research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2016; accepted 14 July 2016; online 19 July 2016)

The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to the c axis. The only hydrogen bond is an intra­molecular one involving the hy­droxy group and the central carboxyl­ate group, with graph-set motif S(5).

1. Chemical context

In the course of a systematic study of the crystal structures of group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder X-ray diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B72. Submitted.]). Five of the new structures, viz. NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, and Na2HC6H5O7, have been published recently (Rammohan & Kaduk, 2016b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403-406.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793-796.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854-857.]; Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]), and two additional structures, viz. KH2C6H5O7 and KH2C6H5O7(H2O)2, have been communicated to the Cambridge Structural Database (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). Private communication (No. 1446457-1446458). CCDC, Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). Private communication (No. 1446460-1446461). CCDC, Cambridge, England.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The r.m.s. deviation of the non-hydrogen atoms between the Rietveld-refined and the DFT-optimized structures is 0.117 Å (Fig. 2[link]). The maximum deviation is 0.260 Å, at O14. The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the C4—C5 bond length [refined = 1.511 (5), optimized = 1.536, Mogul average = 1.498 (12) Å, Z-score = 3.1], and the C3—C2—C1 [refined = 115 (2), optimized = 115.0, Mogul average = 103 (2)°] and O17—C3—C2 angles [refined = 107 (2), optimized = 109.6, Mogul average = 106 (2)°] are flagged as unusual. The citrate anion occurs in the trans,trans-conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate group and the hy­droxy group occur in the normal planar arrangement. Both terminal carboxyl­ate groups O11/O12 and O13/O14 chelate to a single potassium cation (K20 for each). The terminal carboxyl­ate oxygen atom O12 and the hy­droxy O17 atom chelate to K21, and the terminal carboxyl­ate oxygen atoms O13 and O17 chelate to K19. The terminal/central pairs O11/O16, O14/O16, O11/O15, and O14/O15 chelate to K21, K19, K19, and K21, respectively. The three potassium cations K19, K20, and K21 are 6-, 8-, and 6-coordinate, respectively (all irregular, using a K—O cut-off distance of 3.24 Å). Their bond-valence sums are 1.12, 1.03, and 1.12 valence units. The metal-oxygen bonding is ionic, based on the cation charges and the Mulliken overlap populations.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom numbering. Atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of anhydrous tripotassium citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Although the lattice parameters of anhydrous tripotassium citrate are in general similar to those of the monohydrate (Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]; CSD code ZZZHVI01), consistent with the difference in water content, the powder patterns differ considerably. Visual examination of the structures shows that the arrangements of the citrate anions are very different. A mechanism for the transformation of one phase into the other is not obvious.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect blocky morphology for anhydrous tripotassium citrate, with {011} as the principal faces. A second-order spherical harmonic texture model was included in the refinement. The texture index was only 1.001, indicating that preferred orientation was not significant for this rotated flat plate specimen.

3. Supra­molecular features

The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3[link]), with channels running down the c axis. The only hydrogen bond is an intra­molecular one (Table 1[link]) involving the hy­droxy group and the central carboxyl­ate group, with graph-set motif S(5). The Mulliken overlap population in the hydrogen-acceptor bond is 0.076 e. By the correlation in Rammohan & Kaduk (2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B72. Submitted.]), this hydrogen bond accounts for 15.1 kcal per mole of crystal energy.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O16 0.983 1.814 2.552 129.1
[Figure 3]
Figure 3
The crystal structure of K3C6H5O7, viewed down the c axis, with coordination spheres of the potassium cations in polyhedral representation.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B72. Submitted.]). A reduced-cell search of the cell of anhydrous tripotassium citrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 208 hits, but limiting the chemistry to C, H, K, and O only resulted in no hits. The powder pattern is now contained in the the Powder Diffraction File (ICDD, 2015[ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.]) as entry 00-064-1370.

5. Synthesis and crystallization

Potassium citrate monohydrate was synthesized by dissolving 2.0796 g (10.0 mmole) H3C6H5O7(H2O) in 20 ml deionized water. 2.0731g K2CO3 (15.0 mmole, Sigma-Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness in a 333 K oven. The powder pattern matched PDF entry 02-064-1651, confirming the structure as potassium citrate monohydrate (Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]). The monohydrate was heated at 15 K min−1 to 498 K, and held there for two minutes (the white solid started to discolour). The white solid was removed from the oven, and immediately placed in a sealed glass jar to cool.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The white solid was ground and blended with NIST SRM 640b Si inter­nal standard in a mortar and pestle. The specimen was protected from the atmosphere by an 8 micron Kapton film attached to the sample holder with petroleum jelly. (The sample hydrates slowly on contact with ambient atmosphere.)

Table 2
Experimental details

  Phase 1 Phase 2
Crystal data
Chemical formula [K3(C6H5O7)] Si
Mr 306.39 28.09
Crystal system, space group Orthorhombic, Pna21 Cubic, Fd[\overline{3}]m
Temperature (K) 300 300
a, b, c (Å) 7.7062 (2), 12.4693 (3), 10.4241 (2) 5.43105, 5.43105, 5.43105
α, β, γ (°) 90, 90, 90 90, 90, 90
V3) 1001.66 (3) 160.20
Z 4 8
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 24 × 24 Flat sheet, 24 × 24
 
Data collection
Diffractometer Bruker D2 Phaser Bruker D2 Phaser
Specimen mounting Normal sample holder with Kapton film Normal sample holder with Kapton film
Data collection mode Reflection Reflection
Scan method Step Step
2θ values (°) 2θmin = 4.908, 2θmax = 69.916, 2θstep = 0.020 2θmin = 4.908, 2θmax = 69.916, 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.038, Rwp = 0.049, Rexp = 0.034, R(F2) = 0.059, χ2 = 2.103 Rp = 0.038, Rwp = 0.049, Rexp = 0.034, R(F2) = 0.059, χ2 = 2.103
No. of parameters 73 73
No. of restraints 29 29
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.]), FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]), EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The pattern (Fig. 4[link]) was indexed on a primitive ortho­rhom­bic unit cell using ITO (Visser, 1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]). Manual examination of the systematic absences suggested space group Pna21. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the Pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was solved with FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]) using a citrate moiety and three potassium atoms as fragments. The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.]). The Uiso values of the atoms in the central and outer portions of the citrate anion were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached.

[Figure 4]
Figure 4
Rietveld plot for the refinement of K3C6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale for angles > 44.0° has been multiplied by a factor of 5. The lower row of black tick marks indicates the reflection positions for the major phase and the upper row of red tick marks is for the silicon inter­nal standard.

The ADDSYM module of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggested the presence of an additional centre of symmetry, and that the space group was Pnam. Refinement in this space group yielded poorer residuals, so we believe that Pna21 is the correct space group.

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for K was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]). The calculation used 8 k-points and the B3LYP functional, and took about 66 h on a 2.4 GHz PC. The Uiso values from the Rietveld refinement were assigned to the optimized fractional coord­inates.

Supporting information


Computing details top

Data collection: DIFFRAC.Measurement (Bruker, 2009) for KADU1578_phase_1. Program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002) for KADU1578_phase_1. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) and EXPGUI (Toby, 2001) for KADU1578_phase_1. Molecular graphics: DIAMOND (Crystal Impact, 2015) for KADU1578_phase_1. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1578_phase_1.

(KADU1578_phase_1) Poly[(µ-2-hydroxypropane-1,2,3-tricarboxylato0tripotassium] top
Crystal data top
[K3(C6H5O7)]c = 10.4241 (2) Å
Mr = 306.39V = 1001.66 (3) Å3
Orthorhombic, Pna21Z = 4
a = 7.7062 (2) ÅT = 300 K
b = 12.4693 (3) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.841 (4)0.883 (3)0.286110.023 (3)*
C20.926 (4)0.915 (3)0.411 (2)0.021 (5)*
C30.814 (2)0.8966 (12)0.532 (3)0.021 (5)*
C40.937 (4)0.910 (4)0.647 (3)0.021 (5)*
C50.857 (4)0.872 (3)0.771 (3)0.023 (3)*
C60.6539 (18)0.9724 (11)0.541 (5)0.023 (3)*
H71.040320.901240.416520.027 (7)*
H80.90820.993960.39280.027 (7)*
H90.971680.983300.6459130.027 (7)*
H101.013820.844030.634130.027 (7)*
O110.695 (4)0.9217 (19)0.252 (4)0.023 (3)*
O120.936 (4)0.816 (2)0.226 (4)0.023 (3)*
O130.935 (4)0.821 (2)0.859 (4)0.023 (3)*
O140.697 (4)0.894 (2)0.787 (4)0.023 (3)*
O150.6828 (17)1.0726 (11)0.529 (6)0.023 (3)*
O160.5076 (16)0.9267 (10)0.533 (5)0.023 (3)*
O170.7473 (14)0.7877 (11)0.525 (5)0.023 (3)*
H180.65430.80720.5250.030 (4)*
K190.355 (3)0.8827 (13)0.743 (3)0.0442 (17)*
K200.1336 (10)0.7108 (4)0.021 (3)0.0442 (17)*
K210.148 (3)0.3753 (14)0.797 (3)0.0442 (17)*
Geometric parameters (Å, º) top
C1—C21.510 (5)O13—K20viii2.90 (3)
C1—O111.278 (9)O14—C51.270 (9)
C1—O121.271 (9)O14—O132.18 (3)
C2—C11.510 (5)O14—K192.68 (4)
C2—C31.544 (4)O14—K20viii2.81 (3)
C2—H70.90 (3)O14—K21ii2.90 (3)
C2—H81.01 (4)O15—C61.275 (8)
C3—C21.544 (4)O15—K19i3.05 (6)
C3—C41.544 (5)O15—K20ix2.987 (15)
C3—C61.553 (4)O15—K20x3.051 (15)
C3—O171.452 (8)O15—K21ii2.88 (5)
C4—C31.544 (5)O16—C61.266 (8)
C4—C51.511 (5)O16—K192.55 (4)
C4—H90.95 (4)O16—K21iii2.81 (4)
C4—H101.03 (5)O17—C31.452 (8)
C5—C41.511 (5)O17—H180.757 (11)
C5—O131.268 (9)O17—K19ii3.22 (4)
C5—O141.270 (9)O17—K21vi3.23 (4)
C6—C31.553 (4)H18—O170.757 (11)
C6—O151.275 (8)K19—O11x2.47 (2)
C6—O161.266 (8)K19—O13xi2.88 (3)
H7—C20.90 (3)K19—O142.68 (4)
H8—C21.01 (4)K19—O15x3.05 (6)
H9—C40.82 (4)K19—O162.55 (4)
H10—C41.03 (5)K19—O17xi3.22 (4)
O11—C11.278 (9)K20—O11xi2.96 (3)
O11—K19i2.47 (2)K20—O12xii2.93 (3)
O11—K20ii2.96 (3)K20—O12xi3.18 (3)
O11—K21iii2.75 (4)K20—O13xiii2.66 (3)
O12—C11.271 (9)K20—O13xiv2.90 (3)
O12—K20iv2.93 (3)K20—O14xiv2.81 (3)
O12—K20ii3.18 (3)K20—O15xv2.987 (15)
O12—K21v3.37 (4)K20—O15i3.051 (15)
O12—K21vi2.58 (3)K21—O11xvi2.75 (4)
O13—C51.268 (9)K21—O12xvii2.58 (3)
O13—O142.18 (3)K21—O14xi2.90 (3)
O13—K19iv3.54 (4)K21—O15xi2.88 (5)
O13—K19ii2.88 (3)K21—O16xvi2.81 (4)
O13—K20vii2.66 (3)K21—O17xvii3.23 (4)
C2—C1—O11121 (2)O11x—K19—O13xi152.6 (13)
C2—C1—O12111 (2)O11x—K19—O1495.5 (9)
O11—C1—O12128 (2)O11x—K19—O15x76.6 (11)
C1—C2—C3115 (2)O11x—K19—O1683.8 (8)
C2—C3—C4106.0 (13)O11x—K19—O17xi129.6 (11)
C2—C3—C6114 (3)O13xi—K19—O1476.3 (11)
C2—C3—O17107 (2)O13xi—K19—O15x76.7 (7)
C4—C3—C6112 (2)O13xi—K19—O16117.0 (10)
C4—C3—O17111 (2)O13xi—K19—O17xi76.7 (9)
C6—C3—O17107.1 (12)O14—K19—O15x85.2 (9)
C3—C4—C5112 (2)O14—K19—O1671.5 (11)
C4—C5—O13126 (2)O14—K19—O17xi114.2 (10)
C4—C5—O14116 (2)O15x—K19—O16147.9 (10)
O13—C5—O14118 (2)O15x—K19—O17xi141.9 (9)
C3—C6—O15116.9 (13)O16—K19—O17xi69.7 (7)
C3—C6—O16115.3 (13)O11xi—K20—O12xii74.9 (9)
O15—C6—O16126.2 (16)O11xi—K20—O12xi43.7 (5)
C1—O11—K19i122 (3)O11xi—K20—O13xiii153.7 (8)
C1—O11—K20ii98.9 (17)O11xi—K20—O13xiv105.6 (8)
C1—O11—K21iii136 (3)O11xi—K20—O14xiv114.7 (5)
K19i—O11—K20ii119.7 (12)O11xi—K20—O15xv77.6 (12)
K19i—O11—K21iii93.6 (11)O11xi—K20—O15i113.4 (13)
K20ii—O11—K21iii82.3 (8)O12xii—K20—O12xi86.3 (8)
C1—O12—K20iv162 (3)O12xii—K20—O13xiii86.2 (5)
C1—O12—K20ii88.7 (17)O12xii—K20—O13xiv154.3 (8)
C1—O12—K21vi109 (3)O12xii—K20—O14xiv158.6 (7)
K20iv—O12—K20ii81.0 (7)O12xii—K20—O15xv79.2 (12)
K20iv—O12—K21vi85.8 (9)O12xii—K20—O15i80.0 (10)
K20ii—O12—K21vi84.9 (10)O12xi—K20—O13xiii154.4 (9)
C5—O13—K19ii92 (2)O12xi—K20—O13xiv77.9 (4)
C5—O13—K20vii172.2 (18)O12xi—K20—O14xiv114.1 (8)
C5—O13—K20viii96.3 (17)O12xi—K20—O15xv121.3 (12)
K19ii—O13—K20vii86.2 (9)O12xi—K20—O15i74.6 (10)
K19ii—O13—K20viii87.4 (10)O13xiii—K20—O13xiv99.4 (7)
K20vii—O13—K20viii91.3 (7)O13xiii—K20—O14xiv77.9 (8)
C5—O14—K19157 (3)O13xiii—K20—O15xv81.1 (10)
C5—O14—K20viii100.5 (18)O13xiii—K20—O15i80.1 (10)
C5—O14—K21ii110 (3)O13xiv—K20—O14xiv44.9 (6)
K19—O14—K20viii87.4 (8)O13xiv—K20—O15xv126.3 (12)
K19—O14—K21ii86.0 (11)O13xiv—K20—O15i76.4 (9)
K20viii—O14—K21ii114.1 (12)O14xiv—K20—O15xv84.2 (14)
C6—O15—K19i105 (4)O14xiv—K20—O15i110.8 (11)
C6—O15—K20ix115.2 (11)O15xv—K20—O15i152.7 (6)
C6—O15—K20x162.1 (14)O11xvi—K21—O12xvii84.5 (12)
C6—O15—K21ii96 (4)O11xvi—K21—O14xi84.9 (8)
K19i—O15—K20ix77.8 (11)O11xvi—K21—O15xi82.9 (9)
K19i—O15—K20x81.7 (12)O11xvi—K21—O16xvi71.9 (10)
K19i—O15—K21ii154.0 (5)O11xvi—K21—O17xvii119.9 (10)
K20ix—O15—K20x82.4 (3)O12xvii—K21—O14xi160.0 (12)
K20ix—O15—K21ii79.7 (11)O12xvii—K21—O15xi87.5 (7)
K20x—O15—K21ii82.5 (12)O12xvii—K21—O16xvi110.7 (10)
C6—O16—K19117 (3)O12xvii—K21—O17xvii72.0 (9)
C6—O16—K21iii123 (3)O14xi—K21—O15xi74.4 (10)
K19—O16—K21iii120.5 (5)O14xi—K21—O16xvi81.9 (8)
C3—O17—H1891.9 (14)O14xi—K21—O17xvii128.0 (11)
C3—O17—K19ii119 (2)O15xi—K21—O16xvi146.8 (10)
C3—O17—K21vi123 (2)O15xi—K21—O17xvii146.4 (9)
K19ii—O17—K21vi92.3 (3)O16xvi—K21—O17xvii66.8 (7)
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z1/2; (vi) x+1, y+1, z1/2; (vii) x+1, y, z+1; (viii) x+1/2, y+3/2, z+1; (ix) x+1/2, y+1/2, z+1/2; (x) x+1, y+2, z+1/2; (xi) x1/2, y+3/2, z; (xii) x1, y, z; (xiii) x1, y, z1; (xiv) x1/2, y+3/2, z1; (xv) x+1/2, y1/2, z1/2; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1, y+1, z+1/2.
(KADU1578_phase_2) Poly[(µ14-2-hydroxypropane-1,2,3-tricarboxylato0tripotassium] top
Crystal data top
SiV = 160.20 Å3
Mr = 28.09Z = 8
Cubic, Fd3mT = 300 K
a = 5.43105 Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.1250.1250.1250.01*
Geometric parameters (Å, º) top
Si1—Si1i2.3517Si1—Si1iii2.3517
Si1—Si1ii2.3517Si1—Si1iv2.3517
Si1i—Si1—Si1ii109.4712Si1ii—Si1—Si1iii109.4712
Si1i—Si1—Si1iii109.4712Si1ii—Si1—Si1iv109.4712
Si1i—Si1—Si1iv109.4712Si1iii—Si1—Si1iv109.4712
Symmetry codes: (i) x+1/4, y+1/4, z; (ii) z, x+1/4, y+1/4; (iii) y+1/4, z, x+1/4; (iv) x, y, z.
(kadu1578_DFT) top
Crystal data top
[K3(C6H5O7)]c = 10.4222 (3) Å
Mr = 306.37V = 1001.66 Å3
Orthorhombic, PNA21Z = 4
a = 7.7074 (2) ÅCu Kα radiation, λ = 1.5418 Å
b = 12.4676 (3) ÅT = 300 K
Data collection top
Density functional calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.839990.876080.280900.03110*
C20.919410.913690.408400.04090*
C30.805070.894950.527590.04090*
C40.918650.912850.647340.04090*
C50.837860.875690.774560.03110*
C60.645330.972370.527360.03110*
H71.041700.870920.422300.05310*
H80.947950.999670.403140.05310*
H90.948620.998620.652810.05310*
H101.040150.869120.633860.05310*
O110.690060.909660.252190.03110*
O120.930970.814350.211420.03110*
O130.927340.813350.844330.03110*
O140.688370.910190.802910.03110*
O150.672481.072260.527720.03110*
O160.499250.925990.526650.03110*
O170.741460.786450.527130.03110*
H180.615650.799490.525930.04040*
K190.354170.879290.750530.04550*
K200.136700.709100.027400.04550*
K210.145950.378780.802530.04550*
Bond lengths (Å) top
C1—C21.536C4—C51.536
C1—O111.265C4—H91.096
C1—O121.268C4—H101.093
C2—C31.541C5—O131.268
C2—H71.093C5—O141.265
C2—H81.096C6—O151.263
C3—C41.541C6—O161.266
C3—C61.564O17—H180.983
C3—O171.439
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O160.9831.8142.552129.1
 

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, C. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071.  CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.  Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). Private communication (No. 1446457–1446458). CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). Private communication (No. 1446460–1446461). CCDC, Cambridge, England.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B72. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793–796.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854–857.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds