research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[2,5-bis­­(pyridin-2-yl)-1,3,4-thia­diazole-κ2N2,N3]bis­­(thio­cyanato-κS)copper(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 8 July 2016; accepted 18 July 2016; online 22 July 2016)

The mononuclear title complex, [Cu(SCN)2(C12H8N4S)2], was obtained by the reaction of 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole and potassium thio­cyanate with copper(II) chloride dihydrate. The copper cation lies on an inversion centre and displays an elongated octa­hedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole ligands, whereas the axial positions are occupied by the S atoms of two thio­cyanate anions. The thia­diazole and the pyridyl rings linked to the metal are approximately coplanar, with a maximum deviation from the mean plane of 0.190 (2) Å. The cohesion of the crystal structure is ensured by weak C—H⋯N hydrogen bonds and ππ inter­actions between parallel pyridyl rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.663 (2) Å], leading to a three-dimensional network.

1. Chemical context

The use of compounds containing a 1,3,4-thia­diazole moiety as part of ligand systems has gained considerable attention in recent years (Kadam Sushama et al., 2016[Kadam Sushama, S., Nazeruddin, G. M., Rafique Sarkhwas, M. & Suryawanshi, S. B. (2016). World J. Pharm. Res. 5, 1724-1737.]). Indeed, a 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (bptd) and its metal complexes have been extensively studied because of their potential applications in biology (Baghel et al., 2014[Baghel, U. S., Kaur, H., Chawla, A. & Dhawan, R. K. (2014). Der Pharma Chem. 6, 66-69.]; Ahmed et al., 2015[Ahmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764-772.]; Zine et al., 2016[Zine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661-2667.]), magnetism (Bentiss et al., 2004[Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903-1907.]) and coordination chemistry (Bentiss et al., 2002[Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403-408.]). An inter­esting feature of the metal-ligand chemistry of these compounds is that the complexes can be mononuclear (Bentiss et al., 2011[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011). Acta Cryst. E67, m834-m835.], 2012[Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360-m361.]; Klingele et al., 2010[Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689-1691.]; Kaase & Klingele, 2014[Kaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252-m253.]) or binuclear (Laachir et al., 2013[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.]).

[Scheme 1]

We have recently reported the synthesis and characterization of monomeric complexes of NiII and CoII with bptd in the presence of the pseudohalide azide (Laachir et al., 2015a[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24-m25.],b[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452-454.]). In this context, we report here the synthesis and crystal structure of a new CuII complex with bptd and thio­cyanate as co-ligands.

2. Structural commentary

The title complex has crystallographically imposed inversion symmetry, the copper atom lying on the Wyckoff special position 2b of the space group P21/c. The elongated octa­hedral coordination polyhedron around the metal cation is provided by four nitro­gen atoms of pyridine and thia­diazole rings occupying the equatorial plane and by the sulfur atoms of two thio­cyanate anions at the apical positions (Fig. 1[link]). The Cu—N distances are 2.0267 (16) and 2.0463 (15) Å, the Cu—S bond length is 2.8125 (7) Å. A bond-valence-sum calculation (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for Cu gives the expected BVS value of 2.11 valence units. The conformation of the ligand is approximately planar, with a maximum deviation from the least-squares plane of 0.190 (2) Å for atom C12. The dihedral angles formed by the thia­diazole ring with the N1/C2–C6 and N4/C8–C12 pyridine rings are 1.94 (8) and 6.96 (5)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal, the mol­ecules are linked by weak C—H⋯N hydrogen bonds (Table 1[link]) and by ππ stacking inter­actions between the pyridyl rings of adjacent complex mol­ecules [inter­centroid distance = 3.663 (2) Å], forming a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N5i 0.93 2.53 3.353 (3) 147
C6—H6⋯N3ii 0.93 2.35 3.143 (3) 142
C4—H4⋯N4iii 0.93 2.57 3.458 (3) 161
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, showing ππ inter­actions between pyridyl rings (green dashed lines) and inter­molecular hydrogen bonds (blue dashed lines).

4. Database survey

The structure of the title compound is similar to that of the related complexes [Co(C12H8N4S)2(N3)2] (Laachir et al., 2015b[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452-454.]) and [Ni(C12H8N4S)2(N3)2] (Laachir et al., 2015a[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24-m25.]), in which the azide ion is substituted by the thio­cyanate group. The CuN4S2 octa­hedron is more distorted than the NiN6 and CoN6 octa­hedra.

5. Synthesis and crystallization

2,5-Bis(pyridin-2-yl)-1,3,4-thia­diazole (bptd) was synthesized as described previously by Lebrini et al. (2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]). A solution of bptd (24 mg, 0.1 mmol) in CH3CN (10 mL) was layered onto a solution of CuCl2·2H2O (17 mg, 0.1 mmol) and KSCN (20 mg, 0.2 mmol) in CH3CN/H2O (1:1 v/v, 10 mL) in a test tube. The solution was left for two months at room temperature to give X-ray quality brown block-shaped crystals. After filtration, the product was washed with cold EtOH and dried under vacuum. Crystals were washed with water and dried under vacuum (yield 60%; m.p. 538 K). Analysis calculated for C26H16N10S4Cu: C, 47.30; H, 2.44; N, 21.21 S, 19.42. Found: C, 47.06; H, 2.43; N, 21.03; S, 19.56.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.96 Å, and with Uiso(H) = 1.2 Ueq(C). One outlier (002) was omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(SCN)2(C12H8N4S)2]
Mr 660.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.0205 (3), 7.8434 (3), 21.3454 (9)
β (°) 92.565 (2)
V3) 1341.45 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.17
Crystal size (mm) 0.35 × 0.32 × 0.26
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.604, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42199, 4089, 3155
Rint 0.060
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections 4089
No. of parameters 187
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]bis(thiocyanato-κS)copper(II) top
Crystal data top
[Cu(NCS)2(C12H8N4S)2]Dx = 1.635 Mg m3
Mr = 660.27Melting point: 538 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0205 (3) ÅCell parameters from 4089 reflections
b = 7.8434 (3) Åθ = 2.5–30.5°
c = 21.3454 (9) ŵ = 1.17 mm1
β = 92.565 (2)°T = 296 K
V = 1341.45 (9) Å3Block, brown
Z = 20.35 × 0.32 × 0.26 mm
F(000) = 670
Data collection top
Bruker X8 APEX
diffractometer
4089 independent reflections
Radiation source: fine-focus sealed tube3155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.604, Tmax = 0.746k = 1111
42199 measured reflectionsl = 2730
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.834P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4089 reflectionsΔρmax = 0.56 e Å3
187 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4345 (2)0.6803 (2)0.38733 (8)0.0240 (4)
C20.5958 (2)0.6037 (2)0.37724 (8)0.0240 (4)
C30.6786 (3)0.6181 (3)0.32209 (9)0.0327 (4)
H30.63140.67780.28810.039*
C40.8333 (3)0.5416 (3)0.31863 (10)0.0372 (5)
H40.89090.54690.28180.045*
C50.9012 (3)0.4572 (3)0.37055 (11)0.0366 (5)
H51.00650.40790.36960.044*
C60.8102 (3)0.4473 (3)0.42395 (10)0.0320 (4)
H60.85630.38960.45860.038*
C70.1712 (2)0.8133 (2)0.39355 (9)0.0251 (4)
C80.0124 (2)0.9022 (3)0.38144 (9)0.0270 (4)
C90.1027 (3)0.9212 (3)0.42773 (10)0.0322 (4)
H90.08040.87960.46800.039*
C100.2511 (3)1.0036 (3)0.41222 (12)0.0387 (5)
H100.33061.01980.44210.046*
C110.2792 (3)1.0615 (3)0.35150 (12)0.0430 (5)
H110.37821.11680.33960.052*
C120.1570 (3)1.0356 (3)0.30870 (12)0.0439 (6)
H120.17721.07470.26790.053*
C130.3302 (3)0.2765 (3)0.36867 (13)0.0423 (5)
N10.65894 (19)0.5170 (2)0.42789 (7)0.0246 (3)
N20.36607 (19)0.6566 (2)0.44138 (7)0.0258 (3)
N30.2129 (2)0.7323 (2)0.44510 (7)0.0282 (3)
N40.0124 (2)0.9581 (2)0.32252 (8)0.0354 (4)
N50.3255 (3)0.3117 (3)0.31799 (10)0.0568 (6)
Cu10.50000.50000.50000.02713 (10)
S10.31614 (6)0.80256 (7)0.33603 (2)0.02941 (12)
S20.33021 (9)0.22277 (9)0.44310 (3)0.04809 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (9)0.0275 (9)0.0174 (8)0.0018 (7)0.0005 (6)0.0016 (7)
C20.0256 (8)0.0274 (9)0.0191 (8)0.0026 (7)0.0017 (6)0.0008 (7)
C30.0359 (10)0.0429 (12)0.0196 (9)0.0034 (9)0.0058 (7)0.0018 (8)
C40.0368 (11)0.0480 (13)0.0278 (11)0.0035 (9)0.0142 (8)0.0039 (9)
C50.0309 (10)0.0421 (12)0.0379 (12)0.0034 (9)0.0140 (9)0.0007 (9)
C60.0298 (10)0.0346 (10)0.0322 (11)0.0052 (8)0.0067 (8)0.0050 (8)
C70.0244 (8)0.0291 (9)0.0219 (9)0.0009 (7)0.0004 (6)0.0005 (7)
C80.0257 (9)0.0294 (9)0.0256 (9)0.0003 (7)0.0006 (7)0.0017 (7)
C90.0327 (10)0.0371 (11)0.0269 (10)0.0007 (8)0.0020 (8)0.0004 (8)
C100.0318 (10)0.0400 (12)0.0449 (13)0.0049 (9)0.0081 (9)0.0054 (10)
C110.0314 (11)0.0419 (12)0.0554 (15)0.0082 (9)0.0016 (10)0.0047 (11)
C120.0414 (12)0.0523 (14)0.0376 (13)0.0085 (11)0.0036 (10)0.0139 (11)
C130.0331 (11)0.0369 (12)0.0568 (16)0.0028 (9)0.0003 (10)0.0137 (11)
N10.0247 (7)0.0278 (8)0.0217 (8)0.0002 (6)0.0047 (6)0.0015 (6)
N20.0246 (7)0.0311 (8)0.0216 (8)0.0017 (6)0.0016 (6)0.0026 (6)
N30.0267 (8)0.0346 (9)0.0236 (8)0.0046 (7)0.0035 (6)0.0034 (7)
N40.0319 (9)0.0440 (10)0.0304 (9)0.0065 (8)0.0022 (7)0.0108 (8)
N50.0803 (17)0.0623 (15)0.0260 (10)0.0160 (13)0.0157 (10)0.0098 (10)
Cu10.02419 (16)0.0377 (2)0.02004 (17)0.00875 (13)0.00685 (11)0.00895 (13)
S10.0304 (2)0.0383 (3)0.0196 (2)0.0038 (2)0.00108 (17)0.00653 (19)
S20.0581 (4)0.0487 (4)0.0380 (3)0.0128 (3)0.0077 (3)0.0015 (3)
Geometric parameters (Å, º) top
C1—N21.313 (2)C10—C111.382 (4)
C1—C21.452 (3)C10—H100.9300
C1—S11.7106 (18)C11—C121.384 (4)
C2—N11.356 (2)C11—H110.9300
C2—C31.382 (3)C12—N41.331 (3)
C2—S12.8397 (19)C12—H120.9300
C3—C41.383 (3)C13—N51.115 (3)
C3—H30.9300C13—S21.644 (3)
C4—C51.382 (3)N1—Cu12.0463 (15)
C4—H40.9300N2—N31.370 (2)
C5—C61.383 (3)N2—Cu12.0267 (16)
C5—H50.9300N2—S12.5392 (16)
C6—N11.337 (2)N3—S12.5657 (16)
C6—H60.9300N4—S12.9062 (18)
C7—N31.301 (2)N5—S22.759 (2)
C7—C81.465 (3)Cu1—N2i2.0267 (16)
C7—S11.7300 (19)Cu1—N1i2.0463 (15)
C8—N41.338 (3)Cu1—S2i2.8124 (7)
C8—C91.390 (3)Cu1—S22.8125 (7)
C8—S12.774 (2)S1—S2ii4.0094 (9)
C9—C101.382 (3)S2—S1iii4.0094 (9)
C9—H90.9300
N2—C1—C2118.82 (16)N2—N3—S173.37 (9)
N2—C1—S1113.60 (14)C12—N4—C8116.71 (19)
C2—C1—S1127.58 (14)C12—N4—S1172.31 (16)
N1—C2—C3122.97 (18)C8—N4—S170.92 (11)
N1—C2—C1113.12 (15)C13—N5—S21.19 (15)
C3—C2—C1123.91 (18)N2—Cu1—N2i180.0
N1—C2—S1141.62 (12)N2—Cu1—N1i99.96 (6)
C3—C2—S195.40 (13)N2i—Cu1—N1i80.04 (6)
C1—C2—S128.52 (8)N2—Cu1—N180.04 (6)
C2—C3—C4118.45 (19)N2i—Cu1—N199.96 (6)
C2—C3—H3120.8N1i—Cu1—N1180.0
C4—C3—H3120.8N2—Cu1—S2i91.78 (5)
C5—C4—C3119.16 (19)N2i—Cu1—S2i88.22 (5)
C5—C4—H4120.4N1i—Cu1—S2i91.80 (5)
C3—C4—H4120.4N1—Cu1—S2i88.20 (5)
C4—C5—C6119.0 (2)N2—Cu1—S288.22 (5)
C4—C5—H5120.5N2i—Cu1—S291.78 (5)
C6—C5—H5120.5N1i—Cu1—S288.20 (5)
N1—C6—C5122.9 (2)N1—Cu1—S291.80 (5)
N1—C6—H6118.6S2i—Cu1—S2180.00 (2)
C5—C6—H6118.6C1—S1—C786.79 (9)
N3—C7—C8124.76 (17)C1—S1—N228.28 (7)
N3—C7—S1114.92 (14)C7—S1—N258.51 (7)
C8—C7—S1120.27 (14)C1—S1—N359.41 (7)
N4—C8—C9123.86 (18)C7—S1—N327.38 (7)
N4—C8—C7114.43 (17)N2—S1—N331.13 (5)
C9—C8—C7121.69 (18)C1—S1—C8113.89 (8)
N4—C8—S181.95 (12)C7—S1—C827.14 (7)
C9—C8—S1154.16 (14)N2—S1—C885.63 (5)
C7—C8—S132.59 (9)N3—S1—C854.50 (5)
C10—C9—C8118.2 (2)C1—S1—C223.90 (7)
C10—C9—H9120.9C7—S1—C2110.69 (7)
C8—C9—H9120.9N2—S1—C252.18 (5)
C9—C10—C11118.7 (2)N3—S1—C283.31 (5)
C9—C10—H10120.6C8—S1—C2137.77 (6)
C11—C10—H10120.6C1—S1—N4140.66 (7)
C10—C11—C12118.7 (2)C7—S1—N454.21 (7)
C10—C11—H11120.6N2—S1—N4112.55 (5)
C12—C11—H11120.6N3—S1—N481.50 (5)
N4—C12—C11123.8 (2)C8—S1—N427.13 (5)
N4—C12—H12118.1C2—S1—N4164.06 (5)
C11—C12—H12118.1C1—S1—S2ii95.46 (7)
N5—C13—S2178.0 (3)C7—S1—S2ii63.79 (7)
C6—N1—C2117.53 (16)N2—S1—S2ii82.33 (4)
C6—N1—Cu1128.20 (13)N3—S1—S2ii70.21 (4)
C2—N1—Cu1114.18 (12)C8—S1—S2ii64.66 (4)
C1—N2—N3113.62 (15)C2—S1—S2ii105.86 (4)
C1—N2—Cu1113.43 (13)N4—S1—S2ii73.36 (4)
N3—N2—Cu1132.74 (12)C13—S2—N50.81 (10)
C1—N2—S138.12 (9)C13—S2—Cu1101.44 (9)
N3—N2—S175.50 (9)N5—S2—Cu1102.00 (6)
Cu1—N2—S1151.43 (8)C13—S2—S1iii70.19 (8)
C7—N3—N2111.07 (15)N5—S2—S1iii69.96 (5)
C7—N3—S137.70 (9)Cu1—S2—S1iii151.94 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5iv0.932.533.353 (3)147
C6—H6···N3i0.932.353.143 (3)142
C4—H4···N4v0.932.573.458 (3)161
Symmetry codes: (i) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Chouaib Doukkali University, El Jadida, Morocco, for financial support.

References

First citationAhmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764–772.  CrossRef CAS Google Scholar
First citationBaghel, U. S., Kaur, H., Chawla, A. & Dhawan, R. K. (2014). Der Pharma Chem. 6, 66–69.  Google Scholar
First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011). Acta Cryst. E67, m834–m835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252–m253.  CSD CrossRef IUCr Journals Google Scholar
First citationKadam Sushama, S., Nazeruddin, G. M., Rafique Sarkhwas, M. & Suryawanshi, S. B. (2016). World J. Pharm. Res. 5, 1724–1737.  Google Scholar
First citationKlingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352.  CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24–m25.  CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452–454.  CSD CrossRef IUCr Journals Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661–2667.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds