research communications
of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison
aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The 3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to the c axis. The only hydrogen bond is an intramolecular one involving the hydroxy group and the central carboxylate group, with graph-set motif S(5).
of anhydrous tripotassium citrate, [K1. Chemical context
In the course of a systematic study of the crystal structures of group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder X-ray diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a). Five of the new structures, viz. NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, and Na2HC6H5O7, have been published recently (Rammohan & Kaduk, 2016b,c,d,e; Rammohan et al., 2016), and two additional structures, viz. KH2C6H5O7 and KH2C6H5O7(H2O)2, have been communicated to the Cambridge Structural Database (Kaduk & Stern, 2016a,b).
2. Structural commentary
The . The r.m.s. deviation of the non-hydrogen atoms between the Rietveld-refined and the DFT-optimized structures is 0.117 Å (Fig. 2). The maximum deviation is 0.260 Å, at O14. The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008). Only the C4—C5 bond length [refined = 1.511 (5), optimized = 1.536, Mogul average = 1.498 (12) Å, Z-score = 3.1], and the C3—C2—C1 [refined = 115 (2), optimized = 115.0, Mogul average = 103 (2)°] and O17—C3—C2 angles [refined = 107 (2), optimized = 109.6, Mogul average = 106 (2)°] are flagged as unusual. The citrate anion occurs in the trans,trans-conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxylate group and the hydroxy group occur in the normal planar arrangement. Both terminal carboxylate groups O11/O12 and O13/O14 chelate to a single potassium cation (K20 for each). The terminal carboxylate oxygen atom O12 and the hydroxy O17 atom chelate to K21, and the terminal carboxylate oxygen atoms O13 and O17 chelate to K19. The terminal/central pairs O11/O16, O14/O16, O11/O15, and O14/O15 chelate to K21, K19, K19, and K21, respectively. The three potassium cations K19, K20, and K21 are 6-, 8-, and 6-coordinate, respectively (all irregular, using a K—O cut-off distance of 3.24 Å). Their bond-valence sums are 1.12, 1.03, and 1.12 valence units. The metal-oxygen bonding is ionic, based on the cation charges and the Mulliken overlap populations.
of the title compound is shown in Fig. 1Although the lattice parameters of anhydrous tripotassium citrate are in general similar to those of the monohydrate (Carrell et al., 1987; CSD code ZZZHVI01), consistent with the difference in water content, the powder patterns differ considerably. Visual examination of the structures shows that the arrangements of the citrate anions are very different. A mechanism for the transformation of one phase into the other is not obvious.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) morphology suggests that we might expect blocky morphology for anhydrous tripotassium citrate, with {011} as the principal faces. A second-order spherical harmonic texture model was included in the The texture index was only 1.001, indicating that was not significant for this rotated flat plate specimen.
3. Supramolecular features
The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3), with channels running down the c axis. The only hydrogen bond is an intramolecular one (Table 1) involving the hydroxy group and the central carboxylate group, with graph-set motif S(5). The Mulliken overlap population in the hydrogen-acceptor bond is 0.076 e. By the correlation in Rammohan & Kaduk (2016a), this hydrogen bond accounts for 15.1 kcal per mole of crystal energy.
|
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a). A reduced-cell search of the cell of anhydrous tripotassium citrate in the Cambridge Structural Database (Groom et al., 2016) (increasing the default tolerance from 1.5 to 2.0%) yielded 208 hits, but limiting the chemistry to C, H, K, and O only resulted in no hits. The powder pattern is now contained in the the Powder Diffraction File (ICDD, 2015) as entry 00-064-1370.
5. Synthesis and crystallization
Potassium citrate monohydrate was synthesized by dissolving 2.0796 g (10.0 mmole) H3C6H5O7(H2O) in 20 ml deionized water. 2.0731g K2CO3 (15.0 mmole, Sigma-Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness in a 333 K oven. The powder pattern matched PDF entry 02-064-1651, confirming the structure as potassium citrate monohydrate (Carrell et al., 1987). The monohydrate was heated at 15 K min−1 to 498 K, and held there for two minutes (the white solid started to discolour). The white solid was removed from the oven, and immediately placed in a sealed glass jar to cool.
