research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of two chalcones: (2E)-1-(5-chloro­thio­phen-2-yl)-3-(2-methyl­phen­yl)prop-2-en-1-one and (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 July 2016; accepted 16 July 2016; online 19 July 2016)

In the crystal of compound (I), C14H11ClOS, mol­ecules are linked by C—H⋯O hydrogen bonds to form simple C(5) chains. Compound (II), C26H22O, crystallizes with Z′ = 2 in space group P-1; one of the mol­ecules is fully ordered but the other is disordered over two sets of atomic sites having occupancies 0.644 (3) and 0.356 (3). The two disordered components differ from one another in the orientation of the isopropyl substituents, and both differ from the ordered mol­ecules in the arrangement of the central propenone spacer unit, so that the crystal of (II) contains three distinct conformers. The ordered and disordered conformers each form a C(8) chain built from a single type of C—H⋯O hydrogen bond but those formed by the disordered conformers differ from that formed by the ordered form.

1. Chemical context

Chalcones, R1—C(=O)—CH=CH—R2, are versatile inter­mediates in synthesis (Baktır et al., 2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]; Samshuddin et al., 2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Pharma Chemica, 3, 232-240.], 2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Raghavendra, R. (2012). Pharma Chemica, 4, 1445-1457.], 2014[Samshuddin, S., Jasinski, J. P., Butcher, R. J., Neuhardt, E. A., Narayana, B., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 953-959.]; Nayak et al., 2014[Nayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011-1016.]; Salian et al., 2015[Salian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610-617.]; Mohan et al., 2016[Mohan, B. J., Sarojini, B. K., Yathirajan, H. S., Rathore, R. & Glidewell, C. (2016). Acta Cryst. E72, 31-34.]). Compounds of this class also exhibit a wide range of biological activity, including anti-bacterial (Tran et al., 2012[Tran, T.-D., Nguyen, T.-T.-N., Do, T.-H., Huynh, T.-N.-P., Tran, C.-D. & Thai, K.-M. (2012). Molecules, 17, 6684-6696.]), anti-cancer (Syam et al., 2012[Syam, S., Abdelwahab, S. I., Al-Mamary, M. A. & Mohan, S. (2012). Molecules, 17, 6179-6195.]; Kumar et al., 2014[Kumar, D., Maruthi Kumar, N., Tantak, M. P., Ogura, M., Kusaka, E. & Ito, T. (2014). Bioorg. Med. Chem. Lett. 24, 5170-5174.]), anti-fungal (López et al., 2001[López, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999-2013.]), anti-inflammatory (Fang et al., 2015[Fang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). Toxicol. Appl. Pharmacol. 282, 129-138.]), anti-malarial (Agarwal et al., 2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645-4650.]) and anti­tubercular activities (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). Accordingly, the synthesis and characterization of new examples of this type is of inter­est and potentially of value and herein we report on the synthesis and crystal structures of two further examples; (2E)-1-(5-chloro­thio­phen-2-yl)-3-(2-methyl­phen­yl)-prop-2-en-1-one (I)[link], and (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (II)[link]. Compounds (I)[link] and (II)[link] were prepared by base-induced condensation of an aryl aldehyde, 2-methyl­benzaldehyde in the case of (I)[link] or 4-iso­propyl­benzaldehyde for (II)[link] with, respectively, 2-acetyl-5-chloro­thio­phene or 9-acetyl­anthracene.

2. Structural commentary

In the mol­ecule of compound (I)[link], Fig. 1[link], the central spacer unit comprising the atoms (C12,C1,C2,C3,C31) is effectively planar: the maximum deviation from the mean plane of these atoms is 0.21 (2) Å, with an r.m.s. deviation of 0.025 Å. The heterocyclic ring is nearly co-planar with the spacer unit, making with it a dihedral angle of 1.41 (1)°. The dihedral angles between the phenyl group and the spacer unit, and between the two rings are 10.95 (11) and 9.81 (10)°, respectively. The bond distances within the mol­ecule of (I)[link] show clearly the localized double bond between atoms C2 and C3, and the distances within the thio­phene ring clearly rule out the possibility of any orientational disorder of the type sometimes found in thio­phene rings (Cobo et al., 2005[Cobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639-o3641.]; Trilleras et al., 2005[Trilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1892-o1894.], 2009[Trilleras, J., Quiroga, J., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o284-o286.]; Insuasty et al., 2014[Insuasty, H., Insuasty, B., Castro, E., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 908-911.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level.

Compound (II)[link] crystallizes with Z′ = 2 in space group P[\overline{1}]. The mol­ecule containing atom O11 (Fig. 2[link]) is fully ordered, but the other mol­ecule is disordered over two sets of atomic sites: the major-disorder component containing atom O21 (Fig. 3[link]) has occupancy 0.644 (3) while the minor-disorder component containing atom O31 (Fig. 4[link]) has occupancy 0.356 (3). All three forms exhibit different conformations, as discussed below, and it will be convenient to refer to the mol­ecules containing atoms O11, O21 or O31 as conformers of types 1, 2 or 3, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of conformer 1 in compound (II)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of the major-disorder component, conformer 2 having occupancy 0.644 (3), in compound (II)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of the minor-disorder component, conformer 3 having occupancy 0.356 (3), in compound (II)[link], with atom labelling and displacement ellipsoids drawn at the 30% probability level.

In the fully ordered mol­ecule containing atom O11 the torsional angle C119—C11—C12—C13 is 177.72 (16)° whereas in the two disordered components containing atoms O21 and O31 the values of the corresponding torsional angles Cn19—Cn1—Cn2—Cn3 are 11 (3)° and 12 (5)° for n = 2 and 3 respectively, corresponding to a rotation of approximately 180° about the bond Cn1—Cn2 in conformers 2 and 3 as compared with conformer 1. In addition, in conformers 2 and 3 the torsional angles Cn33—Cn34—Cn37—Hn37 are −14° and −170° for n = 2 and 3, respectively, so that the orientation of the CHMe2 group in these two forms differs by a rotation of approximately 180° about the bond Cn34—Cn37; the corresponding value in conformer 1 is ca 162°. Hence three different conformations of compound (II)[link] co-exist in the same crystal (cf. Figs. 2[link]–4) with relative abundances 1.000:0.644 (3):0.356 (3) in the crystal selected for data collection. Conformer 1 thus differs from conformers 2 and 3 in the arrangement of the central spacer unit, while conformers 1 and 3 exhibit similar orientations of the isopropyl unit relative to the adjacent phenyl ring, but different from that in conformer 2.

In each conformer, the central spacer unit encompassing atoms Cn19,Cn1,Cn2,Cn3,Cn31 is effectively planar with r.m.s. deviations from the mean planes of 0.011, 0.036 and 0.043 Å for n = 1–3, respectively. This spacer unit makes dihedral angles with the central ring of the anthracene unit of 67.70 (11), 65.7 (5) and 71.7 (10)° for n = 1–3, respectively, and the corresponding dihedral angles with the adjacent aryl rings Cn31—Cn36 are 6.26 (18), 1.5 (11) and 7(2)°, respectively. These values confirm that the principal difference between conformer 1 and conformers 2 and 3 is simply a rotation about the bond Cn1—Cn2.

Within each of the anthracene units, the distances Cn11—Cn12, Cn13—Cn14, Cn15—Cn16 and Cn17—Cn18 are very much shorter than the other C—C bonds in these units, while the C—C distances in the central rings show rather little variation. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.],1986[Glidewell, C. & Lloyd, D. (1986). J. Chem. Educ. 63, 306-309.]).

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecule related by a c-glide plane are linked by a single C—H⋯O hydrogen bond (Table 1[link]) to form a C(5) chain running parallel to the [001] direction (Fig. 5[link]). In the crystal of compound (II)[link], mol­ecules are also linked into chains by C—H⋯O hydrogen bonds (Table 2[link]), but the chains formed by the ordered and disordered forms are different, in that in the chain of ordered mol­ecules the donor is a phenyl C—H unit, while in the disordered forms the donors are part of the anthracene units. In both types of chain mol­ecules related by translation form C(8) chains running parallel to the [100] direction (Fig. 6[link]). In addition, inversion-related pairs of the chains built from the disordered components are weakly linked by C—H⋯π inter­actions (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.55 3.467 (2) 169
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of rings (C111–C114/C122/C111) and (C114–C118/C124/C113), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C133—H133⋯O11i 0.93 2.49 3.336 (2) 151
C216—H216⋯O21i 0.93 2.61 3.41 (2) 144
C216—H216⋯O31i 0.93 2.58 3.36 (4) 142
C316—H316⋯O21i 0.93 2.51 3.30 (3) 144
C316—H316⋯O31i 0.93 2.47 3.25 (4) 142
C233—H233⋯Cg1ii 0.93 2.64 3.355 (4) 134
C236—H236⋯Cg2iii 0.93 2.75 3.519 (4) 140
C336—H336⋯Cg2iii 0.93 2.80 3.354 (7) 119
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded C(5) chain parallel to [001]. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown are omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, −[{1\over 2}] + z) and (x, [{1\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link], showing the formation of two different types of hydrogen-bonded C(8) chain. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor-disorder component and the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z), respectively.

4. Database survey

The structures of a number of chalcones containing substituted thio­phene units, and thus closely related to compound (I)[link] have been reported recently (Naik, Shettigar et al., 2015[Naik, V. S., Shettigar, V., Berglin, T. S., Coburn, J. S., Jasinski, J. P. & Yathirajan, H. S. (2015). Acta Cryst. E71, 965-971.]; Naik, Yathirajan et al., 2015[Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093-1099.]). There are no hydrogen bonds of any kind in the crystals of the isostructural compounds (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one and (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one, but in the isostructural compounds (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one and (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one the mol­ecules are linked by C—H⋯O hydrogen bonds to form simple C(7) chains, while C(5) chains are present in the structure of (2E)-1-(5-bromo­thio­phen-2-yl)-3-(3-meth­oxy­phen­yl)prop-2-en-1-one. In the structure of (2E, 2'E)-3, 3′-(1,3-phenyl­ene)-bis­(1-(anthracene-9-yl)prop-2-en-1-one), which is related to compound (II)[link], inversion-related pairs of mol­ecules are linked by multiple C—H⋯O hydrogen bonds to form centrosymmetric dimers (Kant et al., 2015[Kant, R., Sharma, R., Salian, V. V., Sarojini, B. K. & Narayana, B. (2015). Eur. Chem. Bull. 4, 327-330.]). In the recently reported structure of (2E)-3-(2,4-di­chloro­phen­yl)-1-(2-meth­oxy­phen­yl)prop-2-en-1-one (Salian et al., 2016[Salian, V. V., Narayana, B., Yathirajan, H. S., Rathore, R. S., Jasinski, J. P. & Glidewell, C. (2016). Private communication (refcode: CCDC 1481314). CCDC, Cambridge, England.]), there are no hydrogen bonds of any kind, but the mol­ecules are linked into chains by ππ stacking inter­actions.

5. Synthesis and crystallization

For the synthesis of compound (I)[link], a solution of 2-methyl­benzaldehyde (0.075 g, 0.625 mol) in methanol (20 ml) was added to solution of with 2-acetyl-5-chloro­thio­phene (0.100 g, 0.625 mol) in methanol (10 ml) and to this mixture was added aqueous sodium hydroxide solution (40% w/v, 5 ml). The reaction mixture was then stirred at 301 K for 4 h, when the resulting solid product was collected by filtration, washed with cold water and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in acetone-di­methyl­formamide (1:1, v/v): m. p. 387–389 K. For the synthesis of compound (II)[link], aqueous sodium hydroxide solution (10%, w/v, 15 ml) was added to a mixture of 4-iso­propyl­benzaldehyde (1.5 ml, 0.01 mol) and 9-acetyl­anthracene (2.2 g, 0.01 mol) in ethanol (50 ml), and the resulting mixture was stirred at 278 K for 3 h. The resulting solid product was collected by filtration and recrystallized from ethanol solution: m.p. 369–371 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in di­methyl­formamide.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. It was obvious from an early stage in the refinement of compound (II)[link] that one of the two independent mol­ecules was disordered over two sets of atomic sites having unequal occupancies. For the minor-disorder component the bonded distances and the one-angle non-bonded distances were restrained to be the same as the corresponding distances in the major component, subject to s.u.s of 0.005 and 0.01 Å respectively. In addition, the anisotropic displacement parameters for corresponding atomic pairs of atomic sites in the two disorder components were constrained to be identical and, subject to these conditions the occupancies for the two components refined to values of 0.645 (4) and 0.355 (4). The H atoms in all but the minor-disorder component of compound (II)[link] were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (alkenyl, aromatic and heteroaromatic), 0.96 Å (meth­yl) or 0.98 Å (aliphatic C—H) and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The H atoms in the minor-disorder component were included in the refinement in calculated positions under exactly the same conditions. For compound (II)[link], 16 bad outliers of low intensity were omitted from the final refinements. In the final analysis of variance for compound (I)[link] there was a fairly large value, 2.583, of K = mean (Fo2)/mean (Fc2) for the group of 287 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.006. For compound (II)[link], there was a large value of K, 10.808, for the group of 733 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.005.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H11ClOS C26H22O
Mr 262.74 350.44
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 298 296
a, b, c (Å) 14.7179 (7), 7.5783 (4), 11.5451 (5) 9.0150 (4), 14.0601 (6), 16.2611 (8)
α, β, γ (°) 90, 102.999 (4), 90 105.146 (4), 95.967 (4), 98.057 (4)
V3) 1254.70 (11) 1948.46 (16)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.45 0.55
Crystal size (mm) 0.26 × 0.22 × 0.15 0.21 × 0.14 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.832, 0.935 0.737, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 6097, 2785, 2053 12946, 7079, 5485
Rint 0.028 0.035
(sin θ/λ)max−1) 0.651 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.04 0.050, 0.143, 1.04
No. of reflections 2785 7079
No. of parameters 156 575
No. of restraints 0 72
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.19 0.22, −0.26
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) (2E)-1-(5-Chlorothiophen-2-yl)-3-(2-methylphenyl)prop-2-en-1-one top
Crystal data top
C14H11ClOSF(000) = 544
Mr = 262.74Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7179 (7) ÅCell parameters from 2913 reflections
b = 7.5783 (4) Åθ = 3.0–29.4°
c = 11.5451 (5) ŵ = 0.45 mm1
β = 102.999 (4)°T = 298 K
V = 1254.70 (11) Å3Block, colourless
Z = 40.26 × 0.22 × 0.15 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2053 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.028
φ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1718
Tmin = 0.832, Tmax = 0.935k = 59
6097 measured reflectionsl = 1414
2785 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3588P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.18 e Å3
2785 reflectionsΔρmin = 0.19 e Å3
156 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0028 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43382 (14)0.2903 (3)0.56191 (17)0.0443 (5)
O10.41785 (10)0.3013 (2)0.66164 (12)0.0649 (5)
C20.36322 (13)0.3328 (3)0.45350 (17)0.0451 (5)
H20.37710.31550.37960.054*
C30.28068 (14)0.3950 (3)0.45918 (17)0.0458 (5)
H30.27060.41290.53500.055*
S110.60913 (4)0.18403 (8)0.67339 (4)0.04994 (18)
C120.52502 (13)0.2307 (3)0.54715 (16)0.0398 (5)
C130.55665 (13)0.1979 (3)0.44730 (16)0.0441 (5)
H130.52070.21480.37090.053*
C140.64871 (14)0.1362 (3)0.47103 (17)0.0485 (5)
H140.68080.10760.41280.058*
C150.68504 (13)0.1233 (3)0.58937 (17)0.0434 (5)
Cl150.79457 (4)0.05248 (8)0.65700 (5)0.0609 (2)
C310.20305 (13)0.4390 (3)0.35977 (16)0.0418 (5)
C320.12392 (14)0.5248 (3)0.38106 (19)0.0474 (5)
C330.05096 (15)0.5622 (3)0.2844 (2)0.0569 (6)
H330.00200.61850.29740.068*
C340.05518 (16)0.5185 (3)0.1710 (2)0.0623 (7)
H340.00540.54490.10810.075*
C350.13302 (15)0.4352 (3)0.14948 (19)0.0588 (6)
H350.13620.40610.07220.071*
C360.20586 (14)0.3957 (3)0.24326 (17)0.0499 (5)
H360.25820.33880.22870.060*
C370.11721 (16)0.5819 (4)0.5038 (2)0.0667 (7)
H37A0.12320.48080.55500.100*
H37B0.05790.63720.49990.100*
H37C0.16620.66430.53470.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (11)0.0518 (13)0.0340 (10)0.0035 (10)0.0071 (8)0.0033 (9)
O10.0549 (9)0.1060 (14)0.0336 (8)0.0117 (9)0.0097 (6)0.0032 (8)
C20.0449 (11)0.0563 (13)0.0330 (10)0.0021 (10)0.0063 (8)0.0011 (9)
C30.0497 (12)0.0521 (13)0.0365 (10)0.0002 (10)0.0113 (8)0.0001 (9)
S110.0493 (3)0.0704 (4)0.0272 (2)0.0019 (3)0.0024 (2)0.0003 (2)
C120.0404 (10)0.0463 (12)0.0304 (9)0.0043 (9)0.0031 (7)0.0003 (8)
C130.0439 (11)0.0570 (13)0.0293 (9)0.0010 (10)0.0039 (8)0.0033 (9)
C140.0465 (11)0.0648 (14)0.0350 (10)0.0018 (11)0.0107 (8)0.0006 (10)
C150.0406 (10)0.0469 (12)0.0405 (11)0.0031 (10)0.0042 (8)0.0019 (9)
Cl150.0479 (3)0.0704 (4)0.0579 (4)0.0077 (3)0.0016 (2)0.0077 (3)
C310.0420 (11)0.0417 (11)0.0407 (11)0.0055 (9)0.0074 (8)0.0037 (9)
C320.0450 (11)0.0456 (12)0.0523 (12)0.0067 (10)0.0124 (9)0.0000 (10)
C330.0407 (11)0.0606 (15)0.0679 (15)0.0019 (11)0.0090 (10)0.0045 (12)
C340.0505 (13)0.0740 (17)0.0557 (14)0.0022 (13)0.0021 (10)0.0132 (13)
C350.0564 (13)0.0760 (17)0.0413 (12)0.0036 (13)0.0048 (9)0.0076 (11)
C360.0469 (11)0.0598 (14)0.0425 (11)0.0013 (11)0.0090 (9)0.0039 (10)
C370.0559 (14)0.0811 (19)0.0661 (16)0.0043 (13)0.0199 (11)0.0140 (14)
Geometric parameters (Å, º) top
C1—O11.229 (2)C31—C361.394 (3)
C1—C121.462 (3)C31—C321.403 (3)
C1—C21.471 (3)C32—C331.393 (3)
C2—C31.318 (3)C32—C371.506 (3)
C2—H20.9300C33—C341.365 (3)
C3—C311.464 (3)C33—H330.9300
C3—H30.9300C34—C351.379 (3)
S11—C151.700 (2)C34—H340.9300
S11—C121.7234 (18)C35—C361.375 (3)
C12—C131.360 (3)C35—H350.9300
C13—C141.401 (3)C36—H360.9300
C13—H130.9300C37—H37A0.9600
C14—C151.354 (3)C37—H37B0.9600
C14—H140.9300C37—H37C0.9600
C15—Cl151.7118 (19)
O1—C1—C12120.29 (17)C36—C31—C3121.03 (18)
O1—C1—C2122.34 (18)C32—C31—C3120.03 (18)
C12—C1—C2117.37 (17)C33—C32—C31118.3 (2)
C3—C2—C1121.22 (18)C33—C32—C37119.6 (2)
C3—C2—H2119.4C31—C32—C37122.06 (18)
C1—C2—H2119.4C34—C33—C32121.7 (2)
C2—C3—C31127.43 (18)C34—C33—H33119.1
C2—C3—H3116.3C32—C33—H33119.1
C31—C3—H3116.3C33—C34—C35120.2 (2)
C15—S11—C1290.70 (9)C33—C34—H34119.9
C13—C12—C1130.82 (17)C35—C34—H34119.9
C13—C12—S11111.20 (14)C36—C35—C34119.4 (2)
C1—C12—S11117.94 (14)C36—C35—H35120.3
C12—C13—C14113.31 (17)C34—C35—H35120.3
C12—C13—H13123.3C35—C36—C31121.4 (2)
C14—C13—H13123.3C35—C36—H36119.3
C15—C14—C13111.50 (18)C31—C36—H36119.3
C15—C14—H14124.3C32—C37—H37A109.5
C13—C14—H14124.3C32—C37—H37B109.5
C14—C15—S11113.28 (15)H37A—C37—H37B109.5
C14—C15—Cl15126.91 (17)C32—C37—H37C109.5
S11—C15—Cl15119.81 (11)H37A—C37—H37C109.5
C36—C31—C32118.95 (18)H37B—C37—H37C109.5
O1—C1—C2—C34.0 (3)C12—S11—C15—Cl15179.75 (14)
C12—C1—C2—C3176.9 (2)C2—C3—C31—C368.6 (3)
C1—C2—C3—C31178.39 (19)C2—C3—C31—C32171.9 (2)
O1—C1—C12—C13175.4 (2)C36—C31—C32—C330.4 (3)
C2—C1—C12—C133.7 (3)C3—C31—C32—C33179.11 (19)
O1—C1—C12—S112.0 (3)C36—C31—C32—C37177.6 (2)
C2—C1—C12—S11178.92 (15)C3—C31—C32—C372.8 (3)
C15—S11—C12—C130.45 (17)C31—C32—C33—C340.4 (3)
C15—S11—C12—C1178.33 (17)C37—C32—C33—C34177.7 (2)
C1—C12—C13—C14177.9 (2)C32—C33—C34—C350.1 (4)
S11—C12—C13—C140.4 (2)C33—C34—C35—C360.5 (4)
C12—C13—C14—C150.1 (3)C34—C35—C36—C310.4 (4)
C13—C14—C15—S110.3 (3)C32—C31—C36—C350.0 (3)
C13—C14—C15—Cl15179.56 (17)C3—C31—C36—C35179.5 (2)
C12—S11—C15—C140.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.553.467 (2)169
Symmetry code: (i) x, y+1/2, z1/2.
(II) (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one top
Crystal data top
C26H22OZ = 4
Mr = 350.44F(000) = 744
Triclinic, P1Dx = 1.195 Mg m3
a = 9.0150 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 14.0601 (6) ÅCell parameters from 7095 reflections
c = 16.2611 (8) Åθ = 3.5–68.0°
α = 105.146 (4)°µ = 0.55 mm1
β = 95.967 (4)°T = 296 K
γ = 98.057 (4)°Block, colourless
V = 1948.46 (16) Å30.21 × 0.14 × 0.10 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5485 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.035
φ and ω scansθmax = 68.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1010
Tmin = 0.737, Tmax = 0.947k = 1615
12946 measured reflectionsl = 1917
7079 independent reflections
Refinement top
Refinement on F272 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2921P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7079 reflectionsΔρmax = 0.22 e Å3
575 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.71500 (19)0.10252 (14)0.34353 (11)0.0392 (4)
O110.80294 (15)0.04914 (12)0.31426 (9)0.0570 (4)
C120.55261 (18)0.08287 (13)0.30901 (11)0.0390 (4)
H120.48990.12460.33590.047*
C130.49356 (18)0.00672 (13)0.24008 (10)0.0366 (4)
H130.56080.03240.21490.044*
C1110.8247 (3)0.08400 (15)0.51371 (13)0.0549 (5)
H1110.79260.02670.46780.066*
C1120.8752 (3)0.07482 (18)0.59246 (15)0.0702 (7)
H1120.87800.01160.59970.084*
C1130.9235 (3)0.16040 (19)0.66349 (14)0.0706 (7)
H1130.95790.15330.71710.085*
C1140.9198 (2)0.25229 (17)0.65374 (12)0.0554 (5)
H1140.95120.30790.70120.066*
C1150.8165 (2)0.47150 (15)0.47098 (14)0.0509 (5)
H1150.84720.52750.51820.061*
C1160.7706 (2)0.48406 (17)0.39327 (16)0.0591 (5)
H1160.76970.54810.38760.071*
C1170.7240 (2)0.39997 (17)0.32061 (14)0.0534 (5)
H1170.69260.40910.26730.064*
C1180.72458 (19)0.30582 (15)0.32776 (12)0.0434 (4)
H1180.69520.25150.27900.052*
C1190.76971 (17)0.19321 (13)0.41974 (10)0.0350 (3)
C1200.86656 (18)0.36079 (13)0.56169 (11)0.0413 (4)
H1200.89780.41660.60910.050*
C1210.81986 (19)0.17963 (13)0.49995 (11)0.0397 (4)
C1220.86911 (19)0.26655 (14)0.57270 (11)0.0406 (4)
C1230.81887 (17)0.37492 (13)0.48214 (11)0.0388 (4)
C1240.76959 (16)0.28911 (13)0.40878 (10)0.0354 (4)
C1310.33555 (18)0.02239 (12)0.19949 (10)0.0334 (3)
C1320.22085 (19)0.02522 (13)0.23310 (11)0.0388 (4)
H1320.24440.07720.28390.047*
C1330.07321 (19)0.00304 (14)0.19272 (11)0.0415 (4)
H1330.00100.03010.21680.050*
C1340.03292 (18)0.08023 (12)0.11669 (10)0.0346 (3)
C1350.14636 (19)0.12848 (13)0.08311 (10)0.0379 (4)
H1350.12220.18060.03250.045*
C1360.29520 (19)0.10051 (13)0.12369 (10)0.0384 (4)
H1360.36910.13430.10000.046*
C1370.12965 (19)0.11137 (14)0.07197 (11)0.0418 (4)
H1370.12830.14960.01240.050*
C1380.2217 (2)0.17970 (16)0.11443 (17)0.0579 (5)
H18A0.17530.23740.11310.087*
H18B0.32290.20060.08380.087*
H18C0.22470.14410.17310.087*
C1390.2078 (2)0.02305 (17)0.06944 (15)0.0592 (6)
H19A0.22070.01150.12680.089*
H19B0.30500.04660.03420.089*
H19C0.14690.02180.04570.089*
C210.9228 (7)0.7212 (7)0.8184 (4)0.0348 (4)0.644 (3)
O211.039 (2)0.767 (3)0.8666 (11)0.0455 (13)0.644 (3)
C220.8944 (14)0.7333 (14)0.7316 (7)0.0352 (12)0.644 (3)
H220.97230.76930.71310.042*0.644 (3)
C230.7644 (14)0.6963 (12)0.6766 (6)0.0345 (14)0.644 (3)
H230.69050.65480.69300.041*0.644 (3)
C2111.0065 (10)0.5367 (9)0.8411 (12)0.0385 (13)0.644 (3)
H2111.06980.57720.81750.046*0.644 (3)
C2121.0495 (10)0.4529 (8)0.8551 (10)0.0470 (11)0.644 (3)
H2121.14380.43830.84340.056*0.644 (3)
C2130.9526 (6)0.3874 (6)0.8874 (8)0.0501 (13)0.644 (3)
H2130.98580.33220.89960.060*0.644 (3)
C2140.8124 (7)0.4050 (6)0.9006 (9)0.0455 (12)0.644 (3)
H2140.74700.35870.91730.055*0.644 (3)
C2150.4326 (8)0.6279 (5)0.9197 (7)0.0391 (10)0.644 (3)
H2150.36700.58310.93800.047*0.644 (3)
C2160.3911 (8)0.7152 (4)0.9141 (7)0.0413 (12)0.644 (3)
H2160.29720.72920.92750.050*0.644 (3)
C2170.4909 (10)0.7852 (5)0.8880 (9)0.0407 (10)0.644 (3)
H2170.46330.84610.88620.049*0.644 (3)
C2180.6263 (12)0.7646 (6)0.8655 (13)0.0365 (10)0.644 (3)
H2180.68820.81040.84630.044*0.644 (3)
C2190.8136 (8)0.6487 (6)0.8467 (7)0.0312 (9)0.644 (3)
C2200.6222 (7)0.5163 (5)0.9079 (7)0.0375 (9)0.644 (3)
H2200.55810.47200.92750.045*0.644 (3)
C2210.8648 (10)0.5636 (9)0.8621 (13)0.0327 (11)0.644 (3)
C2220.7624 (10)0.4933 (8)0.8892 (12)0.0366 (8)0.644 (3)
C2230.5748 (10)0.6032 (6)0.8982 (10)0.0339 (8)0.644 (3)
C2240.6750 (13)0.6737 (9)0.8708 (15)0.0322 (6)0.644 (3)
C2310.7290 (9)0.7158 (7)0.5930 (4)0.0336 (11)0.644 (3)
C2320.8287 (5)0.7781 (5)0.5618 (3)0.0379 (7)0.644 (3)
H2320.92250.80870.59420.046*0.644 (3)
C2330.7891 (4)0.7948 (3)0.4830 (2)0.0399 (7)0.644 (3)
H2330.85690.83720.46360.048*0.644 (3)
C2340.6504 (4)0.7499 (3)0.43184 (18)0.0400 (7)0.644 (3)
C2350.5513 (4)0.6873 (3)0.4631 (2)0.0434 (8)0.644 (3)
H2350.45810.65590.43030.052*0.644 (3)
C2360.5898 (4)0.6713 (3)0.5423 (2)0.0393 (8)0.644 (3)
H2360.52120.62980.56220.047*0.644 (3)
C2370.6140 (3)0.7666 (3)0.34365 (19)0.0523 (7)0.644 (3)
H2370.68860.82280.34030.063*0.644 (3)
C2380.630 (3)0.6736 (15)0.2717 (5)0.0767 (12)0.644 (3)
H28A0.61420.68720.21690.115*0.644 (3)
H28B0.55500.61790.27220.115*0.644 (3)
H28C0.72890.65780.28130.115*0.644 (3)
C2390.4590 (6)0.7932 (5)0.3291 (4)0.105 (2)0.644 (3)
H29A0.44930.84940.37540.158*0.644 (3)
H29B0.38320.73710.32700.158*0.644 (3)
H29C0.44600.81010.27560.158*0.644 (3)
C310.9247 (13)0.7242 (12)0.8178 (7)0.0348 (4)0.356 (3)
O311.047 (4)0.767 (5)0.861 (2)0.0455 (13)0.356 (3)
C320.884 (3)0.737 (3)0.7321 (12)0.0352 (12)0.356 (3)
H320.94510.78600.71590.042*0.356 (3)
C330.763 (3)0.683 (2)0.6756 (12)0.0345 (14)0.356 (3)
H330.70450.63330.69240.041*0.356 (3)
C3110.9927 (19)0.5405 (17)0.851 (2)0.0385 (13)0.356 (3)
H3111.06820.58400.83820.046*0.356 (3)
C3121.0239 (18)0.4537 (15)0.8647 (19)0.0470 (11)0.356 (3)
H3121.12060.43860.86080.056*0.356 (3)
C3130.9114 (16)0.3855 (12)0.8845 (17)0.0501 (13)0.356 (3)
H3130.93110.32330.88760.060*0.356 (3)
C3140.7757 (16)0.4111 (12)0.8990 (17)0.0455 (12)0.356 (3)
H3140.70500.36780.91570.055*0.356 (3)
C3150.4254 (15)0.6532 (10)0.9175 (15)0.0391 (10)0.356 (3)
H3150.35290.60960.93260.047*0.356 (3)
C3160.3952 (16)0.7435 (10)0.9131 (14)0.0413 (12)0.356 (3)
H3160.30420.76240.92730.050*0.356 (3)
C3170.5024 (19)0.8090 (11)0.8869 (18)0.0407 (10)0.356 (3)
H3170.48050.87060.88330.049*0.356 (3)
C3180.637 (2)0.7833 (14)0.867 (2)0.0365 (10)0.356 (3)
H3180.70700.82870.85230.044*0.356 (3)
C3190.8138 (15)0.6609 (12)0.8538 (13)0.0312 (9)0.356 (3)
C3200.5989 (14)0.5309 (10)0.9031 (15)0.0375 (9)0.356 (3)
H3200.52470.48580.91550.045*0.356 (3)
C3210.845 (2)0.5661 (16)0.857 (3)0.0327 (11)0.356 (3)
C3220.7383 (19)0.5032 (15)0.889 (2)0.0366 (8)0.356 (3)
C3230.5666 (19)0.6235 (12)0.899 (2)0.0339 (8)0.356 (3)
C3240.671 (2)0.6876 (16)0.868 (3)0.0322 (6)0.356 (3)
C3310.7119 (16)0.6938 (15)0.5904 (8)0.0336 (11)0.356 (3)
C3320.7896 (11)0.7611 (10)0.5540 (6)0.0379 (7)0.356 (3)
H3320.87930.80190.58420.046*0.356 (3)
C3330.7358 (7)0.7684 (6)0.4732 (4)0.0399 (7)0.356 (3)
H3330.79040.81360.45000.048*0.356 (3)
C3340.6015 (7)0.7093 (5)0.4264 (3)0.0400 (7)0.356 (3)
C3350.5251 (7)0.6414 (5)0.4627 (4)0.0434 (8)0.356 (3)
H3350.43640.59980.43200.052*0.356 (3)
C3360.5774 (8)0.6341 (6)0.5432 (4)0.0393 (8)0.356 (3)
H3360.52240.58890.56630.047*0.356 (3)
C3370.5407 (6)0.7158 (4)0.3371 (3)0.0523 (7)0.356 (3)
H3370.43770.67730.31960.063*0.356 (3)
C3380.643 (5)0.671 (3)0.2714 (9)0.0767 (12)0.356 (3)
H38A0.60690.67790.21590.115*0.356 (3)
H38B0.63940.60150.26770.115*0.356 (3)
H33C0.74500.70610.28990.115*0.356 (3)
C3390.5370 (11)0.8232 (7)0.3378 (7)0.105 (2)0.356 (3)
H39A0.48160.82470.28460.158*0.356 (3)
H39B0.63870.85840.34430.158*0.356 (3)
H39C0.48850.85460.38490.158*0.356 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0341 (8)0.0458 (10)0.0339 (8)0.0065 (7)0.0038 (6)0.0054 (7)
O110.0388 (7)0.0710 (10)0.0470 (7)0.0172 (6)0.0010 (5)0.0098 (6)
C120.0333 (8)0.0402 (10)0.0385 (8)0.0069 (7)0.0029 (6)0.0030 (7)
C130.0340 (8)0.0394 (9)0.0347 (8)0.0080 (6)0.0055 (6)0.0060 (7)
C1110.0733 (14)0.0409 (11)0.0443 (10)0.0019 (9)0.0023 (9)0.0096 (8)
C1120.103 (2)0.0526 (13)0.0551 (12)0.0093 (12)0.0021 (12)0.0232 (11)
C1130.0945 (18)0.0703 (16)0.0436 (11)0.0048 (13)0.0097 (11)0.0228 (11)
C1140.0621 (12)0.0557 (12)0.0372 (9)0.0015 (9)0.0069 (8)0.0054 (9)
C1150.0426 (10)0.0402 (10)0.0669 (12)0.0042 (8)0.0052 (9)0.0123 (9)
C1160.0509 (11)0.0526 (12)0.0834 (15)0.0114 (9)0.0116 (10)0.0340 (11)
C1170.0444 (10)0.0693 (14)0.0582 (11)0.0158 (9)0.0121 (8)0.0333 (11)
C1180.0328 (8)0.0566 (11)0.0422 (9)0.0081 (7)0.0073 (7)0.0155 (8)
C1190.0260 (7)0.0406 (9)0.0340 (8)0.0025 (6)0.0033 (6)0.0050 (7)
C1200.0316 (8)0.0402 (10)0.0410 (9)0.0021 (7)0.0001 (6)0.0015 (7)
C1210.0359 (8)0.0411 (10)0.0375 (8)0.0006 (7)0.0012 (6)0.0078 (7)
C1220.0345 (8)0.0436 (10)0.0371 (8)0.0012 (7)0.0000 (6)0.0061 (7)
C1230.0262 (7)0.0400 (9)0.0477 (9)0.0020 (6)0.0050 (6)0.0103 (7)
C1240.0229 (7)0.0436 (9)0.0396 (8)0.0042 (6)0.0060 (6)0.0117 (7)
C1310.0341 (8)0.0324 (8)0.0321 (8)0.0033 (6)0.0033 (6)0.0084 (6)
C1320.0360 (8)0.0368 (9)0.0350 (8)0.0009 (7)0.0053 (6)0.0021 (7)
C1330.0324 (8)0.0441 (10)0.0430 (9)0.0065 (7)0.0091 (7)0.0024 (8)
C1340.0345 (8)0.0362 (9)0.0323 (8)0.0001 (6)0.0042 (6)0.0120 (7)
C1350.0407 (9)0.0369 (9)0.0304 (8)0.0037 (7)0.0020 (6)0.0027 (7)
C1360.0378 (9)0.0386 (9)0.0353 (8)0.0097 (7)0.0052 (6)0.0029 (7)
C1370.0336 (8)0.0479 (10)0.0382 (8)0.0011 (7)0.0013 (6)0.0067 (7)
C1380.0333 (9)0.0473 (11)0.0949 (16)0.0004 (8)0.0018 (9)0.0294 (11)
C1390.0498 (11)0.0594 (13)0.0692 (13)0.0014 (9)0.0123 (10)0.0320 (11)
C210.0289 (8)0.0351 (10)0.0393 (8)0.0075 (6)0.0055 (6)0.0073 (7)
O210.0344 (19)0.0502 (8)0.046 (2)0.0007 (16)0.001 (2)0.010 (2)
C220.0293 (18)0.0388 (16)0.0411 (9)0.0091 (18)0.0101 (9)0.0138 (9)
C230.0330 (8)0.036 (4)0.0365 (8)0.0082 (15)0.0107 (6)0.0093 (15)
C2110.0384 (17)0.0397 (13)0.035 (4)0.0100 (11)0.0113 (12)0.003 (2)
C2120.044 (3)0.0512 (12)0.050 (4)0.0248 (19)0.018 (2)0.0079 (15)
C2130.055 (4)0.0447 (12)0.0589 (15)0.025 (3)0.014 (4)0.0179 (11)
C2140.053 (4)0.0430 (15)0.0487 (12)0.017 (2)0.018 (4)0.0179 (11)
C2150.0320 (11)0.053 (4)0.0346 (10)0.0083 (18)0.0064 (10)0.015 (3)
C2160.0313 (10)0.055 (4)0.0394 (10)0.016 (2)0.0055 (7)0.011 (3)
C2170.0403 (17)0.044 (4)0.0405 (10)0.017 (3)0.0026 (13)0.012 (3)
C2180.0358 (16)0.039 (4)0.0338 (11)0.007 (2)0.0021 (16)0.009 (4)
C2190.0310 (8)0.035 (2)0.0246 (17)0.0045 (10)0.0025 (8)0.0036 (18)
C2200.037 (2)0.043 (2)0.0362 (16)0.0079 (12)0.008 (2)0.0168 (17)
C2210.031 (2)0.0375 (11)0.027 (2)0.0063 (14)0.000 (3)0.0055 (7)
C2220.040 (3)0.040 (2)0.0331 (8)0.0126 (13)0.010 (3)0.0109 (19)
C2230.0322 (12)0.039 (4)0.0300 (9)0.0087 (16)0.0046 (10)0.008 (3)
C2240.0304 (9)0.039 (3)0.0270 (15)0.0079 (14)0.0006 (10)0.010 (3)
C2310.0298 (19)0.037 (5)0.0360 (9)0.0092 (12)0.0104 (9)0.0099 (18)
C2320.025 (3)0.046 (3)0.0436 (13)0.0042 (16)0.0064 (13)0.0144 (15)
C2330.032 (2)0.044 (2)0.0473 (13)0.0029 (14)0.0112 (14)0.0195 (15)
C2340.0310 (19)0.047 (2)0.0451 (12)0.0090 (13)0.0074 (13)0.0159 (15)
C2350.0305 (14)0.056 (3)0.0450 (11)0.0028 (17)0.0042 (10)0.0187 (18)
C2360.0304 (11)0.048 (3)0.0421 (10)0.0039 (17)0.0100 (8)0.0164 (16)
C2370.0462 (17)0.062 (2)0.0557 (15)0.0058 (12)0.0034 (13)0.0323 (15)
C2380.095 (4)0.092 (2)0.0423 (11)0.0142 (16)0.0016 (12)0.0234 (12)
C2390.083 (4)0.170 (5)0.116 (3)0.066 (4)0.028 (4)0.105 (4)
C310.0289 (8)0.0351 (10)0.0393 (8)0.0075 (6)0.0055 (6)0.0073 (7)
O310.0344 (19)0.0502 (8)0.046 (2)0.0007 (16)0.001 (2)0.010 (2)
C320.0293 (18)0.0388 (16)0.0411 (9)0.0091 (18)0.0101 (9)0.0138 (9)
C330.0330 (8)0.036 (4)0.0365 (8)0.0082 (15)0.0107 (6)0.0093 (15)
C3110.0384 (17)0.0397 (13)0.035 (4)0.0100 (11)0.0113 (12)0.003 (2)
C3120.044 (3)0.0512 (12)0.050 (4)0.0248 (19)0.018 (2)0.0079 (15)
C3130.055 (4)0.0447 (12)0.0589 (15)0.025 (3)0.014 (4)0.0179 (11)
C3140.053 (4)0.0430 (15)0.0487 (12)0.017 (2)0.018 (4)0.0179 (11)
C3150.0320 (11)0.053 (4)0.0346 (10)0.0083 (18)0.0064 (10)0.015 (3)
C3160.0313 (10)0.055 (4)0.0394 (10)0.016 (2)0.0055 (7)0.011 (3)
C3170.0403 (17)0.044 (4)0.0405 (10)0.017 (3)0.0026 (13)0.012 (3)
C3180.0358 (16)0.039 (4)0.0338 (11)0.007 (2)0.0021 (16)0.009 (4)
C3190.0310 (8)0.035 (2)0.0246 (17)0.0045 (10)0.0025 (8)0.0036 (18)
C3200.037 (2)0.043 (2)0.0362 (16)0.0079 (12)0.008 (2)0.0168 (17)
C3210.031 (2)0.0375 (11)0.027 (2)0.0063 (14)0.000 (3)0.0055 (7)
C3220.040 (3)0.040 (2)0.0331 (8)0.0126 (13)0.010 (3)0.0109 (19)
C3230.0322 (12)0.039 (4)0.0300 (9)0.0087 (16)0.0046 (10)0.008 (3)
C3240.0304 (9)0.039 (3)0.0270 (15)0.0079 (14)0.0006 (10)0.010 (3)
C3310.0298 (19)0.037 (5)0.0360 (9)0.0092 (12)0.0104 (9)0.0099 (18)
C3320.025 (3)0.046 (3)0.0436 (13)0.0042 (16)0.0064 (13)0.0144 (15)
C3330.032 (2)0.044 (2)0.0473 (13)0.0029 (14)0.0112 (14)0.0195 (15)
C3340.0310 (19)0.047 (2)0.0451 (12)0.0090 (13)0.0074 (13)0.0159 (15)
C3350.0305 (14)0.056 (3)0.0450 (11)0.0028 (17)0.0042 (10)0.0187 (18)
C3360.0304 (11)0.048 (3)0.0421 (10)0.0039 (17)0.0100 (8)0.0164 (16)
C3370.0462 (17)0.062 (2)0.0557 (15)0.0058 (12)0.0034 (13)0.0323 (15)
C3380.095 (4)0.092 (2)0.0423 (11)0.0142 (16)0.0016 (12)0.0234 (12)
C3390.083 (4)0.170 (5)0.116 (3)0.066 (4)0.028 (4)0.105 (4)
Geometric parameters (Å, º) top
C11—O111.215 (2)C219—C2211.413 (3)
C11—C121.473 (2)C220—C2231.390 (3)
C11—C1191.509 (2)C220—C2221.392 (3)
C12—C131.332 (2)C220—H2200.9300
C12—H120.9300C221—C2221.441 (3)
C13—C1311.460 (2)C223—C2241.435 (3)
C13—H130.9300C231—C2321.393 (4)
C111—C1121.358 (3)C231—C2361.394 (4)
C111—C1211.425 (3)C232—C2331.383 (3)
C111—H1110.9300C232—H2320.9300
C112—C1131.412 (3)C233—C2341.394 (4)
C112—H1120.9300C233—H2330.9300
C113—C1141.347 (3)C234—C2351.392 (4)
C113—H1130.9300C234—C2371.523 (3)
C114—C1221.423 (3)C235—C2361.382 (3)
C114—H1140.9300C235—H2350.9300
C115—C1161.352 (3)C236—H2360.9300
C115—C1231.419 (3)C237—C2391.507 (5)
C115—H1150.9300C237—C2381.545 (11)
C116—C1171.413 (3)C237—H2370.9800
C116—H1160.9300C238—H28A0.9600
C117—C1181.359 (3)C238—H28B0.9600
C117—H1170.9300C238—H28C0.9600
C118—C1241.426 (2)C239—H29A0.9600
C118—H1180.9300C239—H29B0.9600
C119—C1211.405 (2)C239—H29C0.9600
C119—C1241.406 (2)C31—O311.221 (4)
C120—C1221.386 (3)C31—C321.468 (4)
C120—C1231.393 (3)C31—C3191.510 (4)
C120—H1200.9300C32—C331.345 (6)
C121—C1221.440 (2)C32—H320.9300
C123—C1241.436 (2)C33—C3311.465 (4)
C131—C1321.392 (2)C33—H330.9300
C131—C1361.395 (2)C311—C3121.356 (4)
C132—C1331.376 (2)C311—C3211.433 (5)
C132—H1320.9300C311—H3110.9300
C133—C1341.390 (2)C312—C3131.417 (5)
C133—H1330.9300C312—H3120.9300
C134—C1351.386 (2)C313—C3141.349 (5)
C134—C1371.517 (2)C313—H3130.9300
C135—C1361.387 (2)C314—C3221.427 (4)
C135—H1350.9300C314—H3140.9300
C136—H1360.9300C315—C3161.353 (5)
C137—C1391.518 (3)C315—C3231.430 (4)
C137—C1381.526 (3)C315—H3150.9300
C137—H1370.9800C316—C3171.416 (5)
C138—H18A0.9600C316—H3160.9300
C138—H18B0.9600C317—C3181.358 (4)
C138—H18C0.9600C317—H3170.9300
C139—H19A0.9600C318—C3241.429 (5)
C139—H19B0.9600C318—H3180.9300
C139—H19C0.9600C319—C3241.412 (4)
C21—O211.222 (3)C319—C3211.414 (5)
C21—C221.466 (3)C320—C3231.390 (4)
C21—C2191.509 (3)C320—C3221.390 (4)
C22—C231.346 (5)C320—H3200.9300
C22—H220.9300C321—C3221.443 (4)
C23—C2311.467 (3)C323—C3241.436 (4)
C23—H230.9300C331—C3321.390 (5)
C211—C2121.356 (3)C331—C3361.396 (5)
C211—C2211.432 (4)C332—C3331.387 (4)
C211—H2110.9300C332—H3320.9300
C212—C2131.417 (4)C333—C3341.390 (5)
C212—H2120.9300C333—H3330.9300
C213—C2141.350 (4)C334—C3351.389 (5)
C213—H2130.9300C334—C3371.528 (4)
C214—C2221.428 (3)C335—C3361.380 (5)
C214—H2140.9300C335—H3350.9300
C215—C2161.354 (4)C336—H3360.9300
C215—C2231.430 (3)C337—C3391.511 (6)
C215—H2150.9300C337—C3381.549 (13)
C216—C2171.417 (4)C337—H3370.9800
C216—H2160.9300C338—H38A0.9600
C217—C2181.358 (3)C338—H38B0.9600
C217—H2170.9300C338—H33C0.9600
C218—C2241.428 (3)C339—H39A0.9600
C218—H2180.9300C339—H39B0.9600
C219—C2241.411 (3)C339—H39C0.9600
O11—C11—C12123.20 (16)C214—C222—C221118.5 (2)
O11—C11—C119120.18 (15)C220—C223—C215122.1 (3)
C12—C11—C119116.61 (14)C220—C223—C224119.4 (3)
C13—C12—C11121.47 (16)C215—C223—C224118.5 (2)
C13—C12—H12119.3C219—C224—C218122.9 (3)
C11—C12—H12119.3C219—C224—C223119.0 (2)
C12—C13—C131127.53 (16)C218—C224—C223118.1 (2)
C12—C13—H13116.2C232—C231—C236117.9 (2)
C131—C13—H13116.2C232—C231—C23122.7 (3)
C112—C111—C121121.36 (19)C236—C231—C23119.4 (3)
C112—C111—H111119.3C233—C232—C231120.4 (3)
C121—C111—H111119.3C233—C232—H232119.8
C111—C112—C113120.6 (2)C231—C232—H232119.8
C111—C112—H112119.7C232—C233—C234121.8 (3)
C113—C112—H112119.7C232—C233—H233119.1
C114—C113—C112120.14 (19)C234—C233—H233119.1
C114—C113—H113119.9C235—C234—C233117.6 (2)
C112—C113—H113119.9C235—C234—C237122.2 (3)
C113—C114—C122121.74 (18)C233—C234—C237120.2 (3)
C113—C114—H114119.1C236—C235—C234120.8 (3)
C122—C114—H114119.1C236—C235—H235119.6
C116—C115—C123121.54 (19)C234—C235—H235119.6
C116—C115—H115119.2C235—C236—C231121.5 (3)
C123—C115—H115119.2C235—C236—H236119.3
C115—C116—C117120.09 (19)C231—C236—H236119.3
C115—C116—H116120.0C239—C237—C234112.7 (3)
C117—C116—H116120.0C239—C237—C238110.2 (9)
C118—C117—C116120.72 (18)C234—C237—C238110.5 (4)
C118—C117—H117119.6C239—C237—H237107.7
C116—C117—H117119.6C234—C237—H237107.7
C117—C118—C124121.02 (18)C238—C237—H237107.7
C117—C118—H118119.5C237—C238—H28A109.5
C124—C118—H118119.5C237—C238—H28B109.5
C121—C119—C124121.64 (15)H28A—C238—H28B109.5
C121—C119—C11119.09 (15)C237—C238—H28C109.5
C124—C119—C11119.28 (14)H28A—C238—H28C109.5
C122—C120—C123122.30 (15)H28B—C238—H28C109.5
C122—C120—H120118.9C237—C239—H29A109.5
C123—C120—H120118.9C237—C239—H29B109.5
C119—C121—C111123.58 (16)H29A—C239—H29B109.5
C119—C121—C122118.70 (16)C237—C239—H29C109.5
C111—C121—C122117.71 (16)H29A—C239—H29C109.5
C120—C122—C114122.24 (16)H29B—C239—H29C109.5
C120—C122—C121119.33 (16)O31—C31—C32120.0 (5)
C114—C122—C121118.43 (17)O31—C31—C319120.1 (5)
C120—C123—C115122.21 (17)C32—C31—C319119.8 (5)
C120—C123—C124119.17 (16)C33—C32—C31124.1 (7)
C115—C123—C124118.62 (16)C33—C32—H32118.0
C119—C124—C118123.16 (16)C31—C32—H32118.0
C119—C124—C123118.85 (15)C32—C33—C331127.1 (7)
C118—C124—C123117.99 (16)C32—C33—H33116.4
C132—C131—C136117.53 (15)C331—C33—H33116.4
C132—C131—C13122.65 (15)C312—C311—C321120.9 (5)
C136—C131—C13119.81 (15)C312—C311—H311119.5
C133—C132—C131121.31 (15)C321—C311—H311119.5
C133—C132—H132119.3C311—C312—C313121.0 (5)
C131—C132—H132119.3C311—C312—H312119.5
C132—C133—C134121.27 (16)C313—C312—H312119.5
C132—C133—H133119.4C314—C313—C312119.9 (5)
C134—C133—H133119.4C314—C313—H313120.0
C135—C134—C133117.76 (15)C312—C313—H313120.0
C135—C134—C137120.87 (15)C313—C314—C322121.4 (5)
C133—C134—C137121.37 (15)C313—C314—H314119.3
C134—C135—C136121.19 (15)C322—C314—H314119.3
C134—C135—H135119.4C316—C315—C323121.4 (5)
C136—C135—H135119.4C316—C315—H315119.3
C135—C136—C131120.92 (16)C323—C315—H315119.3
C135—C136—H136119.5C315—C316—C317119.8 (5)
C131—C136—H136119.5C315—C316—H316120.1
C134—C137—C139113.05 (15)C317—C316—H316120.1
C134—C137—C138110.88 (15)C318—C317—C316121.1 (5)
C139—C137—C138109.53 (16)C318—C317—H317119.5
C134—C137—H137107.7C316—C317—H317119.5
C139—C137—H137107.7C317—C318—C324121.0 (5)
C138—C137—H137107.7C317—C318—H318119.5
C137—C138—H18A109.5C324—C318—H318119.5
C137—C138—H18B109.5C324—C319—C321121.0 (5)
H18A—C138—H18B109.5C324—C319—C31120.4 (5)
C137—C138—H18C109.5C321—C319—C31117.7 (5)
H18A—C138—H18C109.5C323—C320—C322122.3 (5)
H18B—C138—H18C109.5C323—C320—H320118.9
C137—C139—H19A109.5C322—C320—H320118.9
C137—C139—H19B109.5C319—C321—C311122.2 (8)
H19A—C139—H19B109.5C319—C321—C322118.6 (5)
C137—C139—H19C109.5C311—C321—C322117.3 (6)
H19A—C139—H19C109.5C320—C322—C314122.4 (5)
H19B—C139—H19C109.5C320—C322—C321118.9 (4)
O21—C21—C22119.9 (3)C314—C322—C321118.5 (4)
O21—C21—C219119.8 (3)C320—C323—C315122.0 (5)
C22—C21—C219120.2 (3)C320—C323—C324119.2 (4)
C23—C22—C21125.1 (5)C315—C323—C324118.6 (4)
C23—C22—H22117.4C319—C324—C318122.6 (6)
C21—C22—H22117.4C319—C324—C323118.8 (5)
C22—C23—C231125.7 (4)C318—C324—C323117.7 (5)
C22—C23—H23117.1C332—C331—C336117.8 (4)
C231—C23—H23117.1C332—C331—C33123.7 (5)
C212—C211—C221120.8 (3)C336—C331—C33118.5 (5)
C212—C211—H211119.6C333—C332—C331121.2 (5)
C221—C211—H211119.6C333—C332—H332119.4
C211—C212—C213120.9 (3)C331—C332—H332119.4
C211—C212—H212119.5C332—C333—C334121.1 (5)
C213—C212—H212119.5C332—C333—H333119.5
C214—C213—C212120.2 (3)C334—C333—H333119.5
C214—C213—H213119.9C335—C334—C333117.5 (4)
C212—C213—H213119.9C335—C334—C337120.6 (5)
C213—C214—C222121.3 (3)C333—C334—C337121.9 (5)
C213—C214—H214119.4C336—C335—C334121.8 (4)
C222—C214—H214119.4C336—C335—H335119.1
C216—C215—C223121.5 (3)C334—C335—H335119.1
C216—C215—H215119.3C335—C336—C331120.7 (5)
C223—C215—H215119.3C335—C336—H336119.7
C215—C216—C217120.0 (3)C331—C336—H336119.7
C215—C216—H216120.0C339—C337—C334110.9 (5)
C217—C216—H216120.0C339—C337—C338109.2 (12)
C218—C217—C216120.8 (3)C334—C337—C338109.6 (6)
C218—C217—H217119.6C339—C337—H337109.0
C216—C217—H217119.6C334—C337—H337109.0
C217—C218—C224121.1 (3)C338—C337—H337109.0
C217—C218—H218119.4C337—C338—H38A109.5
C224—C218—H218119.4C337—C338—H38B109.5
C224—C219—C221120.7 (3)H38A—C338—H38B109.5
C224—C219—C21120.6 (3)C337—C338—H33C109.5
C221—C219—C21117.9 (3)H38A—C338—H33C109.5
C223—C220—C222122.2 (3)H38B—C338—H33C109.5
C223—C220—H220118.9C337—C339—H39A109.5
C222—C220—H220118.9C337—C339—H39B109.5
C219—C221—C211122.8 (3)H39A—C339—H39B109.5
C219—C221—C222118.8 (3)C337—C339—H39C109.5
C211—C221—C222117.8 (3)H39A—C339—H39C109.5
C220—C222—C214122.3 (3)H39B—C339—H39C109.5
C220—C222—C221119.1 (3)
O11—C11—C12—C133.2 (3)C216—C215—C223—C220176.6 (13)
C119—C11—C12—C13177.72 (16)C216—C215—C223—C2240 (2)
C11—C12—C13—C131179.25 (17)C221—C219—C224—C218172.8 (19)
C121—C111—C112—C1130.5 (4)C21—C219—C224—C2184 (3)
C111—C112—C113—C1140.0 (4)C221—C219—C224—C22310 (3)
C112—C113—C114—C1220.5 (4)C21—C219—C224—C223179.4 (14)
C123—C115—C116—C1170.2 (3)C217—C218—C224—C219179.0 (18)
C115—C116—C117—C1180.0 (3)C217—C218—C224—C2232 (3)
C116—C117—C118—C1241.1 (3)C220—C223—C224—C2196 (3)
O11—C11—C119—C12166.5 (2)C215—C223—C224—C219178.0 (16)
C12—C11—C119—C121112.60 (18)C220—C223—C224—C218177.0 (18)
O11—C11—C119—C124113.3 (2)C215—C223—C224—C2181 (3)
C12—C11—C119—C12467.5 (2)C22—C23—C231—C2321 (3)
C124—C119—C121—C111178.78 (18)C22—C23—C231—C236179.3 (19)
C11—C119—C121—C1111.1 (3)C236—C231—C232—C2330.2 (15)
C124—C119—C121—C1221.3 (2)C23—C231—C232—C233179.3 (13)
C11—C119—C121—C122178.81 (15)C231—C232—C233—C2340.6 (12)
C112—C111—C121—C119179.5 (2)C232—C233—C234—C2350.3 (7)
C112—C111—C121—C1220.6 (3)C232—C233—C234—C237177.3 (5)
C123—C120—C122—C114179.13 (18)C233—C234—C235—C2360.4 (6)
C123—C120—C122—C1210.5 (3)C237—C234—C235—C236178.0 (3)
C113—C114—C122—C120179.2 (2)C234—C235—C236—C2310.9 (8)
C113—C114—C122—C1210.4 (3)C232—C231—C236—C2350.6 (14)
C119—C121—C122—C1200.3 (2)C23—C231—C236—C235180.0 (12)
C111—C121—C122—C120179.76 (18)C235—C234—C237—C23950.0 (5)
C119—C121—C122—C114179.99 (17)C233—C234—C237—C239132.5 (5)
C111—C121—C122—C1140.1 (3)C235—C234—C237—C23873.9 (11)
C122—C120—C123—C115179.93 (17)C233—C234—C237—C238103.7 (12)
C122—C120—C123—C1240.4 (3)O31—C31—C32—C33170 (6)
C116—C115—C123—C120179.68 (18)C319—C31—C32—C3312 (5)
C116—C115—C123—C1240.6 (3)C31—C32—C33—C331178 (3)
C121—C119—C124—C118177.72 (15)C321—C311—C312—C3130 (5)
C11—C119—C124—C1182.1 (2)C311—C312—C313—C3147 (5)
C121—C119—C124—C1231.4 (2)C312—C313—C314—C3224 (5)
C11—C119—C124—C123178.69 (14)C323—C315—C316—C3172 (4)
C117—C118—C124—C119178.90 (16)C315—C316—C317—C3181 (4)
C117—C118—C124—C1231.9 (2)C316—C317—C318—C3243 (5)
C120—C123—C124—C1190.6 (2)O31—C31—C319—C324116 (5)
C115—C123—C124—C119179.11 (15)C32—C31—C319—C32461 (4)
C120—C123—C124—C118178.63 (15)O31—C31—C319—C32175 (5)
C115—C123—C124—C1181.7 (2)C32—C31—C319—C321107 (3)
C12—C13—C131—C1324.1 (3)C324—C319—C321—C311174 (3)
C12—C13—C131—C136175.54 (17)C31—C319—C321—C31118 (4)
C136—C131—C132—C1330.5 (3)C324—C319—C321—C32210 (5)
C13—C131—C132—C133179.11 (17)C31—C319—C321—C322178 (3)
C131—C132—C133—C1340.1 (3)C312—C311—C321—C319172 (3)
C132—C133—C134—C1350.5 (3)C312—C311—C321—C3228 (5)
C132—C133—C134—C137179.87 (17)C323—C320—C322—C314175 (3)
C133—C134—C135—C1360.3 (3)C323—C320—C322—C3219 (5)
C137—C134—C135—C136179.92 (16)C313—C314—C322—C320180 (3)
C134—C135—C136—C1310.3 (3)C313—C314—C322—C3214 (5)
C132—C131—C136—C1350.8 (3)C319—C321—C322—C3209 (5)
C13—C131—C136—C135178.92 (16)C311—C321—C322—C320174 (3)
C135—C134—C137—C139137.63 (18)C319—C321—C322—C314175 (3)
C133—C134—C137—C13942.8 (2)C311—C321—C322—C31410 (5)
C135—C134—C137—C13898.9 (2)C322—C320—C323—C315177 (3)
C133—C134—C137—C13880.7 (2)C322—C320—C323—C3249 (5)
O21—C21—C22—C23172 (3)C316—C315—C323—C320180 (3)
C219—C21—C22—C2311 (3)C316—C315—C323—C3246 (5)
C21—C22—C23—C231173.8 (18)C321—C319—C324—C318179 (4)
C221—C211—C212—C2133 (3)C31—C319—C324—C31813 (5)
C211—C212—C213—C2143 (2)C321—C319—C324—C32310 (5)
C212—C213—C214—C2225 (2)C31—C319—C324—C323178 (3)
C223—C215—C216—C2171 (2)C317—C318—C324—C319175 (3)
C215—C216—C217—C2182 (2)C317—C318—C324—C3236 (6)
C216—C217—C218—C2243 (3)C320—C323—C324—C3199 (5)
O21—C21—C219—C224106 (3)C315—C323—C324—C319177 (3)
C22—C21—C219—C22477.3 (19)C320—C323—C324—C318178 (3)
O21—C21—C219—C22164 (3)C315—C323—C324—C3187 (5)
C22—C21—C219—C221113.1 (16)C32—C33—C331—C3323 (6)
C224—C219—C221—C211178.3 (18)C32—C33—C331—C336176 (4)
C21—C219—C221—C2119 (2)C336—C331—C332—C3330 (3)
C224—C219—C221—C22210 (2)C33—C331—C332—C333180 (3)
C21—C219—C221—C222180.0 (13)C331—C332—C333—C3341 (2)
C212—C211—C221—C219178.4 (17)C332—C333—C334—C3351.3 (14)
C212—C211—C221—C2227 (3)C332—C333—C334—C337179.7 (10)
C223—C220—C222—C214178.9 (15)C333—C334—C335—C3361.7 (12)
C223—C220—C222—C2213 (3)C337—C334—C335—C336179.9 (7)
C213—C214—C222—C220175.6 (15)C334—C335—C336—C3311.4 (18)
C213—C214—C222—C2211 (3)C332—C331—C336—C3351 (3)
C219—C221—C222—C2207 (3)C33—C331—C336—C335180 (2)
C211—C221—C222—C220178.3 (17)C335—C334—C337—C339131.4 (7)
C219—C221—C222—C214177.0 (16)C333—C334—C337—C33950.3 (9)
C211—C221—C222—C2145 (3)C335—C334—C337—C338108 (2)
C222—C220—C223—C215178.2 (15)C333—C334—C337—C33870 (2)
C222—C220—C223—C2242 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings (C111–C114/C122/C111) and (C114–C118/C124/C113), respectively.
D—H···AD—HH···AD···AD—H···A
C133—H133···O11i0.932.493.336 (2)151
C216—H216···O21i0.932.613.41 (2)144
C216—H216···O31i0.932.583.36 (4)142
C316—H316···O21i0.932.513.30 (3)144
C316—H316···O31i0.932.473.25 (4)142
C233—H233···Cg1ii0.932.643.355 (4)134
C236—H236···Cg2iii0.932.753.519 (4)140
C336—H336···Cg2iii0.932.803.354 (7)119
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

MG thanks the UGC for the award of a Rajeev Gandhi fellowship and HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCobo, D., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3639–o3641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). Toxicol. Appl. Pharmacol. 282, 129–138.  CrossRef CAS PubMed Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C. & Lloyd, D. (1986). J. Chem. Educ. 63, 306–309.  CrossRef CAS Google Scholar
First citationInsuasty, H., Insuasty, B., Castro, E., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 908–911.  CSD CrossRef IUCr Journals Google Scholar
First citationKant, R., Sharma, R., Salian, V. V., Sarojini, B. K. & Narayana, B. (2015). Eur. Chem. Bull. 4, 327–330.  CAS Google Scholar
First citationKumar, D., Maruthi Kumar, N., Tantak, M. P., Ogura, M., Kusaka, E. & Ito, T. (2014). Bioorg. Med. Chem. Lett. 24, 5170–5174.  CrossRef CAS PubMed Google Scholar
First citationLópez, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013.  PubMed Google Scholar
First citationMohan, B. J., Sarojini, B. K., Yathirajan, H. S., Rathore, R. & Glidewell, C. (2016). Acta Cryst. E72, 31–34.  CSD CrossRef IUCr Journals Google Scholar
First citationNaik, V. S., Shettigar, V., Berglin, T. S., Coburn, J. S., Jasinski, J. P. & Yathirajan, H. S. (2015). Acta Cryst. E71, 965–971.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093–1099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011–1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalian, V. V., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 610–617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalian, V. V., Narayana, B., Yathirajan, H. S., Rathore, R. S., Jasinski, J. P. & Glidewell, C. (2016). Private communication (refcode: CCDC 1481314). CCDC, Cambridge, England.  Google Scholar
First citationSamshuddin, S., Jasinski, J. P., Butcher, R. J., Neuhardt, E. A., Narayana, B., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 953–959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Raghavendra, R. (2012). Pharma Chemica, 4, 1445–1457.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Pharma Chemica, 3, 232–240.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyam, S., Abdelwahab, S. I., Al-Mamary, M. A. & Mohan, S. (2012). Molecules, 17, 6179–6195.  CrossRef CAS PubMed Google Scholar
First citationTran, T.-D., Nguyen, T.-T.-N., Do, T.-H., Huynh, T.-N.-P., Tran, C.-D. & Thai, K.-M. (2012). Molecules, 17, 6684–6696.  CrossRef CAS PubMed Google Scholar
First citationTrilleras, J., Quiroga, J., Cobo, J. & Glidewell, C. (2009). Acta Cryst. C65, o284–o286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrilleras, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1892–o1894.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds