research communications
of bergapten: a photomutagenic and photobiologically active furanocoumarin
aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cAccident & Emergency Department, Franco, Vietnamese Hospital, 7-Nguyen, Luong Bang Street, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com
The title compound, C12H8O4, is a furanocoumarin [systematic name: 4-methoxy-7H-furo[3,2-g]chromen-7-one], which was isolated from the Indian herb T. stictocarpum. The molecule is almost planar with an r.m.s. deviation of 0.024 Å for the hetero atoms of the fused-ring system. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional framework. There are offset π–π interactions present involving the coumarin moieties stacking along the a-axis direction [shortest inter-centroid distance = 3.717 (3) Å].
Keywords: crystal structure; bergapten; T. stictocarpum; psoralen; furanocoumarin; photobiological activity; C—H⋯O hydrogen bonds; π–π interactions.
CCDC reference: 1491854
1. Chemical context
The title molecule, bergapten, is a linear furanocoumarin having a methoxy group in the benzene ring at position C5. This class of furano et al., 2004) and photocarcinogenic properties, binding with of DNA in living cells to yield photoadducts (Filomena et al., 2009). Based on this property, they are employed to treat numerous inflammatory skin diseases, such as atopic dermatitis, and pigment disorders like vitiligo and psoriasis by UV photodynamic therapy. In addition, due to their strong ability to absorb UV radiation, this class of molecules are utilized as photoprotective agents, to prevent the absorption of harmful UV radiation by the skin. A variety of sun-screen lotions are widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007, 2009). In addition, the in vitro antiproliferation activity and in vivo photoxicity of the title molecule has been reported against epithelial cancer cell lines, including HL60, A431 (Conconi et al., 1998). Bergapten (5-methoxy psoralen/methoxsalen) has been used successfully in combination with UV photodynamic therapy to mange psoriasis and vitiligo; it inhibits proliferation in human hepatocellular carcinoma cell line (March et al., 1993). Experimental results revealed that its phototoxicity and photomutagenicity is exerted via a Diels–Alder reaction binding the double bond of a purine base of DNA in a living cell with the double bonds of bergapten to yield mono- and di-adducts (Conforti et al., 2009).
have absorption bands in the near UV region due to the presence of conjugated double bonds, and exhibit photomutagenic (Appendino,While this is the first report of the ; Ray et al., 1937; Lin et al., 1979; Confalone & Confalone, 1983).
of the title compound, its chemical structure was determined by spectrometric and spectroscopic analysis many years ago (Howell & Robertson, 19372. Structural commentary
The title compound (Fig. 1), belongs to the psoralen class of compounds and is composed of three fused rings viz. furan, benzene and pyrone. It is an almost planar molecule with an r.m.s. deviation of 0.024 Å for the atoms of the fused ring system, O1–O2/C1–C11. The methoxy C atom, C12, is displaced from this mean plane by 0.925 (5) Å, while atoms O3 and O4 are displaced from the mean plane by 0.069 (3) and 0.035 (3) Å, respectively.
3. Supramolecular features
In the crystal, molecules are linked by a series of C—H⋯O hydrogen bonds, which are illustrated in Fig. 2 (see also Table 1). They form a three-dimensional network (Table 1 and Fig. 3). There are offset π–π interactions present involving the coumarin moieties stacking along the a-axis direction [shortest inter-centroid distance Cg2⋯Cg3i = 3.717 (3) Å, interplanar distance = 3.425 (2) Å, slippage = 1.356 Å, Cg2 and Cg3 are the centroids of rings O2/C6/C7/C9–C11 and C1/C4–C8, respectively, symmetry code: (i) x − 1, y, z].
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) gave 16 hits for the furanocoumarin skeleton with an O atom substituent in position 5, similar to the title compound. Two compounds closely resemble the title compound, viz. 5-hydroxypsolalen [JIXBOH; Ginderow, 1991] isolated from the bark of Citrus bergamia, and 5,8-dimethoxypsoralen [ISIMP (293 K); Gopalakrishna et al., 1977] and [ISIMP01 (120 K); Napolitano et al., 2003]. The latter was isolated from the roots and leaves of Adiscanthus fusciflorus (Rutaceae).
5. Synthesis and crystallization
The title compound was isolated as a colourless solid from the methanol extract of T. stictocarpum by means of over silica gel by with a mixture of binary solvents system hexane and ethyl acetate. It was purified by reverse phase high-pressure Colourless rod-like crystals, suitable crystals for X ray were obtained after the title compound was recrystallized three times from ethyl acetate:hexane (1:4) mixed solvents at room temperature by slow evaporation of the solvents (m.p. 469 K).
1H NMR data (CHCl3, 200 MHz) 8.13 (d, 1H, J = 9.8 Hz, H-9), 7.57 (d, 1H, J = 2.2 Hz, H-2), 7.11 (s, 1H, H-8), 7.05 (d, 1H, J = 2.2 Hz, H-3), 6.25 (d, 1H, J = 9.8 Hz, H-10), 4.26 (s, 3H, OCH3). EIMS (70 ev) data: m/z (%) 216 (100; base peak/molecular ion peak) [M+], 201 (25.2%) [M+−CH3), 188 (25.7) [M+−OCH3], 173 (25.6) [M+−(CH3–CO)], 145 (33.8) [M+−(OCH3–CO2)], 89(17.0).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The structure was refined as a two-component twin [180° rotation about the a* axis; BASF = 0.3955 (2)].
details are summarized in Table 2Supporting information
CCDC reference: 1491854
https://doi.org/10.1107/S2056989016011221/su5310sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011221/su5310Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016011221/su5310Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C12H8O4 | Dx = 1.508 Mg m−3 |
Mr = 216.18 | Melting point: 469 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8486 (8) Å | Cell parameters from 870 reflections |
b = 14.676 (2) Å | θ = 2.8–27.9° |
c = 16.866 (3) Å | µ = 0.12 mm−1 |
β = 92.12 (2)° | T = 299 K |
V = 952.0 (3) Å3 | Needle, colourless |
Z = 4 | 0.44 × 0.08 × 0.02 mm |
F(000) = 448 |
Oxford Diffraction Xcalibur with a Sapphire CCD detector diffractometer | 7096 independent reflections |
Radiation source: fine-focus sealed tube | 3811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.08 |
Rotation method data acquisition using ω and phi scans. | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)' | h = −4→4 |
Tmin = 0.951, Tmax = 0.998 | k = −17→17 |
7096 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 0.86 | w = 1/[σ2(Fo2) + (0.0738P)2] where P = (Fo2 + 2Fc2)/3 |
7096 reflections | (Δ/σ)max = 0.002 |
147 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7447 (9) | 0.00489 (18) | 0.37565 (18) | 0.0525 (10) | |
O2 | 0.3156 (8) | 0.26727 (18) | 0.50579 (14) | 0.0399 (9) | |
O3 | 0.7860 (9) | 0.28906 (17) | 0.24893 (16) | 0.0510 (10) | |
O4 | 0.1046 (9) | 0.3863 (2) | 0.56614 (18) | 0.0617 (11) | |
C1 | 0.6682 (13) | 0.0956 (3) | 0.3822 (3) | 0.0392 (13) | |
C2 | 0.8854 (13) | −0.0043 (3) | 0.3016 (3) | 0.0534 (15) | |
H2 | 0.9619 | −0.0595 | 0.2814 | 0.064* | |
C3 | 0.8989 (13) | 0.0740 (3) | 0.2626 (3) | 0.0477 (14) | |
H3 | 0.9832 | 0.0833 | 0.2123 | 0.057* | |
C4 | 0.7573 (13) | 0.1417 (3) | 0.3137 (2) | 0.0369 (12) | |
C5 | 0.6975 (12) | 0.2354 (3) | 0.3111 (2) | 0.0344 (12) | |
C6 | 0.5523 (11) | 0.2781 (3) | 0.3757 (2) | 0.0304 (11) | |
C7 | 0.4677 (11) | 0.2262 (3) | 0.4418 (2) | 0.0348 (12) | |
C8 | 0.5234 (12) | 0.1339 (3) | 0.4477 (3) | 0.0397 (13) | |
H8 | 0.4679 | 0.1003 | 0.4922 | 0.048* | |
C9 | 0.4692 (12) | 0.3738 (3) | 0.3771 (3) | 0.0373 (13) | |
H9 | 0.5221 | 0.4101 | 0.3339 | 0.045* | |
C10 | 0.3191 (12) | 0.4114 (3) | 0.4385 (2) | 0.0431 (13) | |
H10 | 0.2654 | 0.4732 | 0.4371 | 0.052* | |
C11 | 0.2370 (13) | 0.3592 (3) | 0.5074 (3) | 0.0433 (13) | |
C12 | 0.6549 (14) | 0.2653 (3) | 0.1726 (2) | 0.0652 (17) | |
H12A | 0.7936 | 0.2173 | 0.1516 | 0.098* | |
H12B | 0.6630 | 0.3175 | 0.1384 | 0.098* | |
H12C | 0.4187 | 0.2450 | 0.1758 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.075 (3) | 0.0265 (17) | 0.056 (2) | 0.0074 (19) | 0.006 (2) | −0.0024 (16) |
O2 | 0.054 (2) | 0.0343 (18) | 0.0321 (16) | 0.0034 (18) | 0.0073 (19) | 0.0003 (14) |
O3 | 0.081 (3) | 0.0419 (18) | 0.0300 (17) | −0.0206 (19) | 0.005 (2) | 0.0006 (15) |
O4 | 0.089 (3) | 0.052 (2) | 0.045 (2) | 0.018 (2) | 0.025 (2) | −0.0027 (18) |
C1 | 0.045 (4) | 0.029 (3) | 0.043 (3) | 0.000 (3) | −0.007 (3) | 0.000 (2) |
C2 | 0.063 (4) | 0.040 (3) | 0.058 (3) | 0.009 (3) | 0.010 (3) | −0.013 (3) |
C3 | 0.054 (4) | 0.041 (3) | 0.048 (3) | −0.001 (3) | 0.007 (3) | −0.006 (2) |
C4 | 0.040 (3) | 0.032 (3) | 0.039 (3) | −0.002 (3) | −0.001 (3) | −0.0073 (19) |
C5 | 0.036 (3) | 0.037 (3) | 0.030 (2) | −0.006 (3) | 0.001 (3) | 0.001 (2) |
C6 | 0.029 (3) | 0.029 (2) | 0.033 (2) | −0.002 (2) | −0.002 (2) | −0.001 (2) |
C7 | 0.041 (3) | 0.033 (3) | 0.031 (2) | −0.002 (3) | 0.005 (2) | −0.002 (2) |
C8 | 0.049 (4) | 0.033 (3) | 0.038 (3) | −0.002 (3) | 0.004 (3) | 0.008 (2) |
C9 | 0.047 (3) | 0.030 (3) | 0.035 (3) | −0.004 (2) | 0.002 (3) | 0.005 (2) |
C10 | 0.056 (4) | 0.029 (2) | 0.044 (3) | 0.004 (3) | 0.001 (3) | 0.003 (2) |
C11 | 0.046 (4) | 0.036 (3) | 0.048 (3) | 0.007 (3) | 0.006 (3) | −0.001 (2) |
C12 | 0.099 (5) | 0.060 (3) | 0.037 (3) | −0.013 (4) | 0.001 (3) | −0.003 (2) |
O1—C1 | 1.369 (5) | C4—C5 | 1.394 (6) |
O1—C2 | 1.386 (5) | C5—C6 | 1.391 (5) |
O2—C7 | 1.385 (4) | C6—C7 | 1.398 (5) |
O2—C11 | 1.383 (5) | C6—C9 | 1.442 (5) |
O3—C5 | 1.365 (4) | C7—C8 | 1.374 (5) |
O3—C12 | 1.409 (4) | C8—H8 | 0.9300 |
O4—C11 | 1.200 (5) | C9—C10 | 1.325 (5) |
C1—C8 | 1.376 (5) | C9—H9 | 0.9300 |
C1—C4 | 1.393 (6) | C10—C11 | 1.435 (5) |
C2—C3 | 1.327 (6) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C12—H12A | 0.9600 |
C3—C4 | 1.435 (6) | C12—H12B | 0.9600 |
C3—H3 | 0.9300 | C12—H12C | 0.9600 |
C1—O1—C2 | 105.1 (3) | C8—C7—O2 | 116.2 (4) |
C7—O2—C11 | 122.6 (3) | C8—C7—C6 | 123.7 (4) |
C5—O3—C12 | 117.9 (3) | O2—C7—C6 | 120.1 (4) |
O1—C1—C8 | 123.8 (4) | C1—C8—C7 | 114.2 (4) |
O1—C1—C4 | 110.2 (4) | C1—C8—H8 | 122.9 |
C8—C1—C4 | 126.0 (4) | C7—C8—H8 | 122.9 |
C3—C2—O1 | 112.7 (4) | C10—C9—C6 | 121.4 (4) |
C3—C2—H2 | 123.7 | C10—C9—H9 | 119.3 |
O1—C2—H2 | 123.7 | C6—C9—H9 | 119.3 |
C2—C3—C4 | 106.2 (4) | C9—C10—C11 | 121.7 (4) |
C2—C3—H3 | 126.9 | C9—C10—H10 | 119.1 |
C4—C3—H3 | 126.9 | C11—C10—H10 | 119.1 |
C5—C4—C1 | 117.3 (4) | O4—C11—O2 | 116.1 (4) |
C5—C4—C3 | 136.9 (4) | O4—C11—C10 | 127.2 (4) |
C1—C4—C3 | 105.8 (4) | O2—C11—C10 | 116.8 (4) |
O3—C5—C6 | 117.4 (4) | O3—C12—H12A | 109.5 |
O3—C5—C4 | 123.2 (4) | O3—C12—H12B | 109.5 |
C6—C5—C4 | 119.4 (4) | H12A—C12—H12B | 109.5 |
C5—C6—C7 | 119.4 (4) | O3—C12—H12C | 109.5 |
C5—C6—C9 | 123.2 (4) | H12A—C12—H12C | 109.5 |
C7—C6—C9 | 117.4 (4) | H12B—C12—H12C | 109.5 |
C2—O1—C1—C8 | −179.8 (5) | C4—C5—C6—C9 | −177.6 (4) |
C2—O1—C1—C4 | 0.3 (5) | C11—O2—C7—C8 | −178.5 (4) |
C1—O1—C2—C3 | −0.2 (6) | C11—O2—C7—C6 | 0.9 (6) |
O1—C2—C3—C4 | 0.0 (6) | C5—C6—C7—C8 | 0.8 (6) |
O1—C1—C4—C5 | −179.6 (4) | C9—C6—C7—C8 | 178.3 (4) |
C8—C1—C4—C5 | 0.5 (7) | C5—C6—C7—O2 | −178.5 (4) |
O1—C1—C4—C3 | −0.3 (5) | C9—C6—C7—O2 | −1.1 (6) |
C8—C1—C4—C3 | 179.8 (5) | O1—C1—C8—C7 | −179.9 (5) |
C2—C3—C4—C5 | 179.2 (6) | C4—C1—C8—C7 | −0.1 (7) |
C2—C3—C4—C1 | 0.2 (6) | O2—C7—C8—C1 | 178.7 (4) |
C12—O3—C5—C6 | −126.8 (4) | C6—C7—C8—C1 | −0.6 (7) |
C12—O3—C5—C4 | 55.5 (6) | C5—C6—C9—C10 | 177.4 (5) |
C1—C4—C5—O3 | 177.3 (4) | C7—C6—C9—C10 | 0.1 (7) |
C3—C4—C5—O3 | −1.7 (9) | C6—C9—C10—C11 | 1.1 (7) |
C1—C4—C5—C6 | −0.3 (7) | C7—O2—C11—O4 | 179.7 (4) |
C3—C4—C5—C6 | −179.3 (5) | C7—O2—C11—C10 | 0.3 (6) |
O3—C5—C6—C7 | −178.0 (4) | C9—C10—C11—O4 | 179.3 (5) |
C4—C5—C6—C7 | −0.3 (6) | C9—C10—C11—O2 | −1.3 (7) |
O3—C5—C6—C9 | 4.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.93 | 2.49 | 3.406 (5) | 170 |
C3—H3···O4ii | 0.93 | 2.57 | 3.484 (6) | 170 |
C10—H10···O4iii | 0.93 | 2.51 | 3.387 (5) | 158 |
C12—H12A···O4ii | 0.96 | 2.44 | 3.376 (5) | 165 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, −y+1/2, z−1/2; (iii) −x, −y+1, −z+1. |
Acknowledgements
The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universit at Darmstadt, Petersenstress 23, 64287 Darmstadt, for his kind co-operation in the data collection and for providing diffractometer time.
References
Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536. Web of Science CrossRef PubMed CAS Google Scholar
Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936. Web of Science CrossRef PubMed CAS Google Scholar
Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702. Web of Science CrossRef PubMed CAS Google Scholar
Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198. CrossRef CAS Google Scholar
Confalone, P. N. & Confalone, D. L. (1983). Tetrahedron, 39, 1265–1271. CrossRef CAS Google Scholar
Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Curr. Drug Ther. 4, 38–58. CrossRef CAS Google Scholar
Ginderow, D. (1991). Acta Cryst. C47, 2144–2146. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gopalakrishna, E. M., Watson, W. H., Bittner, M. & Silva, M. (1977). J. Cryst. Mol. Struct. 7, 107–114. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howell, W. N. & Robertson, A. (1937). J. Chem. Soc. pp. 293–294. CrossRef Google Scholar
Liu, Y., Thom, E. & Liebman, A. A. (1979). J. Heterocycl. Chem. 16, 799–801. CrossRef CAS Google Scholar
March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184–191. CrossRef CAS PubMed Google Scholar
Napolitano, H. B., Silva, M., Ellena, J., Rocha, W. C., Vieira, P. C., Thiemann, O. H. & Oliva, G. (2003). Acta Cryst. E59, o1506–o1508. CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Ray, J. N., Silooja, S. S. & Vaid, V. R. (1937). J. Chem. Soc. 1, 813–816. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.