6. details
Crystal data, data collection and structure . The white solid was ground and blended with NIST SRM 640b Si internal standard in a mortar and pestle. The specimen was protected from the atmosphere by an 8 micron Kapton film attached to the sample holder with petroleum jelly. (The sample hydrates slowly on contact with ambient atmosphere.)
details are summarized in Table 2The pattern (Fig. 4) was indexed on a primitive orthorhombic using ITO (Visser, 1969). Manual examination of the suggested Pna21. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987) with profile coefficients for Simpson's rule integration of the Pseudo-Voigt function according to Howard (1982). The asymmetry correction of Finger et al. (1994) was applied and microstrain broadening by Stephens (1999). The structure was solved with FOX (Favre-Nicolin & Černý, 2002) using a citrate moiety and three potassium atoms as fragments. The structure was refined by the using GSAS/EXPGUI (Larson & Von Dreele, 2004; Toby, 2001). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the using Materials Studio (Dassault Systemes, 2014). The Uiso values of the atoms in the central and outer portions of the citrate anion were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached.
The ADDSYM module of PLATON (Spek, 2009) suggested the presence of an additional centre of symmetry, and that the was Pnam. in this yielded poorer residuals, so we believe that Pna21 is the correct space group.
7. DFT calculations
After the CRYSTAL09 (Dovesi et al., 2005). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994), and the basis set for K was that of Dovesi et al. (1991). The calculation used 8 k-points and the B3LYP functional, and took about 66 h on a 2.4 GHz PC. The Uiso values from the were assigned to the optimized fractional coordinates.
a density functional geometry optimization (fixed experimental unit cell) was carried out usingSupporting information
Data collection: DIFFRAC.Measurement (Bruker, 2009) for KADU1578_phase_1. Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for KADU1578_phase_1. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby, 2001) for KADU1578_phase_1. Molecular graphics: DIAMOND (Crystal Impact, 2015) for KADU1578_phase_1. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1578_phase_1.
[K3(C6H5O7)] | c = 10.4241 (2) Å |
Mr = 306.39 | V = 1001.66 (3) Å3 |
Orthorhombic, Pna21 | Z = 4 |
a = 7.7062 (2) Å | T = 300 K |
