research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bergapten: a photomutagenic and photobiologically active furan­ocoumarin

CROSSMARK_Color_square_no_text.svg

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cAccident & Emergency Department, Franco, Vietnamese Hospital, 7-Nguyen, Luong Bang Street, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 July 2016; accepted 11 July 2016; online 22 July 2016)

The title compound, C12H8O4, is a furan­ocoumarin [systematic name: 4-meth­oxy-7H-furo[3,2-g]chromen-7-one], which was isolated from the Indian herb T. stictocarpum. The mol­ecule is almost planar with an r.m.s. deviation of 0.024 Å for the hetero atoms of the fused-ring system. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional framework. There are offset ππ inter­actions present involving the coumarin moieties stacking along the a-axis direction [shortest inter-centroid distance = 3.717 (3) Å].

1. Chemical context

The title mol­ecule, bergapten, is a linear furan­ocoumarin having a meth­oxy group in the benzene ring at position C5. This class of furano coumarins have absorption bands in the near UV region due to the presence of conjugated double bonds, and exhibit photomutagenic (Appendino, et al., 2004[Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532-536.]) and photocarcinogenic properties, binding with purine bases of DNA in living cells to yield photoadducts (Filomena et al., 2009[Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38-58.]). Based on this property, they are employed to treat numerous inflammatory skin diseases, such as atopic dermatitis, and pigment disorders like vitiligo and psoriasis by UV photodynamic therapy. In addition, due to their strong ability to absorb UV radiation, this class of mol­ecules are utilized as photoprotective agents, to prevent the absorption of harmful UV radiation by the skin. A variety of sun-screen lotions are widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007[Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926-936.], 2009[Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695-702.]). In addition, the in vitro anti­proliferation activity and in vivo photoxicity of the title mol­ecule has been reported against epithelial cancer cell lines, including HL60, A431 (Conconi et al., 1998[Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193-198.]). Bergapten (5-meth­oxy psoralen/methoxsalen) has been used successfully in combination with UV photodynamic therapy to mange psoriasis and vitiligo; it inhibits proliferation in human hepatocellular carcinoma cell line (March et al., 1993[March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184-191.]). Experimental results revealed that its phototoxicity and photomutagenicity is exerted via a Diels–Alder reaction binding the double bond of a purine base of DNA in a living cell with the double bonds of bergapten to yield mono- and di-adducts (Conforti et al., 2009[Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38-58.]).

[Scheme 1]

While this is the first report of the crystal structure of the title compound, its chemical structure was determined by spectrometric and spectroscopic analysis many years ago (Howell & Robertson, 1937[Howell, W. N. & Robertson, A. (1937). J. Chem. Soc. pp. 293-294.]; Ray et al., 1937[Ray, J. N., Silooja, S. S. & Vaid, V. R. (1937). J. Chem. Soc. 1, 813-816.]; Lin et al., 1979[Liu, Y., Thom, E. & Liebman, A. A. (1979). J. Heterocycl. Chem. 16, 799-801.]; Confalone & Confalone, 1983[Confalone, P. N. & Confalone, D. L. (1983). Tetrahedron, 39, 1265-1271.]).

2. Structural commentary

The title compound (Fig. 1[link]), belongs to the psoralen class of compounds and is composed of three fused rings viz. furan, benzene and pyrone. It is an almost planar mol­ecule with an r.m.s. deviation of 0.024 Å for the atoms of the fused ring system, O1–O2/C1–C11. The meth­oxy C atom, C12, is displaced from this mean plane by 0.925 (5) Å, while atoms O3 and O4 are displaced from the mean plane by 0.069 (3) and 0.035 (3) Å, respectively.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by a series of C—H⋯O hydrogen bonds, which are illustrated in Fig. 2[link] (see also Table 1[link]). They form a three-dimensional network (Table 1[link] and Fig. 3[link]). There are offset ππ inter­actions present involving the coumarin moieties stacking along the a-axis direction [shortest inter-centroid distance Cg2⋯Cg3i = 3.717 (3) Å, inter­planar distance = 3.425 (2) Å, slippage = 1.356 Å, Cg2 and Cg3 are the centroids of rings O2/C6/C7/C9–C11 and C1/C4–C8, respectively, symmetry code: (i) x − 1, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.49 3.406 (5) 170
C3—H3⋯O4ii 0.93 2.57 3.484 (6) 170
C10—H10⋯O4iii 0.93 2.51 3.387 (5) 158
C12—H12A⋯O4ii 0.96 2.44 3.376 (5) 165
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the various C—H⋯O hydrogen bonds (dashed lines; see Table 1[link] for details) in the crystal of the title compound.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines (see Table 1[link]) and H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 16 hits for the furan­ocoumarin skeleton with an O atom substituent in position 5, similar to the title compound. Two compounds closely resemble the title compound, viz. 5-hy­droxy­psolalen [JIXBOH; Ginderow, 1991[Ginderow, D. (1991). Acta Cryst. C47, 2144-2146.]] isolated from the bark of Citrus bergamia, and 5,8-di­meth­oxy­psoralen [ISIMP (293 K); Gopalakrishna et al., 1977[Gopalakrishna, E. M., Watson, W. H., Bittner, M. & Silva, M. (1977). J. Cryst. Mol. Struct. 7, 107-114.]] and [ISIMP01 (120 K); Napolitano et al., 2003[Napolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1506-o1508.]]. The latter was isolated from the roots and leaves of Adiscanthus fusciflorus (Rutaceae).

5. Synthesis and crystallization

The title compound was isolated as a colourless solid from the methanol extract of T. stictocarpum by means of column chromatography over silica gel by gradient elution with a mixture of binary solvents system hexane and ethyl acetate. It was purified by reverse phase high-pressure liquid chromatography. Colourless rod-like crystals, suitable crystals for X ray diffraction analysis, were obtained after the title compound was recrystallized three times from ethyl acetate:hexane (1:4) mixed solvents at room temperature by slow evaporation of the solvents (m.p. 469 K).

1H NMR data (CHCl3, 200 MHz) 8.13 (d, 1H, J = 9.8 Hz, H-9), 7.57 (d, 1H, J = 2.2 Hz, H-2), 7.11 (s, 1H, H-8), 7.05 (d, 1H, J = 2.2 Hz, H-3), 6.25 (d, 1H, J = 9.8 Hz, H-10), 4.26 (s, 3H, OCH3). EIMS (70 ev) data: m/z (%) 216 (100; base peak/mol­ecular ion peak) [M+], 201 (25.2%) [M+−CH3), 188 (25.7) [M+−OCH3], 173 (25.6) [M+−(CH3–CO)], 145 (33.8) [M+−(OCH3–CO2)], 89(17.0).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The structure was refined as a two-component twin [180° rotation about the a* axis; BASF = 0.3955 (2)].

Table 2
Experimental details

Crystal data
Chemical formula C12H8O4
Mr 216.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 299
a, b, c (Å) 3.8486 (8), 14.676 (2), 16.866 (3)
β (°) 92.12 (2)
V3) 952.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.44 × 0.08 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])'
Tmin, Tmax 0.951, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 7096, 7096, 3811
Rint 0.08
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.138, 0.86
No. of reflections 7096
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.22
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

4-Methoxy-7H-furo[3,2-g]chromen-7-one top
Crystal data top
C12H8O4Dx = 1.508 Mg m3
Mr = 216.18Melting point: 469 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8486 (8) ÅCell parameters from 870 reflections
b = 14.676 (2) Åθ = 2.8–27.9°
c = 16.866 (3) ŵ = 0.12 mm1
β = 92.12 (2)°T = 299 K
V = 952.0 (3) Å3Needle, colourless
Z = 40.44 × 0.08 × 0.02 mm
F(000) = 448
Data collection top
Oxford Diffraction Xcalibur with a Sapphire CCD detector
diffractometer
7096 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.08
Rotation method data acquisition using ω and phi scans.θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)'
h = 44
Tmin = 0.951, Tmax = 0.998k = 1717
7096 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0738P)2]
where P = (Fo2 + 2Fc2)/3
7096 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7447 (9)0.00489 (18)0.37565 (18)0.0525 (10)
O20.3156 (8)0.26727 (18)0.50579 (14)0.0399 (9)
O30.7860 (9)0.28906 (17)0.24893 (16)0.0510 (10)
O40.1046 (9)0.3863 (2)0.56614 (18)0.0617 (11)
C10.6682 (13)0.0956 (3)0.3822 (3)0.0392 (13)
C20.8854 (13)0.0043 (3)0.3016 (3)0.0534 (15)
H20.96190.05950.28140.064*
C30.8989 (13)0.0740 (3)0.2626 (3)0.0477 (14)
H30.98320.08330.21230.057*
C40.7573 (13)0.1417 (3)0.3137 (2)0.0369 (12)
C50.6975 (12)0.2354 (3)0.3111 (2)0.0344 (12)
C60.5523 (11)0.2781 (3)0.3757 (2)0.0304 (11)
C70.4677 (11)0.2262 (3)0.4418 (2)0.0348 (12)
C80.5234 (12)0.1339 (3)0.4477 (3)0.0397 (13)
H80.46790.10030.49220.048*
C90.4692 (12)0.3738 (3)0.3771 (3)0.0373 (13)
H90.52210.41010.33390.045*
C100.3191 (12)0.4114 (3)0.4385 (2)0.0431 (13)
H100.26540.47320.43710.052*
C110.2370 (13)0.3592 (3)0.5074 (3)0.0433 (13)
C120.6549 (14)0.2653 (3)0.1726 (2)0.0652 (17)
H12A0.79360.21730.15160.098*
H12B0.66300.31750.13840.098*
H12C0.41870.24500.17580.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.075 (3)0.0265 (17)0.056 (2)0.0074 (19)0.006 (2)0.0024 (16)
O20.054 (2)0.0343 (18)0.0321 (16)0.0034 (18)0.0073 (19)0.0003 (14)
O30.081 (3)0.0419 (18)0.0300 (17)0.0206 (19)0.005 (2)0.0006 (15)
O40.089 (3)0.052 (2)0.045 (2)0.018 (2)0.025 (2)0.0027 (18)
C10.045 (4)0.029 (3)0.043 (3)0.000 (3)0.007 (3)0.000 (2)
C20.063 (4)0.040 (3)0.058 (3)0.009 (3)0.010 (3)0.013 (3)
C30.054 (4)0.041 (3)0.048 (3)0.001 (3)0.007 (3)0.006 (2)
C40.040 (3)0.032 (3)0.039 (3)0.002 (3)0.001 (3)0.0073 (19)
C50.036 (3)0.037 (3)0.030 (2)0.006 (3)0.001 (3)0.001 (2)
C60.029 (3)0.029 (2)0.033 (2)0.002 (2)0.002 (2)0.001 (2)
C70.041 (3)0.033 (3)0.031 (2)0.002 (3)0.005 (2)0.002 (2)
C80.049 (4)0.033 (3)0.038 (3)0.002 (3)0.004 (3)0.008 (2)
C90.047 (3)0.030 (3)0.035 (3)0.004 (2)0.002 (3)0.005 (2)
C100.056 (4)0.029 (2)0.044 (3)0.004 (3)0.001 (3)0.003 (2)
C110.046 (4)0.036 (3)0.048 (3)0.007 (3)0.006 (3)0.001 (2)
C120.099 (5)0.060 (3)0.037 (3)0.013 (4)0.001 (3)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.369 (5)C4—C51.394 (6)
O1—C21.386 (5)C5—C61.391 (5)
O2—C71.385 (4)C6—C71.398 (5)
O2—C111.383 (5)C6—C91.442 (5)
O3—C51.365 (4)C7—C81.374 (5)
O3—C121.409 (4)C8—H80.9300
O4—C111.200 (5)C9—C101.325 (5)
C1—C81.376 (5)C9—H90.9300
C1—C41.393 (6)C10—C111.435 (5)
C2—C31.327 (6)C10—H100.9300
C2—H20.9300C12—H12A0.9600
C3—C41.435 (6)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C1—O1—C2105.1 (3)C8—C7—O2116.2 (4)
C7—O2—C11122.6 (3)C8—C7—C6123.7 (4)
C5—O3—C12117.9 (3)O2—C7—C6120.1 (4)
O1—C1—C8123.8 (4)C1—C8—C7114.2 (4)
O1—C1—C4110.2 (4)C1—C8—H8122.9
C8—C1—C4126.0 (4)C7—C8—H8122.9
C3—C2—O1112.7 (4)C10—C9—C6121.4 (4)
C3—C2—H2123.7C10—C9—H9119.3
O1—C2—H2123.7C6—C9—H9119.3
C2—C3—C4106.2 (4)C9—C10—C11121.7 (4)
C2—C3—H3126.9C9—C10—H10119.1
C4—C3—H3126.9C11—C10—H10119.1
C5—C4—C1117.3 (4)O4—C11—O2116.1 (4)
C5—C4—C3136.9 (4)O4—C11—C10127.2 (4)
C1—C4—C3105.8 (4)O2—C11—C10116.8 (4)
O3—C5—C6117.4 (4)O3—C12—H12A109.5
O3—C5—C4123.2 (4)O3—C12—H12B109.5
C6—C5—C4119.4 (4)H12A—C12—H12B109.5
C5—C6—C7119.4 (4)O3—C12—H12C109.5
C5—C6—C9123.2 (4)H12A—C12—H12C109.5
C7—C6—C9117.4 (4)H12B—C12—H12C109.5
C2—O1—C1—C8179.8 (5)C4—C5—C6—C9177.6 (4)
C2—O1—C1—C40.3 (5)C11—O2—C7—C8178.5 (4)
C1—O1—C2—C30.2 (6)C11—O2—C7—C60.9 (6)
O1—C2—C3—C40.0 (6)C5—C6—C7—C80.8 (6)
O1—C1—C4—C5179.6 (4)C9—C6—C7—C8178.3 (4)
C8—C1—C4—C50.5 (7)C5—C6—C7—O2178.5 (4)
O1—C1—C4—C30.3 (5)C9—C6—C7—O21.1 (6)
C8—C1—C4—C3179.8 (5)O1—C1—C8—C7179.9 (5)
C2—C3—C4—C5179.2 (6)C4—C1—C8—C70.1 (7)
C2—C3—C4—C10.2 (6)O2—C7—C8—C1178.7 (4)
C12—O3—C5—C6126.8 (4)C6—C7—C8—C10.6 (7)
C12—O3—C5—C455.5 (6)C5—C6—C9—C10177.4 (5)
C1—C4—C5—O3177.3 (4)C7—C6—C9—C100.1 (7)
C3—C4—C5—O31.7 (9)C6—C9—C10—C111.1 (7)
C1—C4—C5—C60.3 (7)C7—O2—C11—O4179.7 (4)
C3—C4—C5—C6179.3 (5)C7—O2—C11—C100.3 (6)
O3—C5—C6—C7178.0 (4)C9—C10—C11—O4179.3 (5)
C4—C5—C6—C70.3 (6)C9—C10—C11—O21.3 (7)
O3—C5—C6—C94.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.493.406 (5)170
C3—H3···O4ii0.932.573.484 (6)170
C10—H10···O4iii0.932.513.387 (5)158
C12—H12A···O4ii0.962.443.376 (5)165
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universit at Darmstadt, Petersenstress 23, 64287 Darmstadt, for his kind co-operation in the data collection and for providing diffractometer time.

References

First citationAppendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198.  CrossRef CAS Google Scholar
First citationConfalone, P. N. & Confalone, D. L. (1983). Tetrahedron, 39, 1265–1271.  CrossRef CAS Google Scholar
First citationConforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38–58.  CrossRef CAS Google Scholar
First citationGinderow, D. (1991). Acta Cryst. C47, 2144–2146.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGopalakrishna, E. M., Watson, W. H., Bittner, M. & Silva, M. (1977). J. Cryst. Mol. Struct. 7, 107–114.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHowell, W. N. & Robertson, A. (1937). J. Chem. Soc. pp. 293–294.  CrossRef Google Scholar
First citationLiu, Y., Thom, E. & Liebman, A. A. (1979). J. Heterocycl. Chem. 16, 799–801.  CrossRef CAS Google Scholar
First citationMarch, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184–191.  CrossRef CAS PubMed Google Scholar
First citationNapolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1506–o1508.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRay, J. N., Silooja, S. S. & Vaid, V. R. (1937). J. Chem. Soc. 1, 813–816.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds