research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2-methyl-1H-imidazole-κN3)(meso-tetra-p-tol­ylporphyrinato-κ4N)iron(III) perchlorate tetra­hydro­furan sesquisolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yianqi Lake, Huairou District, Beijing, 101408, People's Republic of China
*Correspondence e-mail: jfli@ucas.ac.cn

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 June 2016; accepted 29 June 2016; online 12 July 2016)

In the title compound, [Fe(C48H36N4)(C4H6N2)2]ClO4·1.5C4H8O, the iron(III) metal is coordinated in a distorted octa­hedral geometry by four pyrrole N atoms of the porphyrin ligand in the equatorial plane and two N atoms of 2-methyl­imidazole ligands in the axial sites. The complex has a highly ruffled porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.25 (5), 0.17 (12), 0.432 (16) and 0.25 (13) Å, respectively. One of the four phenyl groups of the porphyrin is disordered over two sets of sites with refined occupancy ratio of 0.718 (7):0.282 (7). The mean Fe—Np (Np is a porphyrin N atom) bond length [1.975 (9) Å] indicates the low-spin state of the iron atom. The two 2-methyl­imidazole ligands are nearly perpendicular and form a dihedral angle of 86.93 (10)°. The dihedral angles between the 2-methyl­imidazole ligands and the closest Fe—Np vector are 38.04 (9) and 35.00 (7)°. In the crystal, the complex cations inter­act with the perchlorate anions through N—H⋯O hydrogen bonds, forming chains running parallel to [110].

1. Chemical context

The structural characterization of metalloporphyrin complexes with steric nitro­gen-donor ligands has been undertaken intensively in order to understand the control of structures, spin states, and other physical properties. Many structures of ferric porphyrins with general formula [Fe(Porph)(L)2]+ (Porph is a porphyrinato ligand and L is an N-bonded neutral ligand) and with the central FeIII atom in an octahedral coordination are known. The first ferric porphyrin crystal structure with two sterically hindered axial ligands is [Fe(OEP)(2-MeHIm)2]ClO4, which was reported by Geiger and co-workers (Geiger et al., 1984[Geiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339-6343.]). Subsequently, some other analogues have been reported, [Fe(TPP)(2-MeHIm)2]ClO4 (Scheidt et al., 1987[Scheidt, W. R., Kirner, J. F., Hoard, J. L. & Reed, C. A. (1987). J. Am. Chem. Soc. 109, 1963-1968.]), [Fe(TMP)(1,2-Me2Im)2]ClO4 (Munro et al., 1995[Munro, O. Q., Marques, H. M., Debrunner, P. G., Mohanrao, K. & Scheidt, W. R. (1995). J. Am. Chem. Soc. 117, 935-954.]), [Fe(OETPP)(2-MeHIm)2]·(0.33SbF6–, 0.67Cl) (Ogura et al., 2001[Ogura, H., Yatsunyk, L., Medforth, C. J., Smith, K. M., Barkigia, K. M., Renner, M. W., Melamed, D. & Walker, F. A. (2001). J. Am. Chem. Soc. 123, 6564-6578.]), [Fe(OMTPP)(2-MeHIm)2]Cl·3CD2Cl2 (Yatsunyk et al., 2003[Yatsunyk, L. A., Carducci, M. D. & Walker, F. A. (2003). J. Am. Chem. Soc. 125, 15986-16005.]), [Fe(OMTPP)(2-MeHIm)2]Cl·2CDCl3 (Yatsunyk et al., 2003[Yatsunyk, L. A., Carducci, M. D. & Walker, F. A. (2003). J. Am. Chem. Soc. 125, 15986-16005.]), perp-[Fe(OEP)(2-MeHIm)2]Cl (Hu et al., 2006[Hu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2006). Inorg. Chem. 45, 9721-9728.]) (OEP, octa­ethyl­porphirin; TPP, tetra­phenyl­porphphyrin; TMP, tetra­mesitylporphyrin; OETPP, octa­ethyl­tetra­phenyl­porphyrin; OMTPP, octa­methyl­tetraphenylporphyrin; 2-MeHIm, 2-methyl­imidazole; 1,2-Me2Im, 1,2-di­methyl­imidazole). Herein, we report the structural properties of the iron(III) porphyrin complex [Fe(TTP)(2-MeHIm)2](ClO4)·1.5THF where the metal is likewise octahedrally coordinated.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the counter-ion to the positively charged bis­(2-methyl­imidazole)[meso-tetra­kis­(p-tol­yl)porph­yrinato]iron(III) is a negatively charged perchlorate ion. One of the four phenyl groups of the porphyrin is disordered over two sets of sites [0.718 (7):0.282 (7)] and the dihedral angles between the disordered phenyl planes and the 24-atom mean plane are 72.4 (4) and 63.36 (12)°. Additional qu­anti­tative information on the structure is given in Fig. 2[link], which displays the detailed displacements of each porphyrin core atom from the 24-atom mean plane (in units of 0.01 Å). The mean values of the chemically unique bond lengths (in Å) and angles (in degrees), the orientations of the two 2-methyl­imidazole ligands including the values of the dihedral angles are also shown; the circle represents the position of the methyl group on the axial ligand. As indicated in Fig. 2[link], the 2-methyl­imidazole ligand containing the N7 atom makes a dihedral angle of 38.04 (9)°, the other making an angle of 35.00 (7)°, to the closest Fe—Np vector. The relative orientation of the two 2-methyl­imidazole planes is nearly perpendicular, the dihedral angle being 86.93 (10)°. Fig. 2[link] also shows that the title complex has a highly ruffled porphyrin core conformation. The mean absolute core atom displacements of Ca, Cb, Cm, and Cav are 0.25 (5), 0.17 (12), 0.432 (16) and 0.25 (13) Å, respectively. The mean Fe—Np (Np is a porphyrin N atom) bond length is 1.975 (9) Å, similar to 1.974 (4) Å in (perp-[Fe(OEP)(2-MeHIm)2]Cl) (Hu et al., 2006[Hu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2006). Inorg. Chem. 45, 9721-9728.]) and 1.970 (4) Å in [Fe(TPP)(2-MeHIm)2]ClO4 (Scheidt et al., 1987[Scheidt, W. R., Kirner, J. F., Hoard, J. L. & Reed, C. A. (1987). J. Am. Chem. Soc. 109, 1963-1968.]). These values are slightly shorter than 1.990 Å, which is typically observed for a low-spin iron(III) porphyrin complex (Scheidt & Reed, 1981[Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543-555.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2]
Figure 2
Diagram of the porphyrinato core of the title compound. Mean values of the chemically unique bond lengths (in Å) and angles (in °) are shown. The numbers in parentheses are the s.u. calculated on the assumption that the averaged values are all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive values indicate a displacement toward the N7 2-methyl­imidazole nitro­gen atom. The solid line in this perspective indicates the 2-methyl­imidazole ligand containing atom N7, and the dashed line indicates the 2-methyl­imidazole ligand containing atom N5. The small circle represents the position of the methyl group on the axial ligand.

The dihedral angles between the mean planes of the phenyl rings and the 24-atom mean plane are 59.55 (6), 82.53 (7), 72.4 (4) [and/or 63.36 (12)] and 75.17 (5)°, smaller than the same angles of 89.7, 83.3, 87.2 and 87.9° in [Fe(TMP)(1,2-Me2Im)2]ClO4 (Munro et al., 1995[Munro, O. Q., Marques, H. M., Debrunner, P. G., Mohanrao, K. & Scheidt, W. R. (1995). J. Am. Chem. Soc. 117, 935-954.]). The reason for the difference could be the steric effect of the mesityl groups of [Fe(TMP)(1,2-Me2Im)2]ClO4, which hinders the rotation of the benzene groups.

3. Supra­molecular features

N—H⋯O hydrogen bonds are observed in the crystal structure of the title compound (Table 1[link]). As shown in Fig. 3[link], the perchlorate ion bridges two adjacent porphyrin mol­ecules through hydrogen bonding with imidazole ligands, which can be formulated as N8—H8A⋯O2—ClO2—O3⋯H6A—N6, forming a chain parallel to [110]. The hydrogen-bonding distances, 2.942 (3) (O3⋯N6) and 2.949 (3) Å (O2⋯N8), are consistent with the reported values 2.92 or 3.08 Å (Scheidt et al., 1987[Scheidt, W. R., Kirner, J. F., Hoard, J. L. & Reed, C. A. (1987). J. Am. Chem. Soc. 109, 1963-1968.]; Hu et al., 2006[Hu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2006). Inorg. Chem. 45, 9721-9728.]), and fall in the range 2.70–3.30 Å reported for inter­molecular N⋯O inter­actions (Bertolasi et al., 1995[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004-1015.]). It is noteworthy that one of the tetra­hydro­furan mol­ecules, which is disordered about an inversion center, occupies the channels between the [Fe(TTP)(2-MeHIm)2]ClO4 complex mol­ecules (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O3i 0.81 (3) 2.17 (3) 2.942 (3) 161 (3)
N8—H8A⋯O2ii 0.84 (3) 2.11 (3) 2.949 (3) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Partial packing diagram of the title compound showing the formation of a chain through hydrogen bonding between the perchlorate ion and two imidazole ligands. Dashed lines represent the hydrogen bonds. The O2⋯N8 and O3⋯N6 separations are given.
[Figure 4]
Figure 4
Packing diagram of the title compound viewed along the a axis, showing N—H⋯O hydrogen-bonding inter­actions as dashed lines. The disordered tetra­hydro­furan mol­ecules occupy the channels between the [Fe(TTP)(2-MeHIm)2]ClO4 mol­ecules. All H atoms are omitted.

4. Synthesis and crystallization

General Procedure: All reactions were carried out using standard Schlenk techniques under argon unless otherwise noted. Tetra­hydro­furan (THF) and hexa­nes were distilled from sodium and benzo­phenone ketyl. H2(TTP) and [Fe(TTP)Cl] were prepared according to the reported methods (Adler et al., 1970[Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.]; Fleischer et al., 1971[Fleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chatterjee, A. (1971). J. Am. Chem. Soc. 93, 3162-3167.]).

4.1. Synthesis of [meso-tetra­kis­(p-tol­yl)porphyrinato]iron(III) perchlorate

[Fe(TTP)Cl] (500 mg, 0.652 mmol) and AgClO4 (136 mg, 0.657 mmol) were dissolved in 50 mL THF. After 12 h reaction, the solution was filtered and then evaporated to dryness under vacuum. The resulting purple solid, [Fe(TTP)ClO4], was harvested that was dried in vacuo (531.54 mg; yield 100%). UV–vis (CH2Cl2): 411.89, 516.5 nm.

4.2. Synthesis of bis­(2-methyl-1H-imidazole-κN3)(meso-tetra-p-tol­ylporphyrinato-κ4N)iron(III) perchlorate tetra­hydro­furan sesquisolvate

[Fe(TTP)ClO4] (20 mg, 0.024 mmol) and excess 2-methyl­imidazole (0.164 g, 2 mmol) were dissolved in 7 mL THF. After 10 min, the solution was transferred into glass tubes which were layered with hexa­nes as nonsolvent. Dark-purple block-shaped crystals suitable for a single-crystal X-ray diffraction study were collected after 15 d. UV–vis (CH2Cl2): 415.44, 509.68, 571.87, 612.00 nm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the two imidazole nitro­gen atoms of the axial ligands were located in a difference Fourier map and refined freely. All other hydrogen atoms were placed in calculated positions, with C—H = 0.95 or 0.98 Å for aryl or methyl H atoms, respectively, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms or Uiso(H) = 1.2Ueq(C, N) otherwise. One THF mol­ecule is disordered over two sets of sites about an inversion center with an occupancy factor of 0.5. During the refinement, the O—C, C—C and C⋯C distances within the disordered THF mol­ecule were constrained to be 1.42 (1), 1.50 (1) and 2.40 (1) Å, respectively. One of the four phenyl groups was found to be disordered over two orientations and the site occupancy factors (SOFs) of disordered moieties are refined by means of a `free variable'. The refined final SOFs were 0.718 (7) and 0.282 (7). Two carbon atoms (C39 and C43) of the tetra­hydro­furan mol­ecules and one carbon atom (C12) of a methyl group exhibited unusually large displacement parameters and thus were refined using SIMU and ISOR restraints. Seven outliers were omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C48H36N4)(C4H6N2)2]ClO4·1.5C4H8O
Mr 1096.48
Crystal system, space group Monoclinic, C2/c
Temperature (K) 130
a, b, c (Å) 26.7161 (10), 16.6111 (6), 24.9673 (8)
β (°) 103.538 (1)
V3) 10772.2 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.52 × 0.23 × 0.20
 
Data collection
Diffractometer Brucker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.898, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 120242, 11928, 9751
Rint 0.051
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.04
No. of reflections 11928
No. of parameters 772
No. of restraints 64
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.79
Computer programs: APEX2 and SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Bis(2-methyl-1H-imidazole-κN3)(meso-tetra-p-tolyl)porphyrinato-κ4N)iron(III) perchlorate tetrahydrofuran sesquisolvate top
Crystal data top
[Fe(C48H36N4)(C4H6N2)2]ClO4·1.5C4H8OF(000) = 4600
Mr = 1096.48Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.7161 (10) ÅCell parameters from 9943 reflections
b = 16.6111 (6) Åθ = 2.5–27.1°
c = 24.9673 (8) ŵ = 0.39 mm1
β = 103.538 (1)°T = 130 K
V = 10772.2 (7) Å3Block, dark purple
Z = 80.52 × 0.23 × 0.20 mm
Data collection top
Brucker D8 QUEST System
diffractometer
11928 independent reflections
Radiation source: fine-focus sealed tube9751 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.051
φ and ω scansθmax = 27.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 3434
Tmin = 0.898, Tmax = 0.925k = 2121
120242 measured reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 27.1309P]
where P = (Fo2 + 2Fc2)/3
11928 reflections(Δ/σ)max < 0.001
772 parametersΔρmax = 0.77 e Å3
64 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.16104 (2)0.38552 (2)0.14780 (2)0.01685 (8)
N10.17087 (7)0.42281 (10)0.22511 (7)0.0204 (3)
N20.20284 (6)0.28919 (10)0.17281 (7)0.0189 (3)
N30.15186 (6)0.34956 (10)0.07103 (7)0.0189 (3)
N40.11862 (6)0.48227 (10)0.12318 (7)0.0193 (3)
N50.22345 (7)0.45107 (11)0.14473 (7)0.0233 (4)
N60.29935 (8)0.49768 (13)0.14308 (9)0.0322 (5)
N70.10050 (6)0.31950 (10)0.15599 (7)0.0195 (3)
N80.03203 (7)0.24413 (12)0.14613 (8)0.0269 (4)
C10.09287 (9)0.60715 (15)0.24183 (9)0.0288 (5)
C20.06470 (10)0.59122 (18)0.28095 (10)0.0385 (6)
H2A0.05480.53750.28640.046*
C30.05095 (11)0.6531 (2)0.31211 (11)0.0464 (7)
H3A0.03190.64090.33880.056*
C40.06434 (12)0.7319 (2)0.30512 (12)0.0489 (7)
C50.04932 (16)0.7986 (2)0.33998 (15)0.0738 (12)
H5A0.05880.78300.37890.111*
H5B0.01210.80750.32880.111*
H5C0.06740.84830.33470.111*
C60.09204 (12)0.74830 (18)0.26575 (13)0.0477 (7)
H6B0.10160.80220.26020.057*
C70.10602 (10)0.68681 (15)0.23438 (11)0.0357 (5)
H7A0.12480.69930.20750.043*
C80.27637 (10)0.30770 (14)0.32177 (9)0.0308 (5)
C90.26168 (14)0.27067 (17)0.36579 (11)0.0493 (8)
H9A0.22700.25430.36240.059*
C100.29832 (18)0.25788 (18)0.41492 (12)0.0673 (11)
H10A0.28840.23160.44460.081*
C110.34866 (17)0.28270 (18)0.42120 (13)0.0652 (11)
C120.38845 (17)0.2746 (3)0.47557 (16)0.0794 (11)
H12A0.38030.22760.49560.119*
H12B0.38800.32320.49780.119*
H12C0.42270.26790.46830.119*
C130.36259 (14)0.3182 (2)0.37762 (14)0.0584 (9)
H13A0.39730.33450.38110.070*
C140.32659 (11)0.33096 (18)0.32803 (11)0.0433 (6)
H14A0.33700.35610.29820.052*
C150.19393 (9)0.13309 (13)0.06029 (9)0.0238 (4)
C16A0.15291 (14)0.0846 (2)0.03279 (15)0.0298 (9)0.718 (7)
H16A0.11840.10060.03090.036*0.718 (7)
C17A0.16285 (14)0.0133 (2)0.00834 (16)0.0342 (10)0.718 (7)
H17A0.13470.01880.01040.041*0.718 (7)
C20A0.25309 (17)0.0380 (2)0.0357 (2)0.0334 (9)0.718 (7)
H20A0.28740.02300.03570.040*0.718 (7)
C21A0.24418 (15)0.1092 (2)0.06081 (19)0.0286 (8)0.718 (7)
H21A0.27240.14200.07850.034*0.718 (7)
C16B0.1670 (6)0.0762 (6)0.0652 (5)0.068 (4)0.282 (7)
H16B0.13760.08530.07970.082*0.282 (7)
C17B0.1782 (5)0.0104 (7)0.0492 (6)0.055 (4)0.282 (7)
H17B0.16480.05710.06290.066*0.282 (7)
C20B0.2370 (5)0.0501 (7)0.0056 (7)0.044 (3)0.282 (7)
H20B0.26280.04730.01490.052*0.282 (7)
C21B0.2286 (5)0.1243 (7)0.0294 (7)0.045 (3)0.282 (7)
H21B0.24820.16980.02340.054*0.282 (7)
C180.21214 (11)0.01254 (15)0.01033 (10)0.0361 (6)
C190.22246 (13)0.09109 (18)0.01582 (14)0.0525 (8)
H19A0.18990.11340.03720.079*
H19B0.23840.12930.01300.079*
H19C0.24570.08140.04020.079*
C220.09844 (8)0.51590 (13)0.03016 (9)0.0234 (4)
C230.05332 (9)0.49667 (16)0.06809 (10)0.0328 (5)
H23A0.03170.45530.05990.039*
C240.03932 (10)0.53730 (18)0.11795 (10)0.0380 (6)
H24A0.00810.52360.14330.046*
C250.06998 (10)0.59735 (15)0.13145 (10)0.0335 (5)
C260.05609 (14)0.63851 (18)0.18665 (11)0.0485 (7)
H26A0.01870.63640.20120.073*
H26B0.07320.61120.21220.073*
H26C0.06730.69480.18250.073*
C270.11408 (11)0.61758 (16)0.09343 (11)0.0401 (6)
H27A0.13540.65940.10160.048*
C280.12813 (10)0.57798 (16)0.04309 (10)0.0360 (6)
H28A0.15860.59370.01720.043*
C290.22672 (9)0.53233 (14)0.16050 (11)0.0329 (5)
H29A0.20000.56260.17020.039*
C300.27349 (10)0.56053 (16)0.15976 (12)0.0400 (6)
H30A0.28620.61340.16890.048*
C310.26867 (9)0.43286 (15)0.13458 (10)0.0296 (5)
C320.28581 (11)0.35627 (17)0.11542 (15)0.0506 (8)
H32A0.31690.36540.10180.076*
H32B0.25850.33450.08570.076*
H32C0.29350.31790.14610.076*
C330.10220 (8)0.27606 (13)0.20441 (9)0.0250 (4)
H33A0.12920.27870.23680.030*
C340.05993 (9)0.23006 (14)0.19819 (9)0.0285 (5)
H34A0.05130.19500.22470.034*
C350.05671 (8)0.29830 (13)0.12129 (9)0.0241 (4)
C360.03539 (9)0.32524 (16)0.06396 (10)0.0326 (5)
H36A0.00150.31290.05330.049*
H36B0.05310.29730.03920.049*
H36C0.04040.38340.06140.049*
C1010.14767 (8)0.48710 (13)0.24429 (9)0.0225 (4)
C1020.20771 (8)0.39485 (13)0.26924 (8)0.0222 (4)
C1030.23263 (8)0.27496 (13)0.22463 (9)0.0229 (4)
C1040.20483 (8)0.21955 (13)0.14336 (9)0.0213 (4)
C1050.16228 (8)0.27430 (13)0.05314 (8)0.0210 (4)
C1060.13440 (8)0.39558 (13)0.02454 (8)0.0209 (4)
C1070.10441 (8)0.51038 (13)0.06986 (8)0.0210 (4)
C1080.09999 (8)0.53740 (13)0.15480 (9)0.0219 (4)
C2010.17010 (9)0.49869 (14)0.30216 (9)0.0276 (5)
H20I0.16030.53800.32540.033*
C2020.20757 (9)0.44333 (14)0.31710 (9)0.0276 (5)
H20J0.22980.43730.35260.033*
C2030.25371 (9)0.19535 (14)0.22771 (9)0.0289 (5)
H20C0.27630.17160.25880.035*
C2040.23555 (9)0.16046 (14)0.17827 (9)0.0286 (5)
H20D0.24190.10680.16840.034*
C2050.15073 (9)0.27346 (14)0.00599 (9)0.0267 (5)
H20E0.15370.22850.02860.032*
C2060.13488 (9)0.34813 (14)0.02363 (9)0.0260 (5)
H20F0.12580.36600.06080.031*
C2070.07487 (8)0.58290 (13)0.06819 (9)0.0250 (4)
H20G0.06050.61400.03630.030*
C2080.07116 (8)0.59883 (13)0.12012 (9)0.0252 (4)
H20H0.05300.64230.13160.030*
C3010.11206 (8)0.53968 (13)0.21232 (9)0.0234 (4)
C3020.23792 (8)0.32704 (13)0.26953 (9)0.0236 (4)
C3030.18481 (8)0.21076 (13)0.08682 (9)0.0216 (4)
C3040.11429 (8)0.47294 (13)0.02367 (8)0.0215 (4)
O60.4567 (5)0.4345 (7)0.0516 (5)0.231 (4)0.5
C410.5128 (6)0.4673 (7)0.0064 (6)0.134 (3)0.5
H41A0.54790.46340.01750.160*0.5
H41B0.51380.49870.03980.160*0.5
C420.4765 (9)0.5015 (9)0.0230 (9)0.199 (5)0.5
H42A0.44780.52820.00320.239*0.5
H42B0.49400.54190.05010.239*0.5
C430.4895 (5)0.3869 (6)0.0203 (5)0.117 (3)0.5
H43A0.45850.39030.05100.140*0.5
H43B0.51440.34920.03050.140*0.5
C440.4763 (6)0.3621 (7)0.0306 (5)0.140 (4)0.5
H44A0.50700.34160.05730.168*0.5
H44B0.44970.31940.02330.168*0.5
Cl10.08673 (2)0.12887 (4)0.35815 (3)0.03735 (15)
O10.13065 (9)0.16939 (16)0.34826 (14)0.0786 (8)
O20.06869 (9)0.16899 (17)0.40094 (8)0.0667 (7)
O30.09973 (8)0.04691 (14)0.37399 (9)0.0543 (6)
O40.04620 (8)0.13067 (13)0.30954 (8)0.0477 (5)
O50.11480 (11)0.04122 (16)0.24469 (12)0.0730 (7)
C370.13725 (18)0.0233 (2)0.22114 (18)0.0760 (11)
H37A0.17360.01100.22150.091*
H37B0.13610.07350.24220.091*
C380.1065 (2)0.0324 (3)0.16355 (19)0.0967 (16)
H38A0.12190.00100.13780.116*
H38B0.10440.08960.15220.116*
C390.0546 (2)0.0006 (4)0.1646 (3)0.119 (2)
H39A0.04440.04330.13750.143*
H39B0.02840.04380.15650.143*
C400.06130 (17)0.0306 (3)0.2235 (2)0.0971 (16)
H40A0.04740.00860.24610.117*
H40B0.04290.08240.22350.117*
H6A0.3286 (13)0.4996 (19)0.1394 (13)0.046 (9)*
H8A0.0030 (12)0.2249 (18)0.1317 (12)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01546 (14)0.01825 (15)0.01730 (14)0.00454 (11)0.00480 (10)0.00147 (11)
N10.0208 (8)0.0196 (8)0.0209 (8)0.0045 (7)0.0048 (7)0.0015 (7)
N20.0190 (8)0.0195 (8)0.0191 (8)0.0034 (7)0.0060 (6)0.0007 (6)
N30.0175 (8)0.0203 (8)0.0196 (8)0.0032 (7)0.0061 (6)0.0006 (7)
N40.0184 (8)0.0198 (8)0.0203 (8)0.0045 (7)0.0054 (6)0.0019 (7)
N50.0202 (9)0.0260 (9)0.0236 (9)0.0063 (7)0.0051 (7)0.0001 (7)
N60.0204 (9)0.0323 (11)0.0463 (12)0.0104 (8)0.0130 (9)0.0049 (9)
N70.0190 (8)0.0189 (8)0.0221 (8)0.0032 (7)0.0076 (7)0.0031 (7)
N80.0200 (9)0.0321 (10)0.0294 (10)0.0113 (8)0.0077 (8)0.0020 (8)
C10.0247 (11)0.0336 (12)0.0270 (11)0.0020 (9)0.0038 (9)0.0057 (9)
C20.0366 (14)0.0484 (16)0.0324 (13)0.0008 (12)0.0118 (11)0.0074 (11)
C30.0407 (15)0.067 (2)0.0346 (14)0.0104 (14)0.0146 (12)0.0109 (13)
C40.0448 (16)0.0569 (19)0.0408 (15)0.0180 (14)0.0015 (12)0.0170 (14)
C50.080 (3)0.077 (3)0.061 (2)0.037 (2)0.0098 (19)0.0297 (19)
C60.0502 (17)0.0385 (15)0.0510 (17)0.0099 (13)0.0050 (13)0.0124 (13)
C70.0342 (13)0.0328 (13)0.0397 (14)0.0032 (10)0.0078 (11)0.0066 (11)
C80.0437 (14)0.0204 (11)0.0234 (11)0.0001 (10)0.0023 (10)0.0018 (9)
C90.078 (2)0.0335 (14)0.0315 (14)0.0141 (14)0.0033 (14)0.0050 (11)
C100.131 (4)0.0319 (15)0.0289 (14)0.0111 (19)0.0017 (18)0.0085 (12)
C110.108 (3)0.0256 (14)0.0394 (16)0.0038 (17)0.0291 (18)0.0003 (12)
C120.0912 (19)0.0646 (17)0.0625 (16)0.0036 (15)0.0224 (14)0.0008 (14)
C130.0556 (19)0.0475 (18)0.0554 (19)0.0009 (15)0.0206 (15)0.0040 (15)
C140.0411 (15)0.0450 (16)0.0360 (14)0.0022 (12)0.0065 (11)0.0018 (12)
C150.0283 (11)0.0207 (10)0.0236 (10)0.0013 (9)0.0085 (9)0.0019 (8)
C16A0.0308 (18)0.0303 (18)0.0253 (18)0.0022 (14)0.0007 (14)0.0087 (14)
C17A0.0368 (19)0.0274 (18)0.036 (2)0.0046 (14)0.0042 (15)0.0106 (15)
C20A0.034 (2)0.032 (2)0.037 (2)0.0063 (16)0.0129 (18)0.0034 (18)
C21A0.0280 (18)0.0273 (18)0.032 (2)0.0005 (14)0.0092 (16)0.0044 (15)
C16B0.054 (6)0.081 (7)0.080 (8)0.006 (6)0.037 (6)0.049 (6)
C17B0.069 (8)0.034 (6)0.067 (9)0.011 (5)0.023 (7)0.007 (5)
C20B0.042 (6)0.036 (6)0.062 (9)0.008 (5)0.029 (6)0.004 (6)
C21B0.037 (6)0.030 (5)0.075 (10)0.010 (4)0.029 (6)0.012 (6)
C180.0474 (15)0.0286 (12)0.0319 (12)0.0049 (11)0.0085 (11)0.0069 (10)
C190.064 (2)0.0363 (15)0.0539 (18)0.0110 (14)0.0075 (15)0.0170 (13)
C220.0263 (11)0.0247 (11)0.0211 (10)0.0004 (8)0.0092 (8)0.0006 (8)
C230.0279 (12)0.0428 (14)0.0270 (11)0.0052 (10)0.0052 (9)0.0075 (10)
C240.0321 (13)0.0541 (16)0.0262 (12)0.0029 (12)0.0035 (10)0.0065 (11)
C250.0461 (14)0.0333 (13)0.0247 (11)0.0128 (11)0.0161 (10)0.0063 (10)
C260.076 (2)0.0449 (16)0.0288 (13)0.0184 (15)0.0200 (13)0.0121 (12)
C270.0515 (16)0.0359 (14)0.0365 (14)0.0089 (12)0.0180 (12)0.0084 (11)
C280.0371 (13)0.0372 (14)0.0325 (12)0.0113 (11)0.0057 (10)0.0048 (10)
C290.0291 (12)0.0267 (12)0.0463 (14)0.0061 (9)0.0161 (11)0.0071 (10)
C300.0337 (13)0.0298 (13)0.0603 (17)0.0117 (11)0.0183 (12)0.0106 (12)
C310.0233 (11)0.0312 (12)0.0358 (12)0.0058 (9)0.0102 (9)0.0029 (10)
C320.0365 (15)0.0377 (15)0.088 (2)0.0111 (12)0.0349 (15)0.0188 (15)
C330.0256 (11)0.0275 (11)0.0242 (10)0.0042 (9)0.0101 (8)0.0007 (9)
C340.0298 (11)0.0301 (12)0.0286 (11)0.0060 (9)0.0131 (9)0.0008 (9)
C350.0188 (10)0.0263 (11)0.0287 (11)0.0037 (8)0.0083 (8)0.0041 (9)
C360.0232 (11)0.0428 (14)0.0305 (12)0.0082 (10)0.0040 (9)0.0026 (10)
C1010.0227 (10)0.0227 (10)0.0228 (10)0.0056 (8)0.0071 (8)0.0036 (8)
C1020.0256 (10)0.0227 (10)0.0179 (9)0.0063 (8)0.0041 (8)0.0016 (8)
C1030.0223 (10)0.0237 (10)0.0218 (10)0.0024 (8)0.0035 (8)0.0001 (8)
C1040.0200 (9)0.0212 (10)0.0235 (10)0.0021 (8)0.0068 (8)0.0006 (8)
C1050.0197 (9)0.0230 (10)0.0218 (10)0.0025 (8)0.0079 (8)0.0023 (8)
C1060.0190 (10)0.0266 (11)0.0182 (9)0.0060 (8)0.0062 (8)0.0001 (8)
C1070.0185 (9)0.0224 (10)0.0220 (10)0.0049 (8)0.0042 (8)0.0009 (8)
C1080.0191 (9)0.0233 (10)0.0238 (10)0.0032 (8)0.0060 (8)0.0030 (8)
C2010.0332 (12)0.0266 (11)0.0230 (11)0.0046 (9)0.0067 (9)0.0072 (9)
C2020.0342 (12)0.0259 (11)0.0210 (10)0.0068 (9)0.0031 (9)0.0036 (9)
C2030.0324 (12)0.0261 (11)0.0254 (11)0.0019 (9)0.0009 (9)0.0012 (9)
C2040.0331 (12)0.0216 (11)0.0301 (11)0.0032 (9)0.0056 (9)0.0011 (9)
C2050.0315 (11)0.0292 (11)0.0208 (10)0.0012 (9)0.0090 (9)0.0041 (9)
C2060.0298 (11)0.0305 (12)0.0195 (10)0.0016 (9)0.0094 (9)0.0004 (9)
C2070.0232 (10)0.0245 (11)0.0266 (11)0.0020 (8)0.0044 (8)0.0024 (9)
C2080.0218 (10)0.0240 (11)0.0296 (11)0.0000 (8)0.0059 (9)0.0019 (9)
C3010.0202 (10)0.0259 (11)0.0253 (10)0.0030 (8)0.0077 (8)0.0039 (8)
C3020.0257 (11)0.0227 (10)0.0210 (10)0.0064 (8)0.0024 (8)0.0007 (8)
C3030.0206 (10)0.0211 (10)0.0251 (10)0.0018 (8)0.0093 (8)0.0032 (8)
C3040.0191 (9)0.0253 (10)0.0202 (10)0.0052 (8)0.0047 (8)0.0015 (8)
O60.254 (9)0.178 (8)0.254 (9)0.026 (8)0.043 (8)0.002 (7)
C410.152 (7)0.122 (7)0.163 (8)0.039 (6)0.111 (6)0.001 (6)
C420.229 (9)0.160 (9)0.217 (10)0.040 (8)0.073 (8)0.014 (8)
C430.118 (6)0.101 (5)0.148 (6)0.010 (5)0.065 (5)0.035 (5)
C440.144 (7)0.107 (7)0.185 (8)0.001 (6)0.067 (6)0.051 (6)
Cl10.0258 (3)0.0514 (4)0.0370 (3)0.0186 (3)0.0116 (2)0.0069 (3)
O10.0361 (12)0.0641 (16)0.144 (3)0.0085 (11)0.0388 (15)0.0125 (16)
O20.0532 (13)0.109 (2)0.0331 (10)0.0416 (14)0.0008 (9)0.0140 (12)
O30.0407 (11)0.0632 (14)0.0648 (14)0.0280 (10)0.0242 (10)0.0295 (11)
O40.0520 (12)0.0594 (13)0.0298 (9)0.0218 (10)0.0059 (8)0.0043 (9)
O50.0675 (17)0.0644 (16)0.0877 (19)0.0018 (13)0.0192 (14)0.0059 (14)
C370.094 (3)0.057 (2)0.077 (3)0.006 (2)0.022 (2)0.005 (2)
C380.126 (5)0.075 (3)0.080 (3)0.030 (3)0.007 (3)0.010 (2)
C390.108 (4)0.111 (4)0.115 (4)0.037 (3)0.021 (3)0.023 (3)
C400.061 (3)0.090 (3)0.138 (5)0.001 (2)0.020 (3)0.041 (3)
Geometric parameters (Å, º) top
Fe1—N31.9673 (17)C23—H23A0.9500
Fe1—N21.9675 (17)C24—C251.382 (4)
Fe1—N41.9797 (18)C24—H24A0.9500
Fe1—N11.9853 (17)C25—C271.371 (4)
Fe1—N72.0039 (17)C25—C261.505 (3)
Fe1—N52.0078 (17)C26—H26A0.9800
N1—C1021.375 (3)C26—H26B0.9800
N1—C1011.376 (3)C26—H26C0.9800
N2—C1031.372 (3)C27—C281.390 (4)
N2—C1041.378 (3)C27—H27A0.9500
N3—C1061.377 (3)C28—H28A0.9500
N3—C1051.378 (3)C29—C301.339 (3)
N4—C1081.376 (3)C29—H29A0.9500
N4—C1071.377 (3)C30—H30A0.9500
N5—C311.326 (3)C31—C321.470 (4)
N5—C291.403 (3)C32—H32A0.9800
N6—C311.340 (3)C32—H32B0.9800
N6—C301.370 (3)C32—H32C0.9800
N6—H6A0.81 (3)C33—C341.342 (3)
N7—C351.330 (3)C33—H33A0.9500
N7—C331.399 (3)C34—H34A0.9500
N8—C351.349 (3)C35—C361.481 (3)
N8—C341.359 (3)C36—H36A0.9800
N8—H8A0.84 (3)C36—H36B0.9800
C1—C21.391 (3)C36—H36C0.9800
C1—C71.393 (4)C101—C3011.396 (3)
C1—C3011.496 (3)C101—C2011.442 (3)
C2—C31.390 (4)C102—C3021.385 (3)
C2—H2A0.9500C102—C2021.442 (3)
C3—C41.379 (5)C103—C3021.397 (3)
C3—H3A0.9500C103—C2031.432 (3)
C4—C61.389 (5)C104—C3031.395 (3)
C4—C51.519 (4)C104—C2041.436 (3)
C5—H5A0.9800C105—C3031.395 (3)
C5—H5B0.9800C105—C2051.436 (3)
C5—H5C0.9800C106—C3041.391 (3)
C6—C71.390 (4)C106—C2061.440 (3)
C6—H6B0.9500C107—C3041.389 (3)
C7—H7A0.9500C107—C2071.435 (3)
C8—C141.370 (4)C108—C3011.397 (3)
C8—C91.394 (4)C108—C2081.439 (3)
C8—C3021.494 (3)C201—C2021.346 (3)
C9—C101.395 (4)C201—H20I0.9500
C9—H9A0.9500C202—H20J0.9500
C10—C111.380 (6)C203—C2041.347 (3)
C10—H10A0.9500C203—H20C0.9500
C11—C131.364 (5)C204—H20D0.9500
C11—C121.522 (4)C205—C2061.351 (3)
C12—H12A0.9800C205—H20E0.9500
C12—H12B0.9800C206—H20F0.9500
C12—H12C0.9800C207—C2081.349 (3)
C13—C141.395 (4)C207—H20G0.9500
C13—H13A0.9500C208—H20H0.9500
C14—H14A0.9500O6—C441.456 (9)
C15—C16B1.212 (11)O6—C421.486 (9)
C15—C21B1.345 (11)C41—C421.459 (9)
C15—C21A1.397 (4)C41—C431.480 (9)
C15—C16A1.403 (4)C41—H41A0.9900
C15—C3031.496 (3)C41—H41B0.9900
C16A—C17A1.387 (5)C42—H42A0.9900
C16A—H16A0.9500C42—H42B0.9900
C17A—C181.375 (5)C43—C441.456 (9)
C17A—H17A0.9500C43—H43A0.9900
C20A—C21A1.385 (5)C43—H43B0.9900
C20A—C181.406 (5)C44—H44A0.9900
C20A—H20A0.9500C44—H44B0.9900
C21A—H21A0.9500Cl1—O11.423 (2)
C16B—C17B1.540 (15)Cl1—O41.425 (2)
C16B—H16B0.9500Cl1—O21.435 (2)
C17B—C181.476 (13)Cl1—O31.438 (2)
C17B—H17B0.9500O5—C401.414 (5)
C20B—C181.255 (12)O5—C371.421 (5)
C20B—C21B1.409 (15)C37—C381.487 (6)
C20B—H20B0.9500C37—H37A0.9900
C21B—H21B0.9500C37—H37B0.9900
C18—C191.513 (3)C38—C391.488 (8)
C19—H19A0.9800C38—H38A0.9900
C19—H19B0.9800C38—H38B0.9900
C19—H19C0.9800C39—C401.530 (8)
C22—C281.384 (3)C39—H39A0.9900
C22—C231.385 (3)C39—H39B0.9900
C22—C3041.493 (3)C40—H40A0.9900
C23—C241.388 (3)C40—H40B0.9900
N3—Fe1—N289.67 (7)C22—C28—C27121.0 (2)
N3—Fe1—N490.70 (7)C22—C28—H28A119.5
N2—Fe1—N4179.46 (7)C27—C28—H28A119.5
N3—Fe1—N1179.33 (7)C30—C29—N5109.3 (2)
N2—Fe1—N190.52 (7)C30—C29—H29A125.4
N4—Fe1—N189.11 (7)N5—C29—H29A125.4
N3—Fe1—N790.78 (7)C29—C30—N6106.0 (2)
N2—Fe1—N786.23 (7)C29—C30—H30A127.0
N4—Fe1—N793.38 (7)N6—C30—H30A127.0
N1—Fe1—N789.87 (7)N5—C31—N6109.7 (2)
N3—Fe1—N592.46 (7)N5—C31—C32128.8 (2)
N2—Fe1—N592.20 (7)N6—C31—C32121.4 (2)
N4—Fe1—N588.17 (7)C31—C32—H32A109.5
N1—Fe1—N586.90 (7)C31—C32—H32B109.5
N7—Fe1—N5176.39 (7)H32A—C32—H32B109.5
C102—N1—C101106.24 (17)C31—C32—H32C109.5
C102—N1—Fe1125.50 (14)H32A—C32—H32C109.5
C101—N1—Fe1127.79 (14)H32B—C32—H32C109.5
C103—N2—C104105.79 (17)C34—C33—N7109.7 (2)
C103—N2—Fe1126.90 (14)C34—C33—H33A125.1
C104—N2—Fe1127.10 (14)N7—C33—H33A125.1
C106—N3—C105106.54 (17)C33—C34—N8105.72 (19)
C106—N3—Fe1126.38 (14)C33—C34—H34A127.1
C105—N3—Fe1127.08 (14)N8—C34—H34A127.1
C108—N4—C107105.90 (17)N7—C35—N8109.10 (19)
C108—N4—Fe1128.30 (14)N7—C35—C36129.1 (2)
C107—N4—Fe1125.70 (14)N8—C35—C36121.81 (19)
C31—N5—C29105.87 (18)C35—C36—H36A109.5
C31—N5—Fe1133.27 (16)C35—C36—H36B109.5
C29—N5—Fe1120.58 (15)H36A—C36—H36B109.5
C31—N6—C30109.1 (2)C35—C36—H36C109.5
C31—N6—H6A126 (2)H36A—C36—H36C109.5
C30—N6—H6A125 (2)H36B—C36—H36C109.5
C35—N7—C33105.78 (17)N1—C101—C301126.07 (19)
C35—N7—Fe1133.34 (15)N1—C101—C201109.70 (19)
C33—N7—Fe1120.44 (14)C301—C101—C201123.9 (2)
C35—N8—C34109.68 (19)N1—C102—C302125.87 (19)
C35—N8—H8A124 (2)N1—C102—C202109.59 (19)
C34—N8—H8A126 (2)C302—C102—C202124.4 (2)
C2—C1—C7118.0 (2)N2—C103—C302125.3 (2)
C2—C1—C301120.5 (2)N2—C103—C203110.10 (18)
C7—C1—C301121.3 (2)C302—C103—C203124.3 (2)
C3—C2—C1120.6 (3)N2—C104—C303125.02 (19)
C3—C2—H2A119.7N2—C104—C204109.75 (18)
C1—C2—H2A119.7C303—C104—C204124.9 (2)
C4—C3—C2121.4 (3)N3—C105—C303125.62 (18)
C4—C3—H3A119.3N3—C105—C205109.34 (18)
C2—C3—H3A119.3C303—C105—C205124.82 (19)
C3—C4—C6118.2 (3)N3—C106—C304125.42 (19)
C3—C4—C5120.5 (3)N3—C106—C206109.43 (19)
C6—C4—C5121.3 (3)C304—C106—C206124.84 (19)
C4—C5—H5A109.5N4—C107—C304125.99 (19)
C4—C5—H5B109.5N4—C107—C207109.75 (18)
H5A—C5—H5B109.5C304—C107—C207124.17 (19)
C4—C5—H5C109.5N4—C108—C301125.5 (2)
H5A—C5—H5C109.5N4—C108—C208109.94 (18)
H5B—C5—H5C109.5C301—C108—C208124.2 (2)
C4—C6—C7120.9 (3)C202—C201—C101107.1 (2)
C4—C6—H6B119.6C202—C201—H20I126.4
C7—C6—H6B119.6C101—C201—H20I126.4
C6—C7—C1120.9 (3)C201—C202—C102107.3 (2)
C6—C7—H7A119.6C201—C202—H20J126.3
C1—C7—H7A119.6C102—C202—H20J126.3
C14—C8—C9118.9 (2)C204—C203—C103107.2 (2)
C14—C8—C302119.6 (2)C204—C203—H20C126.4
C9—C8—C302121.4 (2)C103—C203—H20C126.4
C8—C9—C10119.4 (3)C203—C204—C104107.1 (2)
C8—C9—H9A120.3C203—C204—H20D126.4
C10—C9—H9A120.3C104—C204—H20D126.4
C11—C10—C9121.3 (3)C206—C205—C105107.56 (19)
C11—C10—H10A119.4C206—C205—H20E126.2
C9—C10—H10A119.4C105—C205—H20E126.2
C13—C11—C10118.6 (3)C205—C206—C106107.07 (19)
C13—C11—C12119.1 (4)C205—C206—H20F126.5
C10—C11—C12122.3 (4)C106—C206—H20F126.5
C11—C12—H12A109.5C208—C207—C107107.46 (19)
C11—C12—H12B109.5C208—C207—H20G126.3
H12A—C12—H12B109.5C107—C207—H20G126.3
C11—C12—H12C109.5C207—C208—C108106.85 (19)
H12A—C12—H12C109.5C207—C208—H20H126.6
H12B—C12—H12C109.5C108—C208—H20H126.6
C11—C13—C14120.9 (3)C101—C301—C108122.2 (2)
C11—C13—H13A119.5C101—C301—C1116.95 (19)
C14—C13—H13A119.5C108—C301—C1120.2 (2)
C8—C14—C13120.8 (3)C102—C302—C103123.4 (2)
C8—C14—H14A119.6C102—C302—C8117.39 (19)
C13—C14—H14A119.6C103—C302—C8119.2 (2)
C16B—C15—C21B118.6 (6)C105—C303—C104122.67 (19)
C21A—C15—C16A118.7 (3)C105—C303—C15118.52 (18)
C16B—C15—C303117.7 (5)C104—C303—C15118.34 (19)
C21B—C15—C303123.6 (5)C107—C304—C106123.26 (19)
C21A—C15—C303119.8 (2)C107—C304—C22117.68 (19)
C16A—C15—C303121.5 (2)C106—C304—C22118.87 (18)
C17A—C16A—C15119.9 (3)C44—O6—C42104.2 (8)
C17A—C16A—H16A120.1C42—C41—C43100.2 (9)
C15—C16A—H16A120.1C42—C41—H41A111.7
C18—C17A—C16A122.1 (3)C43—C41—H41A111.7
C18—C17A—H17A119.0C42—C41—H41B111.7
C16A—C17A—H17A119.0C43—C41—H41B111.7
C21A—C20A—C18121.0 (3)H41A—C41—H41B109.5
C21A—C20A—H20A119.5C41—C42—O6107.7 (9)
C18—C20A—H20A119.5C41—C42—H42A110.2
C20A—C21A—C15120.3 (3)O6—C42—H42A110.2
C20A—C21A—H21A119.8C41—C42—H42B110.2
C15—C21A—H21A119.8O6—C42—H42B110.2
C15—C16B—C17B123.0 (9)H42A—C42—H42B108.5
C15—C16B—H16B118.5C44—C43—C41102.9 (8)
C17B—C16B—H16B118.5C44—C43—H43A111.2
C18—C17B—C16B112.4 (8)C41—C43—H43A111.2
C18—C17B—H17B123.8C44—C43—H43B111.2
C16B—C17B—H17B123.8C41—C43—H43B111.2
C18—C20B—C21B123.1 (9)H43A—C43—H43B109.1
C18—C20B—H20B118.5C43—C44—O6105.2 (8)
C21B—C20B—H20B118.5C43—C44—H44A110.7
C15—C21B—C20B122.4 (9)O6—C44—H44A110.7
C15—C21B—H21B118.8C43—C44—H44B110.7
C20B—C21B—H21B118.8O6—C44—H44B110.7
C17A—C18—C20A117.9 (3)H44A—C44—H44B108.8
C20B—C18—C17B117.5 (7)O1—Cl1—O4109.59 (17)
C20B—C18—C19121.4 (5)O1—Cl1—O2110.10 (18)
C17A—C18—C19121.5 (3)O4—Cl1—O2107.68 (12)
C20A—C18—C19120.5 (3)O1—Cl1—O3109.86 (13)
C17B—C18—C19120.5 (5)O4—Cl1—O3109.91 (14)
C18—C19—H19A109.5O2—Cl1—O3109.67 (15)
C18—C19—H19B109.5C40—O5—C37103.8 (4)
H19A—C19—H19B109.5O5—C37—C38106.6 (4)
C18—C19—H19C109.5O5—C37—H37A110.4
H19A—C19—H19C109.5C38—C37—H37A110.4
H19B—C19—H19C109.5O5—C37—H37B110.4
C28—C22—C23117.8 (2)C38—C37—H37B110.4
C28—C22—C304120.6 (2)H37A—C37—H37B108.6
C23—C22—C304121.57 (19)C37—C38—C39104.7 (4)
C22—C23—C24120.6 (2)C37—C38—H38A110.8
C22—C23—H23A119.7C39—C38—H38A110.8
C24—C23—H23A119.7C37—C38—H38B110.8
C25—C24—C23121.3 (2)C39—C38—H38B110.8
C25—C24—H24A119.4H38A—C38—H38B108.9
C23—C24—H24A119.4C38—C39—C40103.8 (4)
C27—C25—C24118.1 (2)C38—C39—H39A111.0
C27—C25—C26120.7 (3)C40—C39—H39A111.0
C24—C25—C26121.2 (3)C38—C39—H39B111.0
C25—C26—H26A109.5C40—C39—H39B111.0
C25—C26—H26B109.5H39A—C39—H39B109.0
H26A—C26—H26B109.5O5—C40—C39106.4 (4)
C25—C26—H26C109.5O5—C40—H40A110.5
H26A—C26—H26C109.5C39—C40—H40A110.5
H26B—C26—H26C109.5O5—C40—H40B110.5
C25—C27—C28121.1 (2)C39—C40—H40B110.5
C25—C27—H27A119.5H40A—C40—H40B108.6
C28—C27—H27A119.5
C7—C1—C2—C31.0 (4)C105—N3—C106—C2061.1 (2)
C301—C1—C2—C3173.9 (2)Fe1—N3—C106—C206177.96 (13)
C1—C2—C3—C40.5 (4)C108—N4—C107—C304178.7 (2)
C2—C3—C4—C60.2 (4)Fe1—N4—C107—C3044.7 (3)
C2—C3—C4—C5179.5 (3)C108—N4—C107—C2072.0 (2)
C3—C4—C6—C70.2 (4)Fe1—N4—C107—C207178.55 (13)
C5—C4—C6—C7179.4 (3)C107—N4—C108—C301169.7 (2)
C4—C6—C7—C10.4 (4)Fe1—N4—C108—C3016.8 (3)
C2—C1—C7—C61.0 (4)C107—N4—C108—C2083.2 (2)
C301—C1—C7—C6173.9 (2)Fe1—N4—C108—C208179.60 (14)
C14—C8—C9—C100.3 (4)N1—C101—C201—C2021.9 (3)
C302—C8—C9—C10176.4 (3)C301—C101—C201—C202171.4 (2)
C8—C9—C10—C111.4 (5)C101—C201—C202—C1022.0 (3)
C9—C10—C11—C131.9 (5)N1—C102—C202—C2011.5 (3)
C9—C10—C11—C12175.7 (3)C302—C102—C202—C201174.1 (2)
C10—C11—C13—C141.4 (5)N2—C103—C203—C2041.7 (3)
C12—C11—C13—C14176.3 (3)C302—C103—C203—C204172.7 (2)
C9—C8—C14—C130.2 (4)C103—C203—C204—C1042.5 (3)
C302—C8—C14—C13175.9 (3)N2—C104—C204—C2032.5 (3)
C11—C13—C14—C80.3 (5)C303—C104—C204—C203171.0 (2)
C21A—C15—C16A—C17A2.0 (5)N3—C105—C205—C2061.7 (2)
C303—C15—C16A—C17A179.5 (3)C303—C105—C205—C206173.1 (2)
C15—C16A—C17A—C180.5 (6)C105—C205—C206—C1062.3 (2)
C18—C20A—C21A—C151.4 (6)N3—C106—C206—C2052.2 (2)
C16A—C15—C21A—C20A1.5 (5)C304—C106—C206—C205171.6 (2)
C303—C15—C21A—C20A179.1 (3)N4—C107—C207—C2080.0 (2)
C21B—C15—C16B—C17B14.2 (17)C304—C107—C207—C208176.8 (2)
C303—C15—C16B—C17B168.8 (9)C107—C207—C208—C1081.9 (2)
C15—C16B—C17B—C1820.5 (17)N4—C108—C208—C2073.2 (2)
C16B—C15—C21B—C20B4.2 (18)C301—C108—C208—C207169.7 (2)
C303—C15—C21B—C20B178.9 (10)N1—C101—C301—C1087.2 (3)
C18—C20B—C21B—C152 (2)C201—C101—C301—C108165.0 (2)
C21B—C20B—C18—C17B9.2 (18)N1—C101—C301—C1178.28 (19)
C21B—C20B—C18—C19179.9 (11)C201—C101—C301—C16.0 (3)
C16A—C17A—C18—C20A3.3 (5)N4—C108—C301—C1013.8 (3)
C16A—C17A—C18—C19179.1 (3)C208—C108—C301—C101168.1 (2)
C21A—C20A—C18—C17A3.8 (6)N4—C108—C301—C1174.58 (19)
C21A—C20A—C18—C19178.6 (3)C208—C108—C301—C12.7 (3)
C16B—C17B—C18—C20B16.8 (15)C2—C1—C301—C10163.6 (3)
C16B—C17B—C18—C19172.5 (8)C7—C1—C301—C101111.2 (3)
C28—C22—C23—C241.6 (4)C2—C1—C301—C108125.2 (2)
C304—C22—C23—C24179.9 (2)C7—C1—C301—C10860.1 (3)
C22—C23—C24—C250.6 (4)N1—C102—C302—C1033.6 (3)
C23—C24—C25—C271.9 (4)C202—C102—C302—C103171.2 (2)
C23—C24—C25—C26176.9 (2)N1—C102—C302—C8179.2 (2)
C24—C25—C27—C281.1 (4)C202—C102—C302—C86.0 (3)
C26—C25—C27—C28177.8 (3)N2—C103—C302—C1029.7 (3)
C23—C22—C28—C272.4 (4)C203—C103—C302—C102163.9 (2)
C304—C22—C28—C27179.1 (2)N2—C103—C302—C8173.1 (2)
C25—C27—C28—C221.1 (4)C203—C103—C302—C813.4 (3)
C31—N5—C29—C300.4 (3)C14—C8—C302—C10297.3 (3)
Fe1—N5—C29—C30174.29 (19)C9—C8—C302—C10278.8 (3)
N5—C29—C30—N60.6 (3)C14—C8—C302—C10385.3 (3)
C31—N6—C30—C290.6 (3)C9—C8—C302—C10398.6 (3)
C29—N5—C31—N60.0 (3)N3—C105—C303—C1047.3 (3)
Fe1—N5—C31—N6173.71 (16)C205—C105—C303—C104166.6 (2)
C29—N5—C31—C32178.4 (3)N3—C105—C303—C15179.31 (19)
Fe1—N5—C31—C327.9 (4)C205—C105—C303—C155.4 (3)
C30—N6—C31—N50.4 (3)N2—C104—C303—C1053.1 (3)
C30—N6—C31—C32179.0 (3)C204—C104—C303—C105169.5 (2)
C35—N7—C33—C340.1 (2)N2—C104—C303—C15175.08 (19)
Fe1—N7—C33—C34173.43 (15)C204—C104—C303—C152.5 (3)
N7—C33—C34—N80.4 (3)C16B—C15—C303—C105108.5 (8)
C35—N8—C34—C330.5 (3)C21B—C15—C303—C10568.4 (9)
C33—N7—C35—N80.3 (2)C21A—C15—C303—C105110.0 (3)
Fe1—N7—C35—N8171.86 (15)C16A—C15—C303—C10567.5 (3)
C33—N7—C35—C36179.5 (2)C16B—C15—C303—C10479.2 (8)
Fe1—N7—C35—C367.4 (4)C21B—C15—C303—C104103.9 (9)
C34—N8—C35—N70.5 (3)C21A—C15—C303—C10462.3 (3)
C34—N8—C35—C36179.8 (2)C16A—C15—C303—C104120.2 (3)
C102—N1—C101—C301172.2 (2)N4—C107—C304—C1068.8 (3)
Fe1—N1—C101—C3010.1 (3)C207—C107—C304—C106167.5 (2)
C102—N1—C101—C2010.9 (2)N4—C107—C304—C22176.28 (19)
Fe1—N1—C101—C201173.29 (14)C207—C107—C304—C227.4 (3)
C101—N1—C102—C302175.2 (2)N3—C106—C304—C1077.0 (3)
Fe1—N1—C102—C30212.3 (3)C206—C106—C304—C107165.9 (2)
C101—N1—C102—C2020.3 (2)N3—C106—C304—C22178.18 (19)
Fe1—N1—C102—C202172.27 (14)C206—C106—C304—C229.0 (3)
C104—N2—C103—C302174.2 (2)C28—C22—C304—C10779.0 (3)
Fe1—N2—C103—C3020.9 (3)C23—C22—C304—C10799.4 (3)
C104—N2—C103—C2030.2 (2)C28—C22—C304—C106105.8 (3)
Fe1—N2—C103—C203175.23 (14)C23—C22—C304—C10675.7 (3)
C103—N2—C104—C303172.1 (2)C43—C41—C42—O632.1 (17)
Fe1—N2—C104—C30312.8 (3)C44—O6—C42—C418.5 (19)
C103—N2—C104—C2041.4 (2)C42—C41—C43—C4443.7 (14)
Fe1—N2—C104—C204173.66 (14)C41—C43—C44—O639.9 (15)
C106—N3—C105—C303174.41 (19)C42—O6—C44—C4319.3 (18)
Fe1—N3—C105—C3034.6 (3)C40—O5—C37—C3839.0 (4)
C106—N3—C105—C2050.3 (2)O5—C37—C38—C3926.3 (5)
Fe1—N3—C105—C205179.38 (14)C37—C38—C39—C404.1 (5)
C105—N3—C106—C304172.64 (19)C37—O5—C40—C3935.8 (5)
Fe1—N3—C106—C3048.3 (3)C38—C39—C40—O519.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O3i0.81 (3)2.17 (3)2.942 (3)161 (3)
N8—H8A···O2ii0.84 (3)2.11 (3)2.949 (3)176 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

We thank the CAS Hundred Talent Program and the National Natural Science Foundation of China (grant No. 21371167 to JL).

References

First citationAdler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.  CrossRef CAS Web of Science Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004–1015.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chatterjee, A. (1971). J. Am. Chem. Soc. 93, 3162–3167.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGeiger, D. K., Lee, Y. J. & Scheidt, W. R. (1984). J. Am. Chem. Soc. 106, 6339–6343.  CSD CrossRef CAS Web of Science Google Scholar
First citationHu, C., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2006). Inorg. Chem. 45, 9721–9728.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMunro, O. Q., Marques, H. M., Debrunner, P. G., Mohanrao, K. & Scheidt, W. R. (1995). J. Am. Chem. Soc. 117, 935–954.  CSD CrossRef CAS Web of Science Google Scholar
First citationOgura, H., Yatsunyk, L., Medforth, C. J., Smith, K. M., Barkigia, K. M., Renner, M. W., Melamed, D. & Walker, F. A. (2001). J. Am. Chem. Soc. 123, 6564–6578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationScheidt, W. R., Kirner, J. F., Hoard, J. L. & Reed, C. A. (1987). J. Am. Chem. Soc. 109, 1963–1968.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543–555.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsunyk, L. A., Carducci, M. D. & Walker, F. A. (2003). J. Am. Chem. Soc. 125, 15986–16005.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds