research communications
κ2N2,N3]bis(thiocyanato-κS)copper(II)
of bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr
The mononuclear title complex, [Cu(SCN)2(C12H8N4S)2], was obtained by the reaction of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole and potassium thiocyanate with copper(II) chloride dihydrate. The copper cation lies on an inversion centre and displays an elongated octahedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole ligands, whereas the axial positions are occupied by the S atoms of two thiocyanate anions. The thiadiazole and the pyridyl rings linked to the metal are approximately coplanar, with a maximum deviation from the mean plane of 0.190 (2) Å. The cohesion of the is ensured by weak C—H⋯N hydrogen bonds and π–π interactions between parallel pyridyl rings of neighbouring molecules [centroid-to-centroid distance = 3.663 (2) Å], leading to a three-dimensional network.
Keywords: crystal structure; copper complex; 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole; thiocyanate ligand.
CCDC reference: 1494615
1. Chemical context
The use of compounds containing a 1,3,4-thiadiazole moiety as part of ligand systems has gained considerable attention in recent years (Kadam Sushama et al., 2016). Indeed, a 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (bptd) and its metal complexes have been extensively studied because of their potential applications in biology (Baghel et al., 2014; Ahmed et al., 2015; Zine et al., 2016), magnetism (Bentiss et al., 2004) and coordination chemistry (Bentiss et al., 2002). An interesting feature of the metal-ligand chemistry of these compounds is that the complexes can be mononuclear (Bentiss et al., 2011, 2012; Klingele et al., 2010; Kaase & Klingele, 2014) or binuclear (Laachir et al., 2013).
We have recently reported the synthesis and characterization of monomeric complexes of NiII and CoII with bptd in the presence of the pseudohalide azide (Laachir et al., 2015a,b). In this context, we report here the synthesis and of a new CuII complex with bptd and thiocyanate as co-ligands.
2. Structural commentary
The title complex has crystallographically imposed inversion symmetry, the copper atom lying on the Wyckoff special position 2b of the P21/c. The elongated octahedral around the metal cation is provided by four nitrogen atoms of pyridine and thiadiazole rings occupying the equatorial plane and by the sulfur atoms of two thiocyanate anions at the apical positions (Fig. 1). The Cu—N distances are 2.0267 (16) and 2.0463 (15) Å, the Cu—S bond length is 2.8125 (7) Å. A bond-valence-sum calculation (Brown & Altermatt, 1985) for Cu gives the expected BVS value of 2.11 valence units. The conformation of the ligand is approximately planar, with a maximum deviation from the least-squares plane of 0.190 (2) Å for atom C12. The dihedral angles formed by the thiadiazole ring with the N1/C2–C6 and N4/C8–C12 pyridine rings are 1.94 (8) and 6.96 (5)°, respectively.
3. Supramolecular features
In the crystal, the molecules are linked by weak C—H⋯N hydrogen bonds (Table 1) and by π–π stacking interactions between the pyridyl rings of adjacent complex molecules [intercentroid distance = 3.663 (2) Å], forming a three-dimensional network (Fig. 2).
4. Database survey
The structure of the title compound is similar to that of the related complexes [Co(C12H8N4S)2(N3)2] (Laachir et al., 2015b) and [Ni(C12H8N4S)2(N3)2] (Laachir et al., 2015a), in which the azide ion is substituted by the thiocyanate group. The CuN4S2 octahedron is more distorted than the NiN6 and CoN6 octahedra.
5. Synthesis and crystallization
2,5-Bis(pyridin-2-yl)-1,3,4-thiadiazole (bptd) was synthesized as described previously by Lebrini et al. (2005). A solution of bptd (24 mg, 0.1 mmol) in CH3CN (10 mL) was layered onto a solution of CuCl2·2H2O (17 mg, 0.1 mmol) and KSCN (20 mg, 0.2 mmol) in CH3CN/H2O (1:1 v/v, 10 mL) in a test tube. The solution was left for two months at room temperature to give X-ray quality brown block-shaped crystals. After filtration, the product was washed with cold EtOH and dried under vacuum. Crystals were washed with water and dried under vacuum (yield 60%; m.p. 538 K). Analysis calculated for C26H16N10S4Cu: C, 47.30; H, 2.44; N, 21.21 S, 19.42. Found: C, 47.06; H, 2.43; N, 21.03; S, 19.56.
6. Refinement
Crystal data, data collection and structure . H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.96 Å, and with Uiso(H) = 1.2 Ueq(C). One outlier (002) was omitted in the last cycles of refinement.
details are summarized in Table 2Supporting information
CCDC reference: 1494615
https://doi.org/10.1107/S2056989016011713/rz5192sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011713/rz5192Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).[Cu(NCS)2(C12H8N4S)2] | Dx = 1.635 Mg m−3 |
Mr = 660.27 | Melting point: 538 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0205 (3) Å | Cell parameters from 4089 reflections |
b = 7.8434 (3) Å | θ = 2.5–30.5° |
c = 21.3454 (9) Å | µ = 1.17 mm−1 |
β = 92.565 (2)° | T = 296 K |
V = 1341.45 (9) Å3 | Block, brown |
Z = 2 | 0.35 × 0.32 × 0.26 mm |
F(000) = 670 |
Bruker X8 APEX diffractometer | 4089 independent reflections |
Radiation source: fine-focus sealed tube | 3155 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
φ and ω scans | θmax = 30.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.604, Tmax = 0.746 | k = −11→11 |
42199 measured reflections | l = −27→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0418P)2 + 0.834P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4089 reflections | Δρmax = 0.56 e Å−3 |
187 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4345 (2) | 0.6803 (2) | 0.38733 (8) | 0.0240 (4) | |
C2 | 0.5958 (2) | 0.6037 (2) | 0.37724 (8) | 0.0240 (4) | |
C3 | 0.6786 (3) | 0.6181 (3) | 0.32209 (9) | 0.0327 (4) | |
H3 | 0.6314 | 0.6778 | 0.2881 | 0.039* | |
C4 | 0.8333 (3) | 0.5416 (3) | 0.31863 (10) | 0.0372 (5) | |
H4 | 0.8909 | 0.5469 | 0.2818 | 0.045* | |
C5 | 0.9012 (3) | 0.4572 (3) | 0.37055 (11) | 0.0366 (5) | |
H5 | 1.0065 | 0.4079 | 0.3696 | 0.044* | |
C6 | 0.8102 (3) | 0.4473 (3) | 0.42395 (10) | 0.0320 (4) | |
H6 | 0.8563 | 0.3896 | 0.4586 | 0.038* | |
C7 | 0.1712 (2) | 0.8133 (2) | 0.39355 (9) | 0.0251 (4) | |
C8 | 0.0124 (2) | 0.9022 (3) | 0.38144 (9) | 0.0270 (4) | |
C9 | −0.1027 (3) | 0.9212 (3) | 0.42773 (10) | 0.0322 (4) | |
H9 | −0.0804 | 0.8796 | 0.4680 | 0.039* | |
C10 | −0.2511 (3) | 1.0036 (3) | 0.41222 (12) | 0.0387 (5) | |
H10 | −0.3306 | 1.0198 | 0.4421 | 0.046* | |
C11 | −0.2792 (3) | 1.0615 (3) | 0.35150 (12) | 0.0430 (5) | |
H11 | −0.3782 | 1.1168 | 0.3396 | 0.052* | |
C12 | −0.1570 (3) | 1.0356 (3) | 0.30870 (12) | 0.0439 (6) | |
H12 | −0.1772 | 1.0747 | 0.2679 | 0.053* | |
C13 | 0.3302 (3) | 0.2765 (3) | 0.36867 (13) | 0.0423 (5) | |
N1 | 0.65894 (19) | 0.5170 (2) | 0.42789 (7) | 0.0246 (3) | |
N2 | 0.36607 (19) | 0.6566 (2) | 0.44138 (7) | 0.0258 (3) | |
N3 | 0.2129 (2) | 0.7323 (2) | 0.44510 (7) | 0.0282 (3) | |
N4 | −0.0124 (2) | 0.9581 (2) | 0.32252 (8) | 0.0354 (4) | |
N5 | 0.3255 (3) | 0.3117 (3) | 0.31799 (10) | 0.0568 (6) | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.02713 (10) | |
S1 | 0.31614 (6) | 0.80256 (7) | 0.33603 (2) | 0.02941 (12) | |
S2 | 0.33021 (9) | 0.22277 (9) | 0.44310 (3) | 0.04809 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0269 (9) | 0.0275 (9) | 0.0174 (8) | −0.0018 (7) | 0.0005 (6) | 0.0016 (7) |
C2 | 0.0256 (8) | 0.0274 (9) | 0.0191 (8) | −0.0026 (7) | 0.0017 (6) | −0.0008 (7) |
C3 | 0.0359 (10) | 0.0429 (12) | 0.0196 (9) | −0.0034 (9) | 0.0058 (7) | 0.0018 (8) |
C4 | 0.0368 (11) | 0.0480 (13) | 0.0278 (11) | −0.0035 (9) | 0.0142 (8) | −0.0039 (9) |
C5 | 0.0309 (10) | 0.0421 (12) | 0.0379 (12) | 0.0034 (9) | 0.0140 (9) | −0.0007 (9) |
C6 | 0.0298 (10) | 0.0346 (10) | 0.0322 (11) | 0.0052 (8) | 0.0067 (8) | 0.0050 (8) |
C7 | 0.0244 (8) | 0.0291 (9) | 0.0219 (9) | −0.0009 (7) | 0.0004 (6) | 0.0005 (7) |
C8 | 0.0257 (9) | 0.0294 (9) | 0.0256 (9) | −0.0003 (7) | −0.0006 (7) | 0.0017 (7) |
C9 | 0.0327 (10) | 0.0371 (11) | 0.0269 (10) | 0.0007 (8) | 0.0020 (8) | 0.0004 (8) |
C10 | 0.0318 (10) | 0.0400 (12) | 0.0449 (13) | 0.0049 (9) | 0.0081 (9) | −0.0054 (10) |
C11 | 0.0314 (11) | 0.0419 (12) | 0.0554 (15) | 0.0082 (9) | −0.0016 (10) | 0.0047 (11) |
C12 | 0.0414 (12) | 0.0523 (14) | 0.0376 (13) | 0.0085 (11) | −0.0036 (10) | 0.0139 (11) |
C13 | 0.0331 (11) | 0.0369 (12) | 0.0568 (16) | 0.0028 (9) | 0.0003 (10) | −0.0137 (11) |
N1 | 0.0247 (7) | 0.0278 (8) | 0.0217 (8) | 0.0002 (6) | 0.0047 (6) | 0.0015 (6) |
N2 | 0.0246 (7) | 0.0311 (8) | 0.0216 (8) | 0.0017 (6) | 0.0016 (6) | 0.0026 (6) |
N3 | 0.0267 (8) | 0.0346 (9) | 0.0236 (8) | 0.0046 (7) | 0.0035 (6) | 0.0034 (7) |
N4 | 0.0319 (9) | 0.0440 (10) | 0.0304 (9) | 0.0065 (8) | 0.0022 (7) | 0.0108 (8) |
N5 | 0.0803 (17) | 0.0623 (15) | 0.0260 (10) | 0.0160 (13) | −0.0157 (10) | −0.0098 (10) |
Cu1 | 0.02419 (16) | 0.0377 (2) | 0.02004 (17) | 0.00875 (13) | 0.00685 (11) | 0.00895 (13) |
S1 | 0.0304 (2) | 0.0383 (3) | 0.0196 (2) | 0.0038 (2) | 0.00108 (17) | 0.00653 (19) |
S2 | 0.0581 (4) | 0.0487 (4) | 0.0380 (3) | −0.0128 (3) | 0.0077 (3) | −0.0015 (3) |
C1—N2 | 1.313 (2) | C10—C11 | 1.382 (4) |
C1—C2 | 1.452 (3) | C10—H10 | 0.9300 |
C1—S1 | 1.7106 (18) | C11—C12 | 1.384 (4) |
C2—N1 | 1.356 (2) | C11—H11 | 0.9300 |
C2—C3 | 1.382 (3) | C12—N4 | 1.331 (3) |
C2—S1 | 2.8397 (19) | C12—H12 | 0.9300 |
C3—C4 | 1.383 (3) | C13—N5 | 1.115 (3) |
C3—H3 | 0.9300 | C13—S2 | 1.644 (3) |
C4—C5 | 1.382 (3) | N1—Cu1 | 2.0463 (15) |
C4—H4 | 0.9300 | N2—N3 | 1.370 (2) |
C5—C6 | 1.383 (3) | N2—Cu1 | 2.0267 (16) |
C5—H5 | 0.9300 | N2—S1 | 2.5392 (16) |
C6—N1 | 1.337 (2) | N3—S1 | 2.5657 (16) |
C6—H6 | 0.9300 | N4—S1 | 2.9062 (18) |
C7—N3 | 1.301 (2) | N5—S2 | 2.759 (2) |
C7—C8 | 1.465 (3) | Cu1—N2i | 2.0267 (16) |
C7—S1 | 1.7300 (19) | Cu1—N1i | 2.0463 (15) |
C8—N4 | 1.338 (3) | Cu1—S2i | 2.8124 (7) |
C8—C9 | 1.390 (3) | Cu1—S2 | 2.8125 (7) |
C8—S1 | 2.774 (2) | S1—S2ii | 4.0094 (9) |
C9—C10 | 1.382 (3) | S2—S1iii | 4.0094 (9) |
C9—H9 | 0.9300 | ||
N2—C1—C2 | 118.82 (16) | N2—N3—S1 | 73.37 (9) |
N2—C1—S1 | 113.60 (14) | C12—N4—C8 | 116.71 (19) |
C2—C1—S1 | 127.58 (14) | C12—N4—S1 | 172.31 (16) |
N1—C2—C3 | 122.97 (18) | C8—N4—S1 | 70.92 (11) |
N1—C2—C1 | 113.12 (15) | C13—N5—S2 | 1.19 (15) |
C3—C2—C1 | 123.91 (18) | N2—Cu1—N2i | 180.0 |
N1—C2—S1 | 141.62 (12) | N2—Cu1—N1i | 99.96 (6) |
C3—C2—S1 | 95.40 (13) | N2i—Cu1—N1i | 80.04 (6) |
C1—C2—S1 | 28.52 (8) | N2—Cu1—N1 | 80.04 (6) |
C2—C3—C4 | 118.45 (19) | N2i—Cu1—N1 | 99.96 (6) |
C2—C3—H3 | 120.8 | N1i—Cu1—N1 | 180.0 |
C4—C3—H3 | 120.8 | N2—Cu1—S2i | 91.78 (5) |
C5—C4—C3 | 119.16 (19) | N2i—Cu1—S2i | 88.22 (5) |
C5—C4—H4 | 120.4 | N1i—Cu1—S2i | 91.80 (5) |
C3—C4—H4 | 120.4 | N1—Cu1—S2i | 88.20 (5) |
C4—C5—C6 | 119.0 (2) | N2—Cu1—S2 | 88.22 (5) |
C4—C5—H5 | 120.5 | N2i—Cu1—S2 | 91.78 (5) |
C6—C5—H5 | 120.5 | N1i—Cu1—S2 | 88.20 (5) |
N1—C6—C5 | 122.9 (2) | N1—Cu1—S2 | 91.80 (5) |
N1—C6—H6 | 118.6 | S2i—Cu1—S2 | 180.00 (2) |
C5—C6—H6 | 118.6 | C1—S1—C7 | 86.79 (9) |
N3—C7—C8 | 124.76 (17) | C1—S1—N2 | 28.28 (7) |
N3—C7—S1 | 114.92 (14) | C7—S1—N2 | 58.51 (7) |
C8—C7—S1 | 120.27 (14) | C1—S1—N3 | 59.41 (7) |
N4—C8—C9 | 123.86 (18) | C7—S1—N3 | 27.38 (7) |
N4—C8—C7 | 114.43 (17) | N2—S1—N3 | 31.13 (5) |
C9—C8—C7 | 121.69 (18) | C1—S1—C8 | 113.89 (8) |
N4—C8—S1 | 81.95 (12) | C7—S1—C8 | 27.14 (7) |
C9—C8—S1 | 154.16 (14) | N2—S1—C8 | 85.63 (5) |
C7—C8—S1 | 32.59 (9) | N3—S1—C8 | 54.50 (5) |
C10—C9—C8 | 118.2 (2) | C1—S1—C2 | 23.90 (7) |
C10—C9—H9 | 120.9 | C7—S1—C2 | 110.69 (7) |
C8—C9—H9 | 120.9 | N2—S1—C2 | 52.18 (5) |
C9—C10—C11 | 118.7 (2) | N3—S1—C2 | 83.31 (5) |
C9—C10—H10 | 120.6 | C8—S1—C2 | 137.77 (6) |
C11—C10—H10 | 120.6 | C1—S1—N4 | 140.66 (7) |
C10—C11—C12 | 118.7 (2) | C7—S1—N4 | 54.21 (7) |
C10—C11—H11 | 120.6 | N2—S1—N4 | 112.55 (5) |
C12—C11—H11 | 120.6 | N3—S1—N4 | 81.50 (5) |
N4—C12—C11 | 123.8 (2) | C8—S1—N4 | 27.13 (5) |
N4—C12—H12 | 118.1 | C2—S1—N4 | 164.06 (5) |
C11—C12—H12 | 118.1 | C1—S1—S2ii | 95.46 (7) |
N5—C13—S2 | 178.0 (3) | C7—S1—S2ii | 63.79 (7) |
C6—N1—C2 | 117.53 (16) | N2—S1—S2ii | 82.33 (4) |
C6—N1—Cu1 | 128.20 (13) | N3—S1—S2ii | 70.21 (4) |
C2—N1—Cu1 | 114.18 (12) | C8—S1—S2ii | 64.66 (4) |
C1—N2—N3 | 113.62 (15) | C2—S1—S2ii | 105.86 (4) |
C1—N2—Cu1 | 113.43 (13) | N4—S1—S2ii | 73.36 (4) |
N3—N2—Cu1 | 132.74 (12) | C13—S2—N5 | 0.81 (10) |
C1—N2—S1 | 38.12 (9) | C13—S2—Cu1 | 101.44 (9) |
N3—N2—S1 | 75.50 (9) | N5—S2—Cu1 | 102.00 (6) |
Cu1—N2—S1 | 151.43 (8) | C13—S2—S1iii | 70.19 (8) |
C7—N3—N2 | 111.07 (15) | N5—S2—S1iii | 69.96 (5) |
C7—N3—S1 | 37.70 (9) | Cu1—S2—S1iii | 151.94 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N5iv | 0.93 | 2.53 | 3.353 (3) | 147 |
C6—H6···N3i | 0.93 | 2.35 | 3.143 (3) | 142 |
C4—H4···N4v | 0.93 | 2.57 | 3.458 (3) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Chouaib Doukkali University, El Jadida, Morocco, for financial support.
References
Ahmed, Y. B., Merzouk, H., Harek, Y., Medjdoub, A., Cherrak, S., Larabi, L. & Narce, M. (2015). Med. Chem. Res. 24, 764–772. CrossRef CAS Google Scholar
Baghel, U. S., Kaur, H., Chawla, A. & Dhawan, R. K. (2014). Der Pharma Chem. 6, 66–69. Google Scholar
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011). Acta Cryst. E67, m834–m835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. Web of Science CSD CrossRef CAS Google Scholar
Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408. Web of Science CSD CrossRef CAS Google Scholar
Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. CSD CrossRef CAS IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252–m253. CSD CrossRef IUCr Journals Google Scholar
Kadam Sushama, S., Nazeruddin, G. M., Rafique Sarkhwas, M. & Suryawanshi, S. B. (2016). World J. Pharm. Res. 5, 1724–1737. Google Scholar
Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352. CSD CrossRef IUCr Journals Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015a). Acta Cryst. E71, m24–m25. CSD CrossRef IUCr Journals Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, 452–454. CSD CrossRef IUCr Journals Google Scholar
Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zine, H., Rifai, L. A., Faize, M., Bentiss, F., Guesmi, S., Laachir, A., Smaili, A., Makroum, K., Sahibed-Dine, A. & Koussa, T. (2016). J. Agric. Food Chem. 64, 2661–2667. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.