b = 12.4693 (3) Å |
x | y | z | Uiso*/Ueq | ||
C1 | 0.841 (4) | 0.883 (3) | 0.28611 | 0.023 (3)* | |
C2 | 0.926 (4) | 0.915 (3) | 0.411 (2) | 0.021 (5)* | |
C3 | 0.814 (2) | 0.8966 (12) | 0.532 (3) | 0.021 (5)* | |
C4 | 0.937 (4) | 0.910 (4) | 0.647 (3) | 0.021 (5)* | |
C5 | 0.857 (4) | 0.872 (3) | 0.771 (3) | 0.023 (3)* | |
C6 | 0.6539 (18) | 0.9724 (11) | 0.541 (5) | 0.023 (3)* | |
H7 | 1.04032 | 0.90124 | 0.41652 | 0.027 (7)* | |
H8 | 0.9082 | 0.99396 | 0.3928 | 0.027 (7)* | |
H9 | 0.97168 | 0.98330 | 0.645913 | 0.027 (7)* | |
H10 | 1.01382 | 0.84403 | 0.63413 | 0.027 (7)* | |
O11 | 0.695 (4) | 0.9217 (19) | 0.252 (4) | 0.023 (3)* | |
O12 | 0.936 (4) | 0.816 (2) | 0.226 (4) | 0.023 (3)* | |
O13 | 0.935 (4) | 0.821 (2) | 0.859 (4) | 0.023 (3)* | |
O14 | 0.697 (4) | 0.894 (2) | 0.787 (4) | 0.023 (3)* | |
O15 | 0.6828 (17) | 1.0726 (11) | 0.529 (6) | 0.023 (3)* | |
O16 | 0.5076 (16) | 0.9267 (10) | 0.533 (5) | 0.023 (3)* | |
O17 | 0.7473 (14) | 0.7877 (11) | 0.525 (5) | 0.023 (3)* | |
H18 | 0.6543 | 0.8072 | 0.525 | 0.030 (4)* | |
K19 | 0.355 (3) | 0.8827 (13) | 0.743 (3) | 0.0442 (17)* | |
K20 | 0.1336 (10) | 0.7108 (4) | 0.021 (3) | 0.0442 (17)* | |
K21 | 0.148 (3) | 0.3753 (14) | 0.797 (3) | 0.0442 (17)* |
C1—C2 | 1.510 (5) | O13—K20viii | 2.90 (3) |
C1—O11 | 1.278 (9) | O14—C5 | 1.270 (9) |
C1—O12 | 1.271 (9) | O14—O13 | 2.18 (3) |
C2—C1 | 1.510 (5) | O14—K19 | 2.68 (4) |
C2—C3 | 1.544 (4) | O14—K20viii | 2.81 (3) |
C2—H7 | 0.90 (3) | O14—K21ii | 2.90 (3) |
C2—H8 | 1.01 (4) | O15—C6 | 1.275 (8) |
C3—C2 | 1.544 (4) | O15—K19i | 3.05 (6) |
C3—C4 | 1.544 (5) | O15—K20ix | 2.987 (15) |
C3—C6 | 1.553 (4) | O15—K20x | 3.051 (15) |
C3—O17 | 1.452 (8) | O15—K21ii | 2.88 (5) |
C4—C3 | 1.544 (5) | O16—C6 | 1.266 (8) |
C4—C5 | 1.511 (5) | O16—K19 | 2.55 (4) |
C4—H9 | 0.95 (4) | O16—K21iii | 2.81 (4) |
C4—H10 | 1.03 (5) | O17—C3 | 1.452 (8) |
C5—C4 | 1.511 (5) | O17—H18 | 0.757 (11) |
C5—O13 | 1.268 (9) | O17—K19ii | 3.22 (4) |
C5—O14 | 1.270 (9) | O17—K21vi | 3.23 (4) |
C6—C3 | 1.553 (4) | H18—O17 | 0.757 (11) |
C6—O15 | 1.275 (8) | K19—O11x | 2.47 (2) |
C6—O16 | 1.266 (8) | K19—O13xi | 2.88 (3) |
H7—C2 | 0.90 (3) | K19—O14 | 2.68 (4) |
H8—C2 | 1.01 (4) | K19—O15x | 3.05 (6) |
H9—C4 | 0.82 (4) | K19—O16 | 2.55 (4) |
H10—C4 | 1.03 (5) | K19—O17xi | 3.22 (4) |
O11—C1 | 1.278 (9) | K20—O11xi | 2.96 (3) |
O11—K19i | 2.47 (2) | K20—O12xii | 2.93 (3) |
O11—K20ii | 2.96 (3) | K20—O12xi | 3.18 (3) |
O11—K21iii | 2.75 (4) | K20—O13xiii | 2.66 (3) |
O12—C1 | 1.271 (9) | K20—O13xiv | 2.90 (3) |
O12—K20iv | 2.93 (3) | K20—O14xiv | 2.81 (3) |
O12—K20ii | 3.18 (3) | K20—O15xv | 2.987 (15) |
O12—K21v | 3.37 (4) | K20—O15i | 3.051 (15) |
O12—K21vi | 2.58 (3) | K21—O11xvi | 2.75 (4) |
O13—C5 | 1.268 (9) | K21—O12xvii | 2.58 (3) |
O13—O14 | 2.18 (3) | K21—O14xi | 2.90 (3) |
O13—K19iv | 3.54 (4) | K21—O15xi | 2.88 (5) |
O13—K19ii | 2.88 (3) | K21—O16xvi | 2.81 (4) |
O13—K20vii | 2.66 (3) | K21—O17xvii | 3.23 (4) |
C2—C1—O11 | 121 (2) | O11x—K19—O13xi | 152.6 (13) |
C2—C1—O12 | 111 (2) | O11x—K19—O14 | 95.5 (9) |
O11—C1—O12 | 128 (2) | O11x—K19—O15x | 76.6 (11) |
C1—C2—C3 | 115 (2) | O11x—K19—O16 | 83.8 (8) |
C2—C3—C4 | 106.0 (13) | O11x—K19—O17xi | 129.6 (11) |
C2—C3—C6 | 114 (3) | O13xi—K19—O14 | 76.3 (11) |
C2—C3—O17 | 107 (2) | O13xi—K19—O15x | 76.7 (7) |
C4—C3—C6 | 112 (2) | O13xi—K19—O16 | 117.0 (10) |
C4—C3—O17 | 111 (2) | O13xi—K19—O17xi | 76.7 (9) |
C6—C3—O17 | 107.1 (12) | O14—K19—O15x | 85.2 (9) |
C3—C4—C5 | 112 (2) | O14—K19—O16 | 71.5 (11) |
C4—C5—O13 | 126 (2) | O14—K19—O17xi | 114.2 (10) |
C4—C5—O14 | 116 (2) | O15x—K19—O16 | 147.9 (10) |
O13—C5—O14 | 118 (2) | O15x—K19—O17xi | 141.9 (9) |
C3—C6—O15 | 116.9 (13) | O16—K19—O17xi | 69.7 (7) |
C3—C6—O16 | 115.3 (13) | O11xi—K20—O12xii | 74.9 (9) |
O15—C6—O16 | 126.2 (16) | O11xi—K20—O12xi | 43.7 (5) |
C1—O11—K19i | 122 (3) | O11xi—K20—O13xiii | 153.7 (8) |
C1—O11—K20ii | 98.9 (17) | O11xi—K20—O13xiv | 105.6 (8) |
C1—O11—K21iii | 136 (3) | O11xi—K20—O14xiv | 114.7 (5) |
K19i—O11—K20ii | 119.7 (12) | O11xi—K20—O15xv | 77.6 (12) |
K19i—O11—K21iii | 93.6 (11) | O11xi—K20—O15i | 113.4 (13) |
K20ii—O11—K21iii | 82.3 (8) | O12xii—K20—O12xi | 86.3 (8) |
C1—O12—K20iv | 162 (3) | O12xii—K20—O13xiii | 86.2 (5) |
C1—O12—K20ii | 88.7 (17) | O12xii—K20—O13xiv | 154.3 (8) |
C1—O12—K21vi | 109 (3) | O12xii—K20—O14xiv | 158.6 (7) |
K20iv—O12—K20ii | 81.0 (7) | O12xii—K20—O15xv | 79.2 (12) |
K20iv—O12—K21vi | 85.8 (9) | O12xii—K20—O15i | 80.0 (10) |
K20ii—O12—K21vi | 84.9 (10) | O12xi—K20—O13xiii | 154.4 (9) |
C5—O13—K19ii | 92 (2) | O12xi—K20—O13xiv | 77.9 (4) |
C5—O13—K20vii | 172.2 (18) | O12xi—K20—O14xiv | 114.1 (8) |
C5—O13—K20viii | 96.3 (17) | O12xi—K20—O15xv | 121.3 (12) |
K19ii—O13—K20vii | 86.2 (9) | O12xi—K20—O15i | 74.6 (10) |
K19ii—O13—K20viii | 87.4 (10) | O13xiii—K20—O13xiv | 99.4 (7) |
K20vii—O13—K20viii | 91.3 (7) | O13xiii—K20—O14xiv | 77.9 (8) |
C5—O14—K19 | 157 (3) | O13xiii—K20—O15xv | 81.1 (10) |
C5—O14—K20viii | 100.5 (18) | O13xiii—K20—O15i | 80.1 (10) |
C5—O14—K21ii | 110 (3) | O13xiv—K20—O14xiv | 44.9 (6) |
K19—O14—K20viii | 87.4 (8) | O13xiv—K20—O15xv | 126.3 (12) |
K19—O14—K21ii | 86.0 (11) | O13xiv—K20—O15i | 76.4 (9) |
K20viii—O14—K21ii | 114.1 (12) | O14xiv—K20—O15xv | 84.2 (14) |
C6—O15—K19i | 105 (4) | O14xiv—K20—O15i | 110.8 (11) |
C6—O15—K20ix | 115.2 (11) | O15xv—K20—O15i | 152.7 (6) |
C6—O15—K20x | 162.1 (14) | O11xvi—K21—O12xvii | 84.5 (12) |
C6—O15—K21ii | 96 (4) | O11xvi—K21—O14xi | 84.9 (8) |
K19i—O15—K20ix | 77.8 (11) | O11xvi—K21—O15xi | 82.9 (9) |
K19i—O15—K20x | 81.7 (12) | O11xvi—K21—O16xvi | 71.9 (10) |
K19i—O15—K21ii | 154.0 (5) | O11xvi—K21—O17xvii | 119.9 (10) |
K20ix—O15—K20x | 82.4 (3) | O12xvii—K21—O14xi | 160.0 (12) |
K20ix—O15—K21ii | 79.7 (11) | O12xvii—K21—O15xi | 87.5 (7) |
K20x—O15—K21ii | 82.5 (12) | O12xvii—K21—O16xvi | 110.7 (10) |
C6—O16—K19 | 117 (3) | O12xvii—K21—O17xvii | 72.0 (9) |
C6—O16—K21iii | 123 (3) | O14xi—K21—O15xi | 74.4 (10) |
K19—O16—K21iii | 120.5 (5) | O14xi—K21—O16xvi | 81.9 (8) |
C3—O17—H18 | 91.9 (14) | O14xi—K21—O17xvii | 128.0 (11) |
C3—O17—K19ii | 119 (2) | O15xi—K21—O16xvi | 146.8 (10) |
C3—O17—K21vi | 123 (2) | O15xi—K21—O17xvii | 146.4 (9) |
K19ii—O17—K21vi | 92.3 (3) | O16xvi—K21—O17xvii | 66.8 (7) |
Symmetry codes: (i) −x+1, −y+2, z−1/2; (ii) x+1/2, −y+3/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) x+1, y, z; (v) −x+3/2, y+1/2, z−1/2; (vi) −x+1, −y+1, z−1/2; (vii) x+1, y, z+1; (viii) x+1/2, −y+3/2, z+1; (ix) −x+1/2, y+1/2, z+1/2; (x) −x+1, −y+2, z+1/2; (xi) x−1/2, −y+3/2, z; (xii) x−1, y, z; (xiii) x−1, y, z−1; (xiv) x−1/2, −y+3/2, z−1; (xv) −x+1/2, y−1/2, z−1/2; (xvi) −x+1/2, y−1/2, z+1/2; (xvii) −x+1, −y+1, z+1/2. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.125 | 0.125 | 0.125 | 0.01* |
Si1—Si1i | 2.3517 | Si1—Si1iii | 2.3517 |
Si1—Si1ii | 2.3517 | Si1—Si1iv | 2.3517 |
Si1i—Si1—Si1ii | 109.4712 | Si1ii—Si1—Si1iii | 109.4712 |
Si1i—Si1—Si1iii | 109.4712 | Si1ii—Si1—Si1iv | 109.4712 |
Si1i—Si1—Si1iv | 109.4712 | Si1iii—Si1—Si1iv | 109.4712 |
Symmetry codes: (i) x+1/4, y+1/4, −z; (ii) −z, x+1/4, y+1/4; (iii) y+1/4, −z, x+1/4; (iv) −x, −y, −z. |
[K3(C6H5O7)] | c = 10.4222 (3) Å |
Mr = 306.37 | V = 1001.66 Å3 |
Orthorhombic, PNA21 | Z = 4 |
a = 7.7074 (2) Å | Cu Kα radiation, λ = 1.5418 Å |
b = 12.4676 (3) Å | T = 300 K |
x | y | z | Uiso*/Ueq | ||
C1 | 0.83999 | 0.87608 | 0.28090 | 0.03110* | |
C2 | 0.91941 | 0.91369 | 0.40840 | 0.04090* | |
C3 | 0.80507 | 0.89495 | 0.52759 | 0.04090* | |
C4 | 0.91865 | 0.91285 | 0.64734 | 0.04090* | |
C5 | 0.83786 | 0.87569 | 0.77456 | 0.03110* | |
C6 | 0.64533 | 0.97237 | 0.52736 | 0.03110* | |
H7 | 1.04170 | 0.87092 | 0.42230 | 0.05310* | |
H8 | 0.94795 | 0.99967 | 0.40314 | 0.05310* | |
H9 | 0.94862 | 0.99862 | 0.65281 | 0.05310* | |
H10 | 1.04015 | 0.86912 | 0.63386 | 0.05310* | |
O11 | 0.69006 | 0.90966 | 0.25219 | 0.03110* | |
O12 | 0.93097 | 0.81435 | 0.21142 | 0.03110* | |
O13 | 0.92734 | 0.81335 | 0.84433 | 0.03110* | |
O14 | 0.68837 | 0.91019 | 0.80291 | 0.03110* | |
O15 | 0.67248 | 1.07226 | 0.52772 | 0.03110* | |
O16 | 0.49925 | 0.92599 | 0.52665 | 0.03110* | |
O17 | 0.74146 | 0.78645 | 0.52713 | 0.03110* | |
H18 | 0.61565 | 0.79949 | 0.52593 | 0.04040* | |
K19 | 0.35417 | 0.87929 | 0.75053 | 0.04550* | |
K20 | 0.13670 | 0.70910 | 0.02740 | 0.04550* | |
K21 | 0.14595 | 0.37878 | 0.80253 | 0.04550* |
C1—C2 | 1.536 | C4—C5 | 1.536 |
C1—O11 | 1.265 | C4—H9 | 1.096 |
C1—O12 | 1.268 | C4—H10 | 1.093 |
C2—C3 | 1.541 | C5—O13 | 1.268 |
C2—H7 | 1.093 | C5—O14 | 1.265 |
C2—H8 | 1.096 | C6—O15 | 1.263 |
C3—C4 | 1.541 | C6—O16 | 1.266 |
C3—C6 | 1.564 | O17—H18 | 0.983 |
C3—O17 | 1.439 |
References
Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071. CSD CrossRef CAS Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond. Google Scholar
Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573. Web of Science CrossRef CAS Google Scholar
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19. CrossRef CAS Web of Science Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howard, C. J. (1982). J. Appl. Cryst. 15, 615–620. CrossRef CAS Web of Science IUCr Journals Google Scholar
ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA. Google Scholar
Kaduk, J. A. & Stern, C. (2016a). Private communication (No. 1446457–1446458). CCDC, Cambridge, England. Google Scholar
Kaduk, J. A. & Stern, C. (2016b). Private communication (No. 1446460–1446461). CCDC, Cambridge, England. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B72. Submitted. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793–796. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854–857. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
Visser, J. W. (1969). J. Appl. Cryst. 2, 89–95. CrossRef CAS IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.