O2 | 0.086 (4) | 0.053 (3) | 0.082 (3) | 0.028 (3) | 0.033 (3) | 0.021 (2) |
C9 | 0.052 (5) | 0.053 (4) | 0.036 (3) | −0.001 (3) | 0.014 (3) | −0.001 (3) |
C11 | 0.049 (4) | 0.039 (3) | 0.049 (4) | −0.004 (3) | 0.025 (4) | 0.002 (3) |
C8 | 0.042 (4) | 0.042 (3) | 0.046 (4) | 0.003 (3) | 0.018 (3) | 0.003 (3) |
C3 | 0.041 (4) | 0.049 (4) | 0.033 (3) | 0.003 (3) | 0.011 (3) | 0.005 (3) |
S1—C11 | 1.703 (6) | C2—C1 | 1.394 (7) |
S1—C8 | 1.711 (6) | C2—H2 | 0.9300 |
Cl1—C1 | 1.737 (5) | C4—C3 | 1.370 (7) |
Cl2—C3 | 1.732 (6) | C4—H4 | 0.9300 |
C6—C5 | 1.397 (7) | O1—N1 | 1.237 (6) |
C6—C1 | 1.398 (7) | C10—C11 | 1.344 (7) |
C6—N2 | 1.407 (6) | C10—C9 | 1.399 (7) |
C7—N2 | 1.267 (6) | C10—H10 | 0.9300 |
C7—C8 | 1.446 (7) | N1—O2 | 1.226 (6) |
C7—H7 | 0.9300 | N1—C11 | 1.445 (7) |
C5—C4 | 1.371 (7) | C9—C8 | 1.372 (7) |
C5—H5 | 0.9300 | C9—H9 | 0.9300 |
C2—C3 | 1.386 (7) | ||
C11—S1—C8 | 89.5 (3) | C9—C10—H10 | 124.6 |
C5—C6—C1 | 116.3 (5) | O2—N1—O1 | 124.1 (6) |
C5—C6—N2 | 126.1 (5) | O2—N1—C11 | 118.8 (5) |
C1—C6—N2 | 117.6 (5) | O1—N1—C11 | 117.1 (5) |
N2—C7—C8 | 121.7 (5) | C2—C1—C6 | 122.5 (5) |
N2—C7—H7 | 119.2 | C2—C1—Cl1 | 117.0 (4) |
C8—C7—H7 | 119.2 | C6—C1—Cl1 | 120.4 (4) |
C4—C5—C6 | 122.5 (6) | C8—C9—C10 | 112.6 (5) |
C4—C5—H5 | 118.8 | C8—C9—H9 | 123.7 |
C6—C5—H5 | 118.8 | C10—C9—H9 | 123.7 |
C3—C2—C1 | 117.8 (5) | C10—C11—N1 | 125.2 (6) |
C3—C2—H2 | 121.1 | C10—C11—S1 | 114.8 (5) |
C1—C2—H2 | 121.1 | N1—C11—S1 | 120.0 (4) |
C3—C4—C5 | 119.3 (5) | C9—C8—C7 | 127.2 (6) |
C3—C4—H4 | 120.3 | C9—C8—S1 | 112.2 (4) |
C5—C4—H4 | 120.3 | C7—C8—S1 | 120.6 (5) |
C7—N2—C6 | 119.9 (5) | C4—C3—C2 | 121.6 (5) |
C11—C10—C9 | 110.8 (6) | C4—C3—Cl2 | 120.2 (4) |
C11—C10—H10 | 124.6 | C2—C3—Cl2 | 118.2 (5) |
C1—C6—C5—C4 | 2.0 (8) | O1—N1—C11—C10 | −179.9 (6) |
N2—C6—C5—C4 | −177.9 (5) | O2—N1—C11—S1 | −177.9 (5) |
C6—C5—C4—C3 | −0.7 (9) | O1—N1—C11—S1 | 2.2 (7) |
C8—C7—N2—C6 | 178.5 (5) | C8—S1—C11—C10 | −0.3 (5) |
C5—C6—N2—C7 | 22.1 (9) | C8—S1—C11—N1 | 177.9 (5) |
C1—C6—N2—C7 | −157.7 (5) | C10—C9—C8—C7 | 178.5 (5) |
C3—C2—C1—C6 | −0.2 (8) | C10—C9—C8—S1 | 0.6 (7) |
C3—C2—C1—Cl1 | 178.2 (4) | N2—C7—C8—C9 | 168.4 (6) |
C5—C6—C1—C2 | −1.5 (8) | N2—C7—C8—S1 | −13.8 (8) |
N2—C6—C1—C2 | 178.4 (5) | C11—S1—C8—C9 | −0.2 (5) |
C5—C6—C1—Cl1 | −179.9 (3) | C11—S1—C8—C7 | −178.3 (5) |
N2—C6—C1—Cl1 | 0.0 (7) | C5—C4—C3—C2 | −1.2 (9) |
C11—C10—C9—C8 | −0.8 (8) | C5—C4—C3—Cl2 | −179.6 (4) |
C9—C10—C11—N1 | −177.4 (5) | C1—C2—C3—C4 | 1.6 (8) |
C9—C10—C11—S1 | 0.6 (7) | C1—C2—C3—Cl2 | −180.0 (4) |
O2—N1—C11—C10 | 0.0 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.59 | 3.508 (8) | 171 |
C7—H7···O1i | 0.93 | 2.55 | 3.300 (8) | 138 |
C2—H2···O2ii | 0.93 | 2.56 | 3.360 (7) | 144 |
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, y+1/2, −z+1/2. |
References
Aydoğan, F., Öcal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Ceylan, Ü., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2116. CSD CrossRef IUCr Journals Google Scholar
Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051. Google Scholar
Dennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem Inc., Shawnee Mission, KS, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03, Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Kalluraya, B. & Shetty, S. N. (1997). Indian J. Heterocycl. Chem. 6, 287–290. CAS Google Scholar
Kalluraya, B. D., Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022. Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Özdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415. Web of Science CSD CrossRef IUCr Journals Google Scholar
Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49–56. CrossRef CAS Google Scholar
Schlegel, H. B. (1982). J. Comput. Chem. 3, 214–218. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.