research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Constantine 25000, Algeria, bLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177., 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France, cChemistry Department, University of Fribourg, Chemin du Musee 9, CH-1700 Fribourg, Switzerland, dLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000 Oujda, Morocco, eFaculté Pluridisciplinaire Nador BP 300, Selouane 62702, Nador, Morocco, fService de Radiocristallographie, Institut de Chimie, Université de Strasbourg, UMR 7177, 67008 Strasbourg Cedex, France, and gFribourg Center for Nanomaterials, FriMat, University of Fribourg, Chemin du Musee 9, CH-1700 Fribourg, Switzerland
*Correspondence e-mail: souheilachetioui@yahoo.fr, touzanir@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 May 2016; accepted 4 July 2016; online 12 July 2016)

In the copper(II) complex, bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naph­thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord­inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri­bromo­benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra­molecular Cu⋯Br inter­action [3.134 (2) Å], while in the other ligand, the tri­bromo­benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri­bromo­benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol­ecules are linked by C—H⋯π inter­actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of the disordered solvent mol­ecules were not taken into account during refinement.

1. Chemical context

Recently, 1-phenyl­azo-2-naphthol derivatives have attracted attention because the phenyl­azo-naphtho­late group can provide N,O-bidentate chelation to stabilize transition or main group metal complexes. Azo-metal chelates have also attracted increasing attention due to their inter­esting electronic and geometrical features in connection with their applications in mol­ecular memory storage, non-linear optical elements and printing systems. Another advantage of complexes involving azo DNO's (dyes and pigments) and transition metal ions is the possibility to obtain new compounds with biological activity (Thomas et al., 2004[Thomas, A. M., Nethaji, M. & Chakravarty, A. R. J. (2004). J. Inorg. Biochem. 98, 1087-1094.]; Reed et al., 2006[Reed, J. E., Arnal, A. A., Neidle, S. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 5992-5993.]). Transition metals have also been used in the treatment of several diseases, as metal complexes which are capable of cleaving DNA under physiological conditions are of inter­est in the development of metal-based anti­cancer agents. This is an impetus for chemists to develop innovative strat­egies for the preparation of more effective, target-specific and preferably non-covalently bound anti­cancer drugs (Chen et al., 2010[Chen, G. J., Qiao, X., Qiao, P. Q., Xu, G. J., Xu, J. Y., Tian, J. L., Gu, W., Liu, X. & Yan, S. P. (2010). J. Inorg. Biochem. 105, 119-126.]; Cvek et al., 2008[Cvek, B., Milacic, V., Taraba, J. & Dou, Q. P. (2008). J. Med. Chem. 51, 6256-6258.]).

[Scheme 1]

Being inter­ested in the synthesis and preparation of metal complexes bearing such ligands, we have successfully synthesized and structurally characterized CuII complexes with N,O-bidentate phenyl­azo-naphtho­late ligands (Chetioui et al., 2015a[Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211-m212.],b[Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207-m208.]). In this work we are involved in the colour-generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–) (Chetioui et al., 2013c[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1250.],d[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013d). Acta Cryst. E69, o1322-o1323.]) in order to synthesize new complexes with Cu(OAc)2·H2O, Ni(OAc)2·H2O, and Pd(OAc)2·H2O. We report herein on the synthesis and crystal structures of the title complexes, (I)–(III), of the ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol, whose crystal structure has been described previously (Chetioui et al., 2013c[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1250.]).

2. Structural commentary

In all three compounds the ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol (Chetioui et al., 2013c[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1250.]) coordinates in a N,O-bidentate manner. The metal atoms are coordinated by two oxygen atoms in a trans position of the C—O function and two nitro­gen atoms in a trans position of the N=N function. In compound (I)[link], Fig. 1[link], the values of the angles involving the copper and the two oxygen and two nitro­gen atoms (Table 1[link]) indicate that the geometry of the coordination polyhedron is distorted square-planar. It has a τ4 value of 0.15 [Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; extreme configurations: 0.00 for square-pyramidal (SQP) and 1.00 for tetrahedral (TET); 0.85 for trigonal–pyramidal (TRP)]. In one of the ligands, the tri­bromo­benzene ring (C17–C22) is inclined to the naphthalene ring system (C23–C32) by 37.4 (5)°, creating a weak intra­molecular Cu⋯Br inter­action [Cu1⋯Br4 = 3.134 (2) Å]. In the other ligand, the tri­bromo­benzene ring (C1–C6) is almost normal to the naphthalene ring system (C7-C16), making a dihedral angle of 72.1 (6)°. A similar short intra­molecular metal–halogen contact has been observed in the centrosymmetric complex bis­(1-[(E)-(2-chloro­phen­yl)diazen­yl]naphthalen-2-olato)copper(II), viz. Cu⋯Cl = 3.153 (1) Å (Benaouida et al., 2013[Benaouida, M. A., Benosmane, A., Bouguerria, H., Bouaoud, S. E. & Merazig, H. (2013). Acta Cryst. E69, m405.]), and the chloro­benzene ring is inclined to the naphthalene ring system by 32.72 (12)°.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Cu1—Br4 3.134 (2) Cu1—O1 1.892 (9)
Cu1—N1 1.947 (12) Cu1—O2 1.888 (8)
Cu1—N3 1.970 (11)    
       
O2—Cu1—O1 169.4 (4) O2—Cu1—N3 87.6 (4)
O2—Cu1—N1 91.3 (4) O1—Cu1—N3 92.1 (4)
O1—Cu1—N1 90.9 (4) N1—Cu1—N3 169.3 (5)
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with atom labelling and 50% probability displacement ellipsoids. The intra­molecular Cu⋯Br contact is shown as a dashed line (details are given in Table 1[link]).

Compounds (II)[link] and (III)[link], the nickel(II) (Fig. 2[link], Table 2[link]) and palladium(II) (Fig. 3[link], Table 3[link]) complexes, respectively, are isotypic. The metal atoms are each located on inversion centres, coordinating in a bidentate fashion to the N and O atoms of the ligand, hence the metal coordination spheres have perfect square-planar geometry. The tri­bromo­benzene rings (C1–C6) are almost normal to the naphthalene ring systems (C7–C16) with a dihedral angle of 80.79 (18)° in (II)[link] and 80.8 (3)° in (III)[link].

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Ni—N1 1.876 (3) Ni—O1 1.821 (3)
       
O1—Ni—O1i 180 O1i—Ni—N1 87.41 (14)
O1—Ni—N1 92.59 (14) N1—Ni—N1i 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 3
Selected geometric parameters (Å, °) for (III)[link]

Pd1—N1 2.004 (5) Pd1—O1 1.972 (5)
       
O1—Pd1—O1i 180 O1i—Pd1—N1 88.7 (2)
O1—Pd1—N1 91.3 (2) N1—Pd1—N1i 180
Symmetry code: (i) -x, -y, -z.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with atom labelling and 50% probability displacement ellipsoids. The unlabelled atoms are related to the labelled atoms by the symmetry operation (−x + 1, −y + 1, −z + 1).
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], with atom labelling and 50% probability displacement ellipsoids. The unlabelled atoms are related to the labelled atoms by the symmetry operation (−x, −y, −z).

3. Supra­molecular features

As shown in Fig. 4[link], in the crystal of compound (I)[link], mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains along [001]. The chains are linked by C—H⋯π inter­actions, forming sheets lying parallel to (011). Details of these inter­actions are given in Table 4[link].

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br6i 0.95 2.75 3.546 (15) 142
C3—H3⋯Cg1ii 0.95 2.99 3.729 (15) 136
Symmetry codes: (i) x, y, z-1; (ii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the a axis. The inter­molecular inter­actions are shown as dashed lines (see Table 4[link] for details), and for clarity only the H atoms involved in these inter­actions have been included.

The crystal packing in compound (II)[link] [and isotypic compound (III)[link]] is illustrated in Fig. 5[link]. Mol­ecules are linked by C—H⋯π inter­actions, forming slabs lying parallel to (10[\overline{1}]). Details of the inter­molecular inter­actions are given in Table 5[link] for (II)[link] and Table 6[link] for (III)[link].

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg2ii 0.95 2.71 3.391 (5) 130
Symmetry code: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg2ii 0.93 2.70 3.371 (8) 129
Symmetry code: (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the normal to (10[\overline{1}]). The inter­molecular inter­actions are shown as dashed lines (see Table 5[link] for details), and for clarity only the H atoms involved in these inter­actions have been included.

4. Database survey

In the title ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol (CSD refcode AFOFIM; Chetioui et al., 2013c[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1250.]) the benzene ring is inclined to the naphthalene ring system by 33.80 (16)°. A search of the Cambridge Structural Database (Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for square-planar metal complexes of (E)-1-(phenyl­diazen­yl)naphthalen-2-ol and its derivatives gave seven hits (Fig. 6[link]). They include a zinc(II) complex of the ligand (E)-1-(phenyl­diazen­yl)naphthalen-2-ol (LUQQIZ; Gallegos et al., 2015[Gallegos, C., Tabernero, V., Mosquera, M. E. G., Cuenca, T. & Cano, J. (2015). Eur. J. Inorg. Chem. pp. 5124-5132.]), where the zinc atom has a distorted trigonal–pyramidal configuration with a τ4 parameter of 0.77. In the two ligands, the phenyl rings are inclined to the naphthalene ring systems by 11.4 (2) and 9.2 (3)°. Among the other six complexes, in which the metal atoms are all located on inversion centres, there are three copper(II) complexes with the ligands (E)-1-(phenyl­diazen­yl)naphthalen-2-ol (refcode CBANAP; Jarvis, 1961[Jarvis, J. A. J. (1961). Acta Cryst. 14, 961-964.]), (E)-1-(2-chloro­phen­yl)diazen­yl]naphthalen-2-ol (AFATIM; Benaouida et al., 2013[Benaouida, M. A., Benosmane, A., Bouguerria, H., Bouaoud, S. E. & Merazig, H. (2013). Acta Cryst. E69, m405.]) and (E)-1-(2,4-di­methyl­phen­yl)diazen­yl]naphthalen-2-ol (NOTNOB; Ferreira et al., 2015[Ferreira, G. R., Marcial, B. L., Garcia, H. C., Faulstich, F. R. L., Dos Santos, H. F. & de Oliveira, L. F. C. (2015). Supramol. Chem. 27, 13-20.]); two nickel complexes with the ligands (E)-1-(phenyl­diazen­yl)naphthalen-2-ol (NOTNUH; Ferreira et al., 2015[Ferreira, G. R., Marcial, B. L., Garcia, H. C., Faulstich, F. R. L., Dos Santos, H. F. & de Oliveira, L. F. C. (2015). Supramol. Chem. 27, 13-20.]) and (E)-1-(3-methyl­phen­yl)diazen­yl]naphthalen-2-ol (TOAZNI; Alcock et al., 1968[Alcock, N. W., Spencer, R. C., Prince, R. H. & Kennard, O. (1968). J. Chem. Soc. A, pp. 2382-2388.]); and one palladium complex with the ligand [(E)-1-(2-methyl­phen­yl)diazen­yl]naphthalen-2-ol (DURRIS; Lin et al., 2010[Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.]). The orientation of the phen­yl/benzene ring with respect to the naphthalene ring system varies quite considerably. In the palladium complex (DURRIS) and the copper complex (NOTNOB), where the benzene ring has a methyl group in the ortho position, the benzene ring is inclined to the naphthalene ring system by 74.41 (4) and 83.87 (6)°, respectively. In the other four complexes, the corresponding dihedral angles are 19.12 and 32.72 (12)° for the copper complexes CBANAP and AFATIM, respectively, and 24.06 (15) and ca 35.56° for the nickel complexes NOTNUH and TOAZNI, respectively.

[Figure 6]
Figure 6
The results of the database search (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for four-coordinate metal complexes of the ligand (E)-1-(phenyl­diazen­yl)naphthalen-2-ol and its derivatives.

5. Synthesis and crystallization

The title compounds were synthesized by the following procedure: (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]-naphthal­en-2-ol (2.0 mmol) and M(OAc)2·H2O (1.0 mmol; where M = Cu, Ni, Pd) was stirred at 298 K in a mixture of THF/MeOH (10/10 ml) for 24 h. The solvents were removed under vacuum and the residue was washed twice with hexane to give dark solids. The resulting solids were crystallized from CH2Cl2 to yield red block-like crystals for (I)[link], black prismatic crystals for (II)[link] and dark-red plate-like crystals for (III)[link].

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. For all three compounds the C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.95 Å for (I)[link] and (II)[link] and 0.93 Å for (III)[link], with Uiso(H) = 1.2Ueq(C). For the copper(II) complex (I)[link], a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The formula mass and unit-cell characteristics of the disordered solvent mol­ecules were not taken into account during refinement. This complex crystallizes in the monoclinic space group P21, with the Flack parameter = −0.006 (14).

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Cu(C16H8Br3N2O)2] [Ni(C16H8Br3N2O)2] [Pd(C16H8Br3N2O)2]
Mr 1031.49 1026.66 1074.35
Crystal system, space group Monoclinic, P21 Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 173 200
a, b, c (Å) 11.9423 (7), 12.1314 (10), 12.8974 (10) 11.0909 (6), 12.4571 (6), 12.5382 (7) 11.1896 (8), 12.4540 (8), 12.5511 (9)
β (°) 107.032 (4) 107.820 (2) 107.749 (5)
V3) 1786.6 (2) 1649.17 (15) 1665.8 (2)
Z 2 2 2
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 7.36 7.89 13.23
Crystal size (mm) 0.20 × 0.15 × 0.06 0.30 × 0.22 × 0.06 0.12 × 0.09 × 0.03
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD STOE IPDS 2T
Absorption correction Multi-scan (MULABS; Spek, 2009) Multi-scan (MULABS; Spek, 2009) Multi-scan (MULABS; Spek, 2009)
Tmin, Tmax 0.311, 0.386 0.151, 0.317 0.360, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14985, 7819, 4785 11360, 3745, 2214 13003, 2895, 2371
Rint 0.077 0.094 0.142
(sin θ/λ)max−1) 0.650 0.649 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.140, 0.96 0.043, 0.096, 0.95 0.057, 0.170, 1.11
No. of reflections 7819 3745 2895
No. of parameters 388 205 206
No. of restraints 2 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.58 0.57, −0.66 0.88, −1.10
Absolute structure Flack x determined using 1648 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.006 (14)
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998) for (I), (II); X-AREA (Stoe & Cie, 2002) for (III). Cell refinement: DENZO (Otwinowski & Minor, 1997) for (I), (II); X-AREA (Stoe & Cie, 2002) for (III). Data reduction: DENZO (Otwinowski & Minor, 1997) for (I), (II); X-RED32 (Stoe & Cie, 2002) for (III). Program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008) for (I), (II); SIR97 (Altomare et al., 1999) for (III). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) Bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) top
Crystal data top
[Cu(C16H8Br3N2O)2]F(000) = 982
Mr = 1031.49Dx = 1.917 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.9423 (7) ÅCell parameters from 19031 reflections
b = 12.1314 (10) Åθ = 1.0–27.5°
c = 12.8974 (10) ŵ = 7.36 mm1
β = 107.032 (4)°T = 173 K
V = 1786.6 (2) Å3Block, red
Z = 20.20 × 0.15 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
7819 independent reflections
Radiation source: sealed tube4785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
phi and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1515
Tmin = 0.311, Tmax = 0.386k = 1515
14985 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
7819 reflectionsΔρmax = 0.59 e Å3
388 parametersΔρmin = 0.58 e Å3
2 restraintsAbsolute structure: Flack x determined using 1648 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8599 (11)1.0263 (11)0.0117 (12)0.032 (3)
C20.7637 (10)1.0951 (10)0.0438 (11)0.029 (3)
C30.6867 (12)1.0894 (11)0.1484 (12)0.034 (3)
H30.62091.13700.17090.041*
C40.7093 (12)1.0134 (11)0.2171 (11)0.036 (3)
C50.8009 (12)0.9443 (13)0.1921 (12)0.041 (4)
H50.81180.89270.24380.049*
C60.8812 (11)0.9500 (11)0.0865 (13)0.038 (4)
C71.1218 (11)1.0834 (10)0.2004 (11)0.037 (4)
C81.1126 (12)1.0508 (12)0.3013 (11)0.038 (4)
C91.2090 (15)1.0731 (12)0.3969 (14)0.050 (4)
H91.20281.05320.46620.060*
C101.3075 (13)1.1215 (13)0.3890 (14)0.050 (3)
H101.37021.13460.45290.060*
C111.3195 (13)1.1534 (13)0.2865 (15)0.050 (3)
C121.2277 (12)1.1344 (11)0.1930 (14)0.042 (4)
C131.2435 (13)1.1699 (12)0.0916 (15)0.051 (4)
H131.18101.16170.02670.061*
C141.3475 (13)1.2156 (15)0.0870 (17)0.066 (5)
H141.35481.23830.01880.079*
C151.4404 (14)1.2291 (16)0.1775 (16)0.060 (5)
H151.51221.25760.17130.072*
C161.4305 (13)1.2026 (16)0.274 (2)0.075 (6)
H161.49471.21500.33690.090*
C170.9418 (11)0.7896 (11)0.3903 (12)0.034 (3)
C181.0263 (12)0.7317 (12)0.3582 (12)0.039 (4)
C191.1197 (13)0.6785 (11)0.4318 (13)0.042 (4)
H191.17650.63960.40770.050*
C201.1273 (11)0.6835 (12)0.5348 (13)0.039 (4)
C211.0499 (11)0.7419 (11)0.5769 (12)0.038 (3)
H211.06000.74560.65260.046*
C220.9586 (11)0.7938 (11)0.5032 (12)0.033 (3)
C230.6472 (5)0.8679 (7)0.2481 (6)0.032 (3)
C240.6455 (5)0.9058 (8)0.1459 (7)0.033 (3)
C250.5394 (7)0.9308 (8)0.0697 (6)0.040 (4)
H250.53830.95670.00010.047*
C260.4351 (5)0.9179 (8)0.0956 (6)0.044 (4)
H260.36270.93500.04350.053*
C270.4369 (5)0.8800 (8)0.1978 (7)0.035 (3)
C280.5429 (7)0.8550 (7)0.2740 (6)0.035 (3)
C290.5396 (11)0.8189 (12)0.3776 (13)0.042 (4)
H290.61100.79920.42990.050*
C300.4378 (14)0.8113 (13)0.4055 (14)0.053 (4)
H300.43910.79020.47670.063*
C310.3284 (12)0.8359 (12)0.3248 (14)0.048 (4)
H310.25680.83000.34240.057*
C320.3279 (12)0.8675 (12)0.2240 (12)0.041 (4)
H320.25570.88150.17030.049*
N10.9383 (9)1.0290 (9)0.0989 (10)0.035 (3)
N21.0368 (9)1.0745 (9)0.1038 (9)0.032 (3)
N30.8497 (9)0.8449 (9)0.3100 (9)0.031 (3)
N40.7460 (9)0.8232 (8)0.3214 (9)0.031 (3)
O11.0249 (7)0.9986 (8)0.3181 (8)0.040 (2)
O20.7408 (7)0.9216 (8)0.1119 (7)0.038 (2)
Cu10.88988 (14)0.94978 (13)0.20990 (14)0.0328 (4)
Br10.73408 (13)1.19596 (12)0.05505 (13)0.0456 (4)
Br20.60688 (14)1.00205 (14)0.36393 (13)0.0535 (5)
Br31.01318 (13)0.85864 (13)0.05111 (13)0.0473 (4)
Br41.01312 (13)0.72221 (13)0.20691 (13)0.0484 (4)
Br51.25913 (13)0.61791 (13)0.64036 (14)0.0482 (4)
Br60.85805 (13)0.88104 (13)0.55982 (13)0.0506 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (7)0.031 (7)0.042 (9)0.010 (6)0.014 (6)0.003 (7)
C20.023 (6)0.020 (7)0.045 (9)0.008 (6)0.012 (6)0.003 (6)
C30.037 (8)0.033 (8)0.032 (9)0.002 (6)0.010 (7)0.005 (7)
C40.041 (8)0.031 (8)0.023 (8)0.005 (7)0.008 (6)0.008 (7)
C50.043 (8)0.046 (9)0.035 (9)0.006 (7)0.014 (7)0.007 (7)
C60.033 (7)0.027 (7)0.057 (11)0.006 (6)0.019 (7)0.000 (7)
C70.033 (8)0.027 (8)0.050 (10)0.009 (6)0.009 (7)0.002 (7)
C80.032 (8)0.038 (8)0.038 (10)0.008 (7)0.000 (7)0.004 (7)
C90.073 (11)0.040 (9)0.042 (11)0.007 (8)0.025 (9)0.002 (8)
C100.040 (6)0.048 (7)0.060 (8)0.002 (5)0.012 (6)0.010 (6)
C110.040 (6)0.048 (7)0.060 (8)0.002 (5)0.012 (6)0.010 (6)
C120.032 (8)0.034 (9)0.061 (12)0.005 (7)0.014 (8)0.007 (8)
C130.042 (9)0.037 (9)0.071 (14)0.007 (7)0.014 (9)0.001 (8)
C140.044 (10)0.072 (13)0.088 (15)0.007 (9)0.028 (10)0.018 (12)
C150.039 (9)0.080 (13)0.064 (13)0.003 (9)0.020 (9)0.009 (11)
C160.035 (9)0.066 (12)0.12 (2)0.018 (9)0.020 (10)0.031 (13)
C170.032 (7)0.025 (7)0.046 (10)0.002 (6)0.014 (7)0.013 (7)
C180.047 (8)0.036 (8)0.039 (9)0.004 (7)0.022 (7)0.005 (7)
C190.045 (9)0.031 (8)0.053 (11)0.006 (7)0.019 (8)0.019 (8)
C200.027 (7)0.042 (9)0.049 (10)0.000 (7)0.012 (7)0.024 (8)
C210.033 (7)0.039 (8)0.037 (9)0.010 (7)0.003 (7)0.008 (7)
C220.039 (8)0.025 (7)0.043 (9)0.003 (6)0.024 (7)0.004 (7)
C230.028 (7)0.028 (7)0.045 (9)0.006 (6)0.018 (6)0.007 (7)
C240.025 (7)0.034 (8)0.034 (9)0.004 (6)0.001 (6)0.007 (6)
C250.034 (8)0.043 (9)0.038 (9)0.013 (7)0.006 (7)0.007 (7)
C260.029 (8)0.036 (8)0.059 (11)0.007 (7)0.001 (7)0.004 (7)
C270.040 (8)0.029 (7)0.034 (8)0.002 (7)0.007 (6)0.009 (7)
C280.044 (8)0.024 (7)0.034 (9)0.002 (6)0.009 (7)0.008 (6)
C290.025 (7)0.048 (9)0.050 (10)0.002 (7)0.008 (6)0.011 (7)
C300.072 (11)0.045 (9)0.050 (11)0.004 (9)0.031 (9)0.006 (8)
C310.029 (8)0.046 (10)0.064 (12)0.009 (7)0.006 (7)0.007 (8)
C320.043 (8)0.033 (8)0.037 (9)0.004 (7)0.003 (7)0.001 (7)
N10.032 (6)0.038 (7)0.032 (7)0.000 (5)0.005 (5)0.005 (5)
N20.027 (6)0.043 (7)0.025 (7)0.008 (5)0.006 (5)0.003 (5)
N30.029 (6)0.034 (6)0.030 (7)0.001 (5)0.005 (5)0.006 (5)
N40.038 (7)0.022 (6)0.032 (7)0.002 (5)0.011 (5)0.000 (5)
O10.030 (5)0.052 (6)0.035 (6)0.007 (5)0.004 (4)0.003 (5)
O20.031 (5)0.048 (6)0.027 (6)0.009 (4)0.002 (4)0.007 (4)
Cu10.0300 (8)0.0336 (9)0.0334 (10)0.0028 (7)0.0071 (7)0.0030 (8)
Br10.0499 (9)0.0385 (8)0.0471 (10)0.0081 (7)0.0122 (7)0.0023 (7)
Br20.0559 (9)0.0580 (10)0.0374 (10)0.0012 (9)0.0006 (7)0.0009 (8)
Br30.0452 (8)0.0488 (9)0.0470 (10)0.0147 (8)0.0118 (7)0.0006 (8)
Br40.0449 (8)0.0618 (11)0.0390 (10)0.0137 (8)0.0131 (7)0.0007 (8)
Br50.0397 (8)0.0465 (9)0.0494 (11)0.0064 (7)0.0013 (7)0.0111 (8)
Br60.0586 (10)0.0565 (10)0.0397 (10)0.0181 (8)0.0188 (8)0.0027 (8)
Geometric parameters (Å, º) top
C1—C21.382 (17)C18—Br41.914 (15)
C1—C61.413 (19)C19—C201.31 (2)
C1—N11.460 (18)C19—H190.9500
C2—C31.395 (19)C20—C211.39 (2)
C2—Br11.874 (13)C20—Br51.926 (13)
C3—C41.36 (2)C21—C221.372 (18)
C3—H30.9500C21—H210.9500
C4—C51.341 (19)C22—Br61.900 (13)
C4—Br21.935 (13)C23—N41.388 (12)
C5—C61.42 (2)C23—C241.3900
C5—H50.9500C23—C281.3900
C6—Br31.870 (13)C24—O21.348 (10)
C7—N21.361 (16)C24—C251.3900
C7—C81.394 (12)C25—C261.3900
C7—C121.436 (19)C25—H250.9500
C8—O11.296 (16)C26—C271.3900
C8—C91.44 (2)C26—H260.9500
C9—C101.34 (2)C27—C281.3900
C9—H90.9500C27—C321.445 (16)
C10—C111.42 (2)C28—C291.418 (16)
C10—H100.9500C29—C301.37 (2)
C11—C121.39 (2)C29—H290.9500
C11—C161.50 (2)C30—C311.44 (2)
C12—C131.44 (2)C30—H300.9500
C13—C141.38 (2)C31—C321.35 (2)
C13—H130.9500C31—H310.9500
C14—C151.36 (2)C32—H320.9500
C14—H140.9500N1—N21.284 (14)
C15—C161.33 (3)Cu1—Br43.134 (2)
C15—H150.9500Cu1—N11.947 (12)
C16—H160.9500N3—N41.315 (14)
C17—C181.389 (19)Cu1—N31.970 (11)
C17—C221.411 (19)Cu1—O11.892 (9)
C17—N31.437 (16)Cu1—O21.888 (8)
C18—C191.39 (2)
C2—C1—C6119.5 (13)C18—C19—H19120.8
C2—C1—N1121.2 (12)C19—C20—C21124.2 (13)
C6—C1—N1119.3 (12)C19—C20—Br5120.0 (11)
C1—C2—C3121.0 (13)C21—C20—Br5115.6 (11)
C1—C2—Br1119.8 (11)C22—C21—C20116.6 (14)
C3—C2—Br1119.2 (10)C22—C21—H21121.7
C4—C3—C2117.6 (12)C20—C21—H21121.7
C4—C3—H3121.2C21—C22—C17122.8 (12)
C2—C3—H3121.2C21—C22—Br6117.0 (11)
C5—C4—C3124.9 (13)C17—C22—Br6120.1 (10)
C5—C4—Br2115.3 (11)N4—C23—C24123.3 (7)
C3—C4—Br2119.8 (10)N4—C23—C28115.8 (7)
C4—C5—C6118.3 (13)C24—C23—C28120.0
C4—C5—H5120.8O2—C24—C25114.8 (7)
C6—C5—H5120.8O2—C24—C23125.2 (7)
C1—C6—C5118.7 (12)C25—C24—C23120.0
C1—C6—Br3121.9 (11)C26—C25—C24120.0
C5—C6—Br3119.3 (11)C26—C25—H25120.0
N2—C7—C8126.2 (12)C24—C25—H25120.0
N2—C7—C12114.1 (12)C25—C26—C27120.0
C8—C7—C12119.7 (13)C25—C26—H26120.0
O1—C8—C7125.7 (12)C27—C26—H26120.0
O1—C8—C9115.4 (12)C28—C27—C26120.0
C7—C8—C9118.8 (13)C28—C27—C32120.5 (8)
C10—C9—C8120.9 (15)C26—C27—C32119.5 (8)
C10—C9—H9119.6C27—C28—C23120.0
C8—C9—H9119.6C27—C28—C29117.6 (7)
C9—C10—C11121.1 (15)C23—C28—C29122.4 (7)
C9—C10—H10119.5C30—C29—C28122.7 (13)
C11—C10—H10119.5C30—C29—H29118.6
C12—C11—C10119.5 (15)C28—C29—H29118.6
C12—C11—C16118.0 (17)C29—C30—C31118.9 (15)
C10—C11—C16122.4 (16)C29—C30—H30120.6
C11—C12—C7120.0 (15)C31—C30—H30120.6
C11—C12—C13117.2 (14)C32—C31—C30119.9 (14)
C7—C12—C13122.8 (14)C32—C31—H31120.0
C14—C13—C12121.3 (16)C30—C31—H31120.0
C14—C13—H13119.3C31—C32—C27120.2 (12)
C12—C13—H13119.3C31—C32—H32119.9
C15—C14—C13121.9 (18)C27—C32—H32119.9
C15—C14—H14119.0N2—N1—C1111.9 (11)
C13—C14—H14119.0N2—N1—Cu1129.9 (9)
C16—C15—C14120.1 (17)C1—N1—Cu1117.7 (8)
C16—C15—H15120.0N1—N2—C7120.3 (12)
C14—C15—H15120.0N4—N3—C17111.9 (10)
C15—C16—C11121.3 (18)N4—N3—Cu1128.3 (8)
C15—C16—H16119.4C17—N3—Cu1119.4 (8)
C11—C16—H16119.4N3—N4—C23119.1 (10)
C18—C17—C22115.5 (12)C8—O1—Cu1125.8 (9)
C18—C17—N3119.4 (13)C24—O2—Cu1121.9 (7)
C22—C17—N3125.1 (12)O2—Cu1—O1169.4 (4)
C17—C18—C19122.5 (14)O2—Cu1—N191.3 (4)
C17—C18—Br4119.0 (11)O1—Cu1—N190.9 (4)
C19—C18—Br4118.5 (11)O2—Cu1—N387.6 (4)
C20—C19—C18118.4 (14)O1—Cu1—N392.1 (4)
C20—C19—H19120.8N1—Cu1—N3169.3 (5)
C6—C1—C2—C30.6 (19)N3—C17—C22—C21178.2 (12)
N1—C1—C2—C3177.6 (12)C18—C17—C22—Br6174.4 (10)
C6—C1—C2—Br1179.6 (10)N3—C17—C22—Br62.0 (18)
N1—C1—C2—Br11.3 (16)N4—C23—C24—O211.8 (10)
C1—C2—C3—C40.6 (19)C28—C23—C24—O2179.9 (10)
Br1—C2—C3—C4178.4 (10)N4—C23—C24—C25168.3 (9)
C2—C3—C4—C51 (2)C28—C23—C24—C250.0
C2—C3—C4—Br2179.4 (9)O2—C24—C25—C26179.9 (9)
C3—C4—C5—C60 (2)C23—C24—C25—C260.0
Br2—C4—C5—C6178.5 (10)C24—C25—C26—C270.0
C2—C1—C6—C51.6 (19)C25—C26—C27—C280.0
N1—C1—C6—C5176.7 (12)C25—C26—C27—C32179.7 (10)
C2—C1—C6—Br3177.2 (10)C26—C27—C28—C230.0
N1—C1—C6—Br34.5 (17)C32—C27—C28—C23179.7 (10)
C4—C5—C6—C11 (2)C26—C27—C28—C29178.7 (10)
C4—C5—C6—Br3177.5 (11)C32—C27—C28—C291.0 (12)
N2—C7—C8—O16 (2)N4—C23—C28—C27169.2 (9)
C12—C7—C8—O1175.9 (13)C24—C23—C28—C270.0
N2—C7—C8—C9175.9 (13)N4—C23—C28—C2912.2 (11)
C12—C7—C8—C92.2 (19)C24—C23—C28—C29178.6 (11)
O1—C8—C9—C10176.4 (14)C27—C28—C29—C302.0 (18)
C7—C8—C9—C102 (2)C23—C28—C29—C30176.6 (11)
C8—C9—C10—C111 (2)C28—C29—C30—C313 (2)
C9—C10—C11—C120 (2)C29—C30—C31—C321 (2)
C9—C10—C11—C16177.0 (15)C30—C31—C32—C272 (2)
C10—C11—C12—C70 (2)C28—C27—C32—C312.9 (17)
C16—C11—C12—C7177.5 (14)C26—C27—C32—C31176.7 (11)
C10—C11—C12—C13179.0 (14)C2—C1—N1—N2107.0 (14)
C16—C11—C12—C134 (2)C6—C1—N1—N274.8 (15)
N2—C7—C12—C11176.9 (12)C2—C1—N1—Cu180.7 (14)
C8—C7—C12—C111 (2)C6—C1—N1—Cu197.6 (12)
N2—C7—C12—C131.8 (19)C1—N1—N2—C7179.3 (11)
C8—C7—C12—C13179.9 (13)Cu1—N1—N2—C78.1 (18)
C11—C12—C13—C143 (2)C8—C7—N2—N13 (2)
C7—C12—C13—C14178.0 (15)C12—C7—N2—N1179.0 (12)
C12—C13—C14—C150 (3)C18—C17—N3—N4131.8 (12)
C13—C14—C15—C163 (3)C22—C17—N3—N452.0 (17)
C14—C15—C16—C112 (3)C18—C17—N3—Cu153.8 (15)
C12—C11—C16—C151 (3)C22—C17—N3—Cu1122.4 (12)
C10—C11—C16—C15178.3 (17)C17—N3—N4—C23178.2 (10)
C22—C17—C18—C191.8 (19)Cu1—N3—N4—C238.0 (16)
N3—C17—C18—C19178.4 (12)C24—C23—N4—N320.3 (13)
C22—C17—C18—Br4179.3 (9)C28—C23—N4—N3170.9 (8)
N3—C17—C18—Br42.7 (17)C7—C8—O1—Cu12 (2)
C17—C18—C19—C200 (2)C9—C8—O1—Cu1176.2 (9)
Br4—C18—C19—C20178.8 (11)C25—C24—O2—Cu1154.8 (5)
C18—C19—C20—C212 (2)C23—C24—O2—Cu125.1 (11)
C18—C19—C20—Br5176.8 (10)C24—O2—Cu1—O152 (3)
C19—C20—C21—C222 (2)C24—O2—Cu1—N1153.4 (9)
Br5—C20—C21—C22176.9 (10)C24—O2—Cu1—N337.3 (9)
C20—C21—C22—C170 (2)C8—O1—Cu1—O2110 (2)
C20—C21—C22—Br6176.3 (10)C8—O1—Cu1—N18.2 (11)
C18—C17—C22—C211.8 (19)C8—O1—Cu1—N3161.5 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Br6i0.952.753.546 (15)142
C3—H3···Cg1ii0.952.993.729 (15)136
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z.
(II) Bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}nickel(II) top
Crystal data top
[Ni(C16H8Br3N2O)2]F(000) = 980
Mr = 1026.66Dx = 2.067 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0909 (6) ÅCell parameters from 7253 reflections
b = 12.4571 (6) Åθ = 1.0–27.5°
c = 12.5382 (7) ŵ = 7.89 mm1
β = 107.820 (2)°T = 173 K
V = 1649.17 (15) Å3Prism, black
Z = 20.30 × 0.22 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3745 independent reflections
Radiation source: sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
phi and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1314
Tmin = 0.151, Tmax = 0.317k = 1316
11360 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2389 (4)0.4906 (3)0.3565 (3)0.0232 (10)
C20.2302 (4)0.5055 (4)0.2452 (4)0.0287 (11)
C30.1396 (4)0.4527 (4)0.1602 (4)0.0321 (12)
H30.13570.46190.08400.038*
C40.0551 (4)0.3862 (3)0.1896 (4)0.0295 (12)
C50.0609 (4)0.3679 (4)0.3004 (4)0.0318 (12)
H50.00280.32120.31920.038*
C60.1547 (4)0.4204 (4)0.3819 (3)0.0277 (11)
C70.3408 (4)0.6940 (3)0.5623 (4)0.0283 (11)
C80.4729 (4)0.6805 (4)0.6238 (4)0.0293 (11)
C90.5307 (4)0.7555 (4)0.7110 (4)0.0335 (12)
H90.61650.74620.75490.040*
C100.4637 (4)0.8392 (4)0.7310 (4)0.0323 (12)
H100.50560.88940.78710.039*
C110.3320 (4)0.8562 (4)0.6717 (4)0.0296 (11)
C120.2707 (4)0.7808 (4)0.5879 (3)0.0272 (11)
C130.1395 (4)0.7939 (4)0.5345 (4)0.0308 (12)
H130.09550.74350.47950.037*
C140.0748 (5)0.8782 (4)0.5608 (4)0.0386 (13)
H140.01350.88520.52400.046*
C150.1371 (5)0.9547 (4)0.6414 (4)0.0416 (13)
H150.09161.01310.65910.050*
C160.2644 (5)0.9436 (4)0.6940 (4)0.0342 (12)
H160.30750.99640.74660.041*
N10.3320 (3)0.5483 (3)0.4453 (3)0.0251 (9)
N20.2773 (3)0.6275 (3)0.4773 (3)0.0278 (9)
O10.5435 (3)0.6061 (2)0.6047 (2)0.0328 (8)
Ni0.50000.50000.50000.0271 (2)
Br10.16663 (5)0.39355 (4)0.53300 (4)0.04164 (17)
Br20.34269 (5)0.60009 (4)0.20681 (4)0.04697 (18)
Br30.07417 (5)0.31689 (4)0.07466 (4)0.05057 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.014 (2)0.027 (2)0.024 (2)0.003 (2)0.0014 (19)0.004 (2)
C20.023 (2)0.031 (3)0.027 (2)0.007 (2)0.000 (2)0.002 (2)
C30.029 (3)0.037 (3)0.025 (2)0.004 (2)0.001 (2)0.000 (2)
C40.020 (2)0.027 (3)0.033 (3)0.002 (2)0.005 (2)0.008 (2)
C50.028 (3)0.030 (3)0.034 (3)0.002 (2)0.005 (2)0.002 (2)
C60.025 (3)0.031 (3)0.022 (2)0.006 (2)0.000 (2)0.001 (2)
C70.024 (3)0.030 (3)0.025 (2)0.001 (2)0.002 (2)0.004 (2)
C80.025 (3)0.034 (3)0.025 (2)0.006 (2)0.002 (2)0.004 (2)
C90.023 (3)0.037 (3)0.033 (3)0.003 (2)0.003 (2)0.009 (2)
C100.032 (3)0.034 (3)0.027 (2)0.009 (2)0.002 (2)0.002 (2)
C110.033 (3)0.028 (3)0.026 (2)0.002 (2)0.006 (2)0.001 (2)
C120.024 (3)0.032 (3)0.024 (2)0.003 (2)0.004 (2)0.002 (2)
C130.029 (3)0.029 (3)0.031 (2)0.006 (2)0.004 (2)0.003 (2)
C140.025 (3)0.050 (3)0.035 (3)0.009 (3)0.001 (2)0.004 (3)
C150.043 (3)0.040 (3)0.042 (3)0.017 (3)0.011 (3)0.001 (3)
C160.042 (3)0.031 (3)0.030 (3)0.000 (2)0.011 (2)0.003 (2)
N10.018 (2)0.029 (2)0.0214 (19)0.0025 (17)0.0034 (16)0.0038 (17)
N20.026 (2)0.025 (2)0.026 (2)0.0012 (18)0.0019 (18)0.0021 (17)
O10.0247 (18)0.0333 (19)0.0316 (18)0.0022 (15)0.0044 (15)0.0132 (14)
Ni0.0197 (4)0.0297 (5)0.0255 (4)0.0004 (4)0.0026 (4)0.0040 (4)
Br10.0424 (3)0.0495 (4)0.0289 (3)0.0039 (3)0.0049 (2)0.0067 (2)
Br20.0386 (3)0.0609 (4)0.0378 (3)0.0170 (3)0.0063 (3)0.0049 (3)
Br30.0419 (3)0.0534 (4)0.0427 (3)0.0125 (3)0.0073 (3)0.0172 (3)
Geometric parameters (Å, º) top
C1—C21.382 (6)C9—H90.9500
C1—C61.385 (6)C10—C111.437 (6)
C1—N11.455 (5)C10—H100.9500
C2—C31.387 (6)C11—C161.399 (7)
C2—Br21.883 (5)C11—C121.419 (6)
C3—C41.382 (7)C12—C131.413 (6)
C3—H30.9500C13—C141.367 (6)
C4—C51.389 (6)C13—H130.9500
C4—Br31.901 (4)C14—C151.407 (7)
C5—C61.381 (6)C14—H140.9500
C5—H50.9500C15—C161.370 (7)
C6—Br11.888 (4)C15—H150.9500
C7—N21.363 (5)C16—H160.9500
C7—C121.425 (6)N1—N21.285 (5)
C7—C81.441 (6)Ni—N11.876 (3)
C8—O11.281 (5)Ni—O11.821 (3)
C8—C91.431 (6)Ni—O1i1.821 (3)
C9—C101.348 (6)Ni—N1i1.877 (3)
C2—C1—C6118.3 (4)C16—C11—C12119.9 (4)
C2—C1—N1121.3 (4)C16—C11—C10122.2 (4)
C6—C1—N1120.4 (4)C12—C11—C10117.8 (4)
C1—C2—C3121.5 (4)C13—C12—C11117.7 (4)
C1—C2—Br2119.7 (3)C13—C12—C7122.4 (4)
C3—C2—Br2118.8 (4)C11—C12—C7119.9 (4)
C4—C3—C2118.0 (4)C14—C13—C12121.0 (4)
C4—C3—H3121.0C14—C13—H13119.5
C2—C3—H3121.0C12—C13—H13119.5
C3—C4—C5122.5 (4)C13—C14—C15121.0 (4)
C3—C4—Br3119.0 (4)C13—C14—H14119.5
C5—C4—Br3118.5 (4)C15—C14—H14119.5
C6—C5—C4117.1 (4)C16—C15—C14119.0 (5)
C6—C5—H5121.4C16—C15—H15120.5
C4—C5—H5121.4C14—C15—H15120.5
C5—C6—C1122.5 (4)C15—C16—C11121.3 (4)
C5—C6—Br1117.7 (4)C15—C16—H16119.4
C1—C6—Br1119.8 (3)C11—C16—H16119.4
N2—C7—C12116.7 (4)N2—N1—C1109.0 (3)
N2—C7—C8123.0 (4)N2—N1—Ni130.0 (3)
C12—C7—C8120.2 (4)C1—N1—Ni120.9 (3)
O1—C8—C9117.3 (4)N1—N2—C7122.0 (4)
O1—C8—C7124.2 (4)C8—O1—Ni128.1 (3)
C9—C8—C7118.5 (4)O1—Ni—O1i180
C10—C9—C8120.3 (4)O1—Ni—N192.59 (14)
C10—C9—H9119.9O1i—Ni—N187.41 (14)
C8—C9—H9119.9O1—Ni—N1i87.41 (14)
C9—C10—C11123.2 (4)O1i—Ni—N1i92.59 (14)
C9—C10—H10118.4N1—Ni—N1i180
C11—C10—H10118.4
C6—C1—C2—C30.3 (7)C10—C11—C12—C72.3 (7)
N1—C1—C2—C3178.4 (4)N2—C7—C12—C134.6 (7)
C6—C1—C2—Br2180.0 (3)C8—C7—C12—C13176.3 (4)
N1—C1—C2—Br21.3 (6)N2—C7—C12—C11177.0 (4)
C1—C2—C3—C41.7 (7)C8—C7—C12—C112.1 (7)
Br2—C2—C3—C4178.0 (3)C11—C12—C13—C141.7 (7)
C2—C3—C4—C52.3 (7)C7—C12—C13—C14179.9 (5)
C2—C3—C4—Br3177.6 (3)C12—C13—C14—C150.3 (8)
C3—C4—C5—C60.8 (7)C13—C14—C15—C160.1 (8)
Br3—C4—C5—C6179.1 (3)C14—C15—C16—C112.2 (8)
C4—C5—C6—C11.4 (7)C12—C11—C16—C154.2 (7)
C4—C5—C6—Br1178.4 (3)C10—C11—C16—C15175.9 (4)
C2—C1—C6—C51.9 (7)C2—C1—N1—N2100.7 (5)
N1—C1—C6—C5176.8 (4)C6—C1—N1—N278.1 (5)
C2—C1—C6—Br1177.8 (3)C2—C1—N1—Ni82.2 (5)
N1—C1—C6—Br13.4 (5)C6—C1—N1—Ni99.1 (4)
N2—C7—C8—O10.5 (7)C1—N1—N2—C7178.0 (4)
C12—C7—C8—O1178.6 (4)Ni—N1—N2—C71.1 (6)
N2—C7—C8—C9179.6 (4)C12—C7—N2—N1178.2 (4)
C12—C7—C8—C90.5 (7)C8—C7—N2—N10.9 (7)
O1—C8—C9—C10176.2 (5)C9—C8—O1—Ni179.4 (3)
C7—C8—C9—C102.9 (7)C7—C8—O1—Ni0.3 (7)
C8—C9—C10—C112.8 (7)C8—O1—Ni—N10.4 (4)
C9—C10—C11—C16179.9 (5)C8—O1—Ni—N1i179.6 (4)
C9—C10—C11—C120.2 (7)N2—N1—Ni—O10.8 (4)
C16—C11—C12—C133.9 (7)C1—N1—Ni—O1177.3 (3)
C10—C11—C12—C13176.2 (4)N2—N1—Ni—O1i179.2 (4)
C16—C11—C12—C7177.6 (4)C1—N1—Ni—O1i2.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2ii0.952.713.391 (5)130
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
(III) Bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}palladium(II) top
Crystal data top
[Pd(C16H8Br3N2O)2]F(000) = 1016
Mr = 1074.35Dx = 2.142 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
a = 11.1896 (8) ÅCell parameters from 3651 reflections
b = 12.4540 (8) Åθ = 2.1–22.3°
c = 12.5511 (9) ŵ = 13.23 mm1
β = 107.749 (5)°T = 200 K
V = 1665.8 (2) Å3Square plate, dark red
Z = 20.12 × 0.09 × 0.03 mm
Data collection top
STOE IPDS 2T
diffractometer
2895 independent reflections
Radiation source: Genix-Cu,3D2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.142
Detector resolution: 6.67 pixels mm-1θmax = 67.7°, θmin = 5.5°
rotation method scansh = 1312
Absorption correction: multi-scan
(MULABS; Spek, 2009)
k = 1414
Tmin = 0.360, Tmax = 1.000l = 1415
13003 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.1019P)2 + 0.8121P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.88 e Å3
206 parametersΔρmin = 1.10 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16311 (8)0.39498 (7)0.53262 (6)0.0659 (3)
Br20.33399 (8)0.60480 (8)0.20631 (7)0.0737 (4)
Br30.07036 (8)0.31295 (7)0.07577 (7)0.0754 (4)
Pd10.50000.50000.50000.0456 (3)
O10.5428 (4)0.6130 (4)0.6155 (4)0.0573 (12)
N10.3223 (5)0.5521 (4)0.4432 (4)0.0468 (12)
N20.2730 (5)0.6310 (4)0.4798 (4)0.0486 (12)
C10.2323 (6)0.4941 (5)0.3582 (5)0.0471 (15)
C20.2246 (6)0.5074 (5)0.2447 (5)0.0482 (15)
C30.1354 (7)0.4532 (6)0.1598 (5)0.0563 (17)
H30.13110.46290.08360.068*
C40.0544 (7)0.3855 (5)0.1889 (6)0.0532 (16)
C50.0597 (6)0.3675 (5)0.2996 (6)0.0495 (15)
H50.00320.31950.31840.059*
C60.1513 (6)0.4227 (5)0.3817 (5)0.0474 (14)
C70.3371 (6)0.6961 (5)0.5647 (5)0.0464 (14)
C80.4672 (6)0.6842 (6)0.6279 (5)0.0523 (15)
C90.5192 (7)0.7634 (6)0.7146 (6)0.0570 (17)
H90.60390.75620.76010.068*
C100.4511 (7)0.8468 (6)0.7323 (6)0.0604 (18)
H100.49040.89830.78770.072*
C110.3214 (7)0.8605 (6)0.6705 (6)0.0536 (16)
C120.2640 (7)0.7831 (5)0.5895 (5)0.0505 (15)
C130.1345 (7)0.7932 (6)0.5352 (6)0.0583 (17)
H130.09330.74270.47930.070*
C140.0678 (8)0.8748 (7)0.5619 (7)0.070 (2)
H140.02020.87830.52630.084*
C150.1257 (8)0.9538 (7)0.6406 (6)0.071 (2)
H150.07801.01090.65730.085*
C160.2509 (8)0.9469 (7)0.6922 (7)0.0652 (19)
H160.29171.00100.74380.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0649 (6)0.0817 (6)0.0436 (5)0.0081 (4)0.0055 (4)0.0092 (3)
Br20.0614 (6)0.0997 (7)0.0531 (5)0.0261 (4)0.0070 (4)0.0073 (4)
Br30.0648 (6)0.0834 (6)0.0603 (6)0.0172 (4)0.0073 (4)0.0226 (4)
Pd10.0353 (4)0.0550 (4)0.0369 (4)0.0014 (3)0.0032 (3)0.0038 (3)
O10.042 (3)0.065 (3)0.052 (3)0.003 (2)0.005 (2)0.009 (2)
N10.042 (3)0.053 (3)0.037 (3)0.007 (2)0.001 (2)0.004 (2)
N20.040 (3)0.054 (3)0.042 (3)0.004 (2)0.003 (2)0.000 (2)
C10.038 (3)0.054 (3)0.037 (3)0.007 (3)0.007 (3)0.001 (3)
C20.036 (3)0.061 (4)0.037 (3)0.000 (3)0.005 (3)0.002 (3)
C30.049 (4)0.073 (4)0.038 (3)0.004 (3)0.001 (3)0.001 (3)
C40.045 (4)0.056 (4)0.048 (4)0.005 (3)0.002 (3)0.005 (3)
C50.043 (4)0.047 (3)0.054 (4)0.002 (3)0.008 (3)0.002 (3)
C60.042 (3)0.049 (3)0.040 (3)0.002 (3)0.003 (3)0.000 (3)
C70.035 (3)0.057 (3)0.042 (3)0.001 (3)0.004 (3)0.005 (3)
C80.045 (4)0.063 (4)0.040 (3)0.007 (3)0.001 (3)0.001 (3)
C90.046 (4)0.070 (4)0.047 (4)0.004 (3)0.002 (3)0.012 (3)
C100.059 (4)0.070 (4)0.043 (4)0.014 (4)0.002 (3)0.010 (3)
C110.053 (4)0.060 (4)0.046 (4)0.001 (3)0.012 (3)0.002 (3)
C120.048 (4)0.057 (4)0.043 (3)0.007 (3)0.008 (3)0.001 (3)
C130.046 (4)0.070 (4)0.052 (4)0.000 (3)0.004 (3)0.010 (3)
C140.056 (5)0.080 (5)0.064 (5)0.002 (4)0.004 (4)0.003 (4)
C150.074 (6)0.072 (5)0.060 (5)0.019 (4)0.009 (4)0.001 (4)
C160.069 (5)0.065 (4)0.057 (4)0.002 (4)0.013 (4)0.002 (4)
Geometric parameters (Å, º) top
Br1—C61.889 (6)C5—H50.9500
Br2—C21.887 (7)C7—C81.437 (9)
Br3—C41.890 (7)C7—C121.448 (9)
Pd1—O11.972 (5)C8—C91.452 (10)
Pd1—O1i1.972 (5)C9—C101.346 (10)
Pd1—N1i2.004 (5)C9—H90.9500
Pd1—N12.004 (5)C10—C111.432 (10)
O1—C81.268 (8)C10—H100.9500
N1—N21.279 (8)C11—C121.406 (10)
N1—C11.422 (8)C11—C161.409 (11)
N2—C71.356 (8)C12—C131.406 (10)
C1—C61.365 (9)C13—C141.362 (11)
C1—C21.410 (9)C13—H130.9500
C2—C31.393 (9)C14—C151.405 (12)
C3—C41.367 (10)C14—H140.9500
C3—H30.9500C15—C161.355 (11)
C4—C51.390 (10)C15—H150.9500
C5—C61.394 (9)C16—H160.9500
O1—Pd1—O1i180.0N2—C7—C12114.7 (6)
O1—Pd1—N1i88.7 (2)C8—C7—C12120.1 (6)
O1i—Pd1—N1i91.3 (2)O1—C8—C7127.3 (6)
O1—Pd1—N191.3 (2)O1—C8—C9115.9 (6)
O1i—Pd1—N188.7 (2)C7—C8—C9116.8 (6)
N1i—Pd1—N1180.0C10—C9—C8122.0 (7)
C8—O1—Pd1124.6 (4)C10—C9—H9119.0
N2—N1—C1112.0 (5)C8—C9—H9119.0
N2—N1—Pd1127.7 (4)C9—C10—C11122.3 (6)
C1—N1—Pd1120.1 (4)C9—C10—H10118.9
N1—N2—C7123.9 (5)C11—C10—H10118.9
C6—C1—C2117.1 (6)C12—C11—C16120.3 (7)
C6—C1—N1122.3 (6)C12—C11—C10118.3 (6)
C2—C1—N1120.6 (6)C16—C11—C10121.4 (7)
C3—C2—C1121.7 (6)C13—C12—C11117.7 (6)
C3—C2—Br2119.0 (5)C13—C12—C7121.9 (6)
C1—C2—Br2119.3 (5)C11—C12—C7120.4 (6)
C4—C3—C2118.2 (6)C14—C13—C12120.6 (7)
C4—C3—H3120.9C14—C13—H13119.7
C2—C3—H3120.9C12—C13—H13119.7
C3—C4—C5122.5 (6)C13—C14—C15121.7 (8)
C3—C4—Br3119.5 (5)C13—C14—H14119.1
C5—C4—Br3118.0 (5)C15—C14—H14119.1
C4—C5—C6117.2 (6)C16—C15—C14118.7 (8)
C4—C5—H5121.4C16—C15—H15120.7
C6—C5—H5121.4C14—C15—H15120.7
C1—C6—C5123.3 (6)C15—C16—C11120.9 (7)
C1—C6—Br1119.2 (5)C15—C16—H16119.5
C5—C6—Br1117.5 (5)C11—C16—H16119.5
N2—C7—C8125.2 (6)
C1—N1—N2—C7176.7 (6)Pd1—O1—C8—C9177.0 (5)
Pd1—N1—N2—C71.8 (9)N2—C7—C8—O10.2 (11)
N2—N1—C1—C677.8 (7)C12—C7—C8—O1179.5 (6)
Pd1—N1—C1—C697.6 (6)N2—C7—C8—C9179.0 (6)
N2—N1—C1—C2103.1 (7)C12—C7—C8—C90.7 (9)
Pd1—N1—C1—C281.6 (6)O1—C8—C9—C10176.2 (7)
C6—C1—C2—C32.2 (9)C7—C8—C9—C102.7 (10)
N1—C1—C2—C3178.6 (6)C8—C9—C10—C112.8 (11)
C6—C1—C2—Br2180.0 (5)C9—C10—C11—C120.7 (11)
N1—C1—C2—Br20.8 (8)C9—C10—C11—C16178.4 (7)
C1—C2—C3—C40.1 (10)C16—C11—C12—C132.3 (10)
Br2—C2—C3—C4178.0 (5)C10—C11—C12—C13175.4 (7)
C2—C3—C4—C51.4 (11)C16—C11—C12—C7178.2 (6)
C2—C3—C4—Br3178.6 (5)C10—C11—C12—C74.1 (10)
C3—C4—C5—C60.8 (10)N2—C7—C12—C134.8 (9)
Br3—C4—C5—C6179.2 (5)C8—C7—C12—C13175.4 (6)
C2—C1—C6—C52.9 (10)N2—C7—C12—C11175.7 (6)
N1—C1—C6—C5177.9 (6)C8—C7—C12—C114.1 (9)
C2—C1—C6—Br1176.4 (5)C11—C12—C13—C140.8 (11)
N1—C1—C6—Br12.8 (8)C7—C12—C13—C14178.7 (7)
C4—C5—C6—C11.5 (10)C12—C13—C14—C152.6 (13)
C4—C5—C6—Br1177.8 (5)C13—C14—C15—C161.2 (13)
N1—N2—C7—C82.2 (10)C14—C15—C16—C112.0 (12)
N1—N2—C7—C12177.6 (6)C12—C11—C16—C153.8 (11)
Pd1—O1—C8—C71.8 (10)C10—C11—C16—C15173.9 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of ring C1-C6.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2ii0.952.703.371 (8)128
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development, and the University of Constantine for financial support.

References

First citationAlcock, N. W., Spencer, R. C., Prince, R. H. & Kennard, O. (1968). J. Chem. Soc. A, pp. 2382–2388.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenaouida, M. A., Benosmane, A., Bouguerria, H., Bouaoud, S. E. & Merazig, H. (2013). Acta Cryst. E69, m405.  CSD CrossRef IUCr Journals Google Scholar
First citationChen, G. J., Qiao, X., Qiao, P. Q., Xu, G. J., Xu, J. Y., Tian, J. L., Gu, W., Liu, X. & Yan, S. P. (2010). J. Inorg. Biochem. 105, 119–126.  Web of Science CrossRef PubMed Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013c). Acta Cryst. E69, o1250.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013d). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211–m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207–m208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCvek, B., Milacic, V., Taraba, J. & Dou, Q. P. (2008). J. Med. Chem. 51, 6256–6258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerreira, G. R., Marcial, B. L., Garcia, H. C., Faulstich, F. R. L., Dos Santos, H. F. & de Oliveira, L. F. C. (2015). Supramol. Chem. 27, 13–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationGallegos, C., Tabernero, V., Mosquera, M. E. G., Cuenca, T. & Cano, J. (2015). Eur. J. Inorg. Chem. pp. 5124–5132.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJarvis, J. A. J. (1961). Acta Cryst. 14, 961–964.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReed, J. E., Arnal, A. A., Neidle, S. & Vilar, R. (2006). J. Am. Chem. Soc. 128, 5992–5993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationThomas, A. M., Nethaji, M. & Chakravarty, A. R. J. (2004). J. Inorg. Biochem. 98, 1087–1094.  CSD CrossRef PubMed CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds