research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ammonium/potassium trans-bis­­(N-methyl­iminodi­acetato-κ3O,N,O′)chromate(III) from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 June 2016; accepted 19 July 2016; online 22 July 2016)

The structure of the title compound, [(NH4)0.8K0.2][Cr(C5H7NO4)2] (C5H7NO4 is methyl­iminodi­acetate; mida), has been determined from synchrotron data. The CrIII atom is located on a centre of symmetry and is coordinated by two N atoms and four O atoms of two facially arranged tridentate mida ligands, displaying a slightly distorted octa­hedral coordination environment. The Cr—N and mean Cr—O bond lengths are 2.0792 (14) and 1.958 (14) Å, respectively. The cation site is located on a twofold rotation axis and shows occupational disorder, being occupied by ammonium and potassium cations in a 0.8:0.2 ratio. In the crystal, inter­molecular hydrogen bonds involving the N—H groups of the ammonium cation as donor and the two non-coordinating O atoms of the carboxyl­ate group as acceptor groups consolidate the three-dimensional packing.

1. Chemical context

Methyl­iminodi­acetate (abbreviated here as mida; C5H7NO4) can coordinate to a central metal ion as a tridentate ligand through one N atom and two O atoms. The mida ligand differs from iminodi­acetate (ida) in the substitution of the imino hydrogen with a methyl group. This change has significant consequences with respect to the configuration of the bis-chromate(III) complexes with these ligands. Two facial configurations in cis or trans mode relative to the two N atoms have been observed: for example K[Cr(ida)2]·3H2O (Mootz & Wunderlich, 1980[Mootz, D. & Wunderlich, H. (1980). Acta Cryst. B36, 445-447.]) and Na[Cr(ida)2]·1.5H2O (Li et al., 2003[Li, H., Xu, D.-J. & Yin, K.-L. (2003). Acta Cryst. E59, m671-m673.]) are cis-fac structures whereas Na[Cr(mida)2] is a trans-fac structure (Suh et al., 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]). However, the trans meridional isomer of octa­hedrally coordinated chromium(III) with ida or mida ligands has not yet been identified. In order to confirm the bonding mode of the methyl­iminodi­acetato ligand and its structural arrangement, we report herein on the crystal structure of the title salt, [(NH4)0.8K0.2][Cr(C5H7NO4)2], (I)[link].

[Scheme 1]

2. Structural commentary

Counter-ionic species play important roles in crystal packings and hydrogen-bonding patterns. The structure reported here is another example of a [Cr(mida)2] salt but with a different cation (Suh et al., 1996[Suh, I.-H., Lee, J.-H., Song, J.-H., Oh, M.-R., Suh, J.-S., Park, S.-J. & Lee, K.-W. (1996). J. Korean Phys. Soc. 29, 739-744.], 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]). The structural analysis shows that the two tridentate mida dianions octa­hedrally coordinate to the CrIII metal atom through one N atom and two carboxyl­ate O atoms in a facial configuration. The coordinating N atoms are mutually trans due to point group [\overline{1}] for the entire anionic complex. The asymmetric unit of (I)[link] comprises one half of the CrIII complex anion and one occupationally disordered ammonium/potassium cation (situated on a twofold rotation axis), respectively. An ellipsoid plot of title compound together with the atomic numbering is illustrated in Fig. 1[link].

[Figure 1]
Figure 1
The structures of the mol­ecular entities of (I)[link], showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level. The primed atoms are related by symmetry code (−x + 1, −y + 1, −z + 1). Dashed lines represent hydrogen-bonding inter­actions.

The facial configuration of the complex anion in (I)[link] can be compared with that of NH4[Cr(pydc)2] (pydc = pyridine-2,6-di­carboxyl­ate; Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 210-212.]) where it displays a trans meridional configuration. The Cr—N and mean Cr—O bond lengths involving the mida ligands are 2.0792 (14) and 1.958 (14) Å, respectively, in good agreement with the values observed for Na[Cr(mida)2] (Suh et al., 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]). Bond angles about the central chromium atom are 90.23 (6) for O1—Cr1—O3, 84.66 (6) for O1—Cr1—N1 and 82.62 (5)° for N1—Cr1—O3 indicating a distorted octa­hedral coordination environment. The C–O bond lengths within the carboxyl­ate group of the mida ligand range from 1.219 (2) to 1.296 (2) Å and can be compared with values of 1.225 (15) and 1.294 (15) Å for NH4[Cr(pydc)2] (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 210-212.]). The slightly longer C—O bond length (C1—O2 and C3—O4) and smaller O—C—O bond angles of the carboxyl­ate groups in the mida ligand of (I)[link] compared to the ligand in Na[Cr(mida)2] (Suh et al., 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]) may be attributed to the involvement of the two non-coordinating O atoms in hydrogen bonds with the N—H groups of the ammonium cation. The N—C and C—C distances in the mida moieties are close to those found in the free H2mida mol­ecule (Shkol'nikova et al., 1986[Shkol'nikova, L. M., Donchenko, N. V., Poznyak, A. L., Dyatlova, N. M. & Zavodnik, E. V. (1986). Zh. Strukt. Khim. 27, 89-94.]) and are equal to 1.479 (2)–1.494 (2) and 1.508 (3)–1.512 (2) Å, respectively.

3. Supra­molecular features

The pattern of hydrogen bonding around the cation is different from the crystal packing network in the related sodium salt (Suh et al., 1996[Suh, I.-H., Lee, J.-H., Song, J.-H., Oh, M.-R., Suh, J.-S., Park, S.-J. & Lee, K.-W. (1996). J. Korean Phys. Soc. 29, 739-744.], 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]). The cation is linked to four non-coordinating O atoms of carboxyl­ate groups from four neighboring mida ligands through classical N—H⋯O hydrogen bonds (Table 1[link]). An array of these inter­actions generate a three-dimensional network of mol­ecules whereby individual mol­ecules are stacked along the b-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1S—H1NS⋯O3i 0.92 (1) 2.07 (1) 2.9658 (16) 166 (3)
N1S—H2NS⋯O2 0.90 (1) 1.95 (1) 2.8485 (17) 175 (3)
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of (I)[link], viewed perpendicular to the ac plane. Dashed lines represent hydrogen-bonding inter­actions N—H⋯O (cyan).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb. 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just two hits for a complex anion [Cr(C5H7NO4)2] unit. The crystal structures of Na[Cr(mida)2] with three different space groups have been reported and compared previously (Suh et al., 1996[Suh, I.-H., Lee, J.-H., Song, J.-H., Oh, M.-R., Suh, J.-S., Park, S.-J. & Lee, K.-W. (1996). J. Korean Phys. Soc. 29, 739-744.], 1997[Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.]).

5. Synthesis and crystallization

All chemicals were reagent-grade materials and were used without further purification. The starting material, K[Cr(mida)2] was prepared by a method similar to that outlined previously (Wernicke et al., 1977[Wernicke, R., Schmidtke, H.-H. & Hoggard, P. E. (1977). Inorg. Chim. Acta, 24, 145-148.]; Uehara et al., 1970[Uehara, A., Kyuno, E. & Tsuchiya, R. (1970). Bull. Chem. Soc. Jpn, 43, 1394-1397.]). The potassium salt (0.25 g) was dissolved in 15 mL of water at 343 K and added to 5 mL of water containing 0.50 g of NH4Cl. The resulting solution was filtered to remove any impurities and allowed to stand at room temperature for several days to give pale pink plate-like crystals of the mixed-occupancy ammonium/potassium salt, (I)[link], suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms of the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.98 Å and with Uiso(H) values of 1.5 (meth­yl) and 1.2 times Ueq (all others) of the parent atoms. The H atoms of the cation were located from difference Fourier maps and refined with DFIX and DANG restraints and fixed N—H distances of 0.855 (9) and 0.869 (9) Å, with Uiso(H) values of 1.2Ueq(N). The occupancy of mixed-occupied (NH4/K) first was refined and then fixed at a ratio of 0.8:0.2. The corresponding (NH4/K) sites was refined using EXYZ/EADP commands for the two atom types.

Table 2
Experimental details

Crystal data
Chemical formula [(NH4)0.8K0.2][Cr(C5H7NO4)2]
Mr 364.48
Crystal system, space group Monoclinic, C2/c
Temperature (K) 243
a, b, c (Å) 16.786 (3), 6.5240 (13), 13.925 (3)
β (°) 113.19 (3)
V3) 1401.8 (6)
Z 4
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.61
Crystal size (mm) 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer ADSC Q210 CCD area-detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.989, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 6984, 1833, 1519
Rint 0.028
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.05
No. of reflections 1833
No. of parameters 110
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.69
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Ammonium/potassium trans-bis(N-methyliminodiacetato-κ3O,N,O')chromate(III) top
Crystal data top
[(NH4)0.8K0.2][Cr(C5H7NO4)2]F(000) = 754
Mr = 364.48Dx = 1.727 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.610 Å
a = 16.786 (3) ÅCell parameters from 23758 reflections
b = 6.5240 (13) Åθ = 0.4–33.7°
c = 13.925 (3) ŵ = 0.61 mm1
β = 113.19 (3)°T = 243 K
V = 1401.8 (6) Å3Plate, pale pink
Z = 40.02 × 0.02 × 0.01 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
1519 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.028
ω scanθmax = 25.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 2323
Tmin = 0.989, Tmax = 0.995k = 99
6984 measured reflectionsl = 1717
1833 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.40 e Å3
1833 reflectionsΔρmin = 0.69 e Å3
110 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0118 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.50000.50000.50000.01108 (14)
O10.53582 (8)0.3160 (2)0.61977 (10)0.0228 (3)
O20.64463 (9)0.2272 (2)0.76630 (10)0.0267 (3)
O30.54917 (8)0.3115 (2)0.42746 (10)0.0228 (3)
O40.65906 (10)0.2681 (2)0.37913 (13)0.0361 (4)
N10.62700 (8)0.6057 (2)0.56638 (10)0.0129 (3)
C10.61393 (11)0.3333 (3)0.68756 (13)0.0175 (3)
C20.67027 (13)0.4929 (3)0.66707 (15)0.0326 (5)
H2A0.68860.59220.72450.039*
H2B0.72250.42600.66680.039*
C30.62435 (11)0.3600 (3)0.42841 (13)0.0196 (4)
C40.66622 (12)0.5484 (3)0.49128 (15)0.0232 (4)
H4A0.72830.52260.52970.028*
H4B0.66010.66330.44350.028*
C50.63441 (13)0.8296 (3)0.58441 (19)0.0333 (5)
H5A0.69480.86990.60860.050*
H5B0.61210.86530.63680.050*
H5C0.60120.90030.51970.050*
K1S0.50000.0201 (2)0.75000.0275 (3)0.2
N1S0.50000.0201 (2)0.75000.0275 (3)0.8
H1NS0.5139 (17)0.091 (4)0.8115 (14)0.033*0.8
H2NS0.5476 (13)0.052 (4)0.757 (2)0.033*0.8
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.00847 (19)0.01210 (19)0.0120 (2)0.00089 (12)0.00332 (13)0.00138 (12)
O10.0173 (6)0.0248 (6)0.0209 (6)0.0064 (5)0.0018 (5)0.0078 (5)
O20.0231 (7)0.0300 (7)0.0217 (7)0.0003 (5)0.0030 (5)0.0107 (5)
O30.0201 (6)0.0223 (6)0.0290 (7)0.0052 (5)0.0130 (5)0.0119 (5)
O40.0328 (8)0.0430 (9)0.0416 (9)0.0005 (7)0.0243 (7)0.0173 (7)
N10.0110 (6)0.0145 (6)0.0134 (6)0.0023 (5)0.0050 (5)0.0013 (5)
C10.0174 (8)0.0198 (8)0.0152 (8)0.0010 (6)0.0063 (6)0.0000 (6)
C20.0205 (9)0.0530 (14)0.0160 (9)0.0150 (8)0.0018 (7)0.0125 (8)
C30.0201 (8)0.0219 (8)0.0185 (9)0.0005 (6)0.0094 (6)0.0027 (6)
C40.0203 (8)0.0327 (9)0.0226 (10)0.0081 (7)0.0148 (7)0.0083 (7)
C50.0221 (9)0.0186 (9)0.0574 (14)0.0070 (7)0.0137 (9)0.0129 (8)
K1S0.0277 (7)0.0278 (8)0.0270 (8)0.0000.0107 (6)0.000
N1S0.0277 (7)0.0278 (8)0.0270 (8)0.0000.0107 (6)0.000
Geometric parameters (Å, º) top
Cr1—O11.9479 (13)C2—H2B0.9800
Cr1—O1i1.9479 (13)C3—C41.512 (2)
Cr1—O31.9673 (12)C3—K1Sii3.371 (2)
Cr1—O3i1.9673 (12)C4—H4A0.9800
Cr1—N12.0792 (14)C4—H4B0.9800
Cr1—N1i2.0792 (14)C5—H5A0.9700
O1—C11.284 (2)C5—H5B0.9700
O1—K1S3.0524 (17)C5—H5C0.9700
O2—C11.226 (2)K1S—O2iii2.8484 (16)
O2—K1S2.8485 (17)K1S—O3iv2.9658 (16)
O3—C31.296 (2)K1S—O3ii2.9658 (16)
O3—K1Sii2.9658 (16)K1S—O4iv3.033 (2)
O4—C31.219 (2)K1S—O4ii3.033 (2)
O4—K1Sii3.033 (2)K1S—O1iii3.0524 (17)
N1—C51.479 (2)K1S—C1iii3.322 (2)
N1—C41.486 (2)K1S—C3ii3.371 (2)
N1—C21.494 (2)K1S—C3iv3.371 (2)
C1—C21.508 (3)N1S—H1NS0.920 (10)
C1—K1S3.322 (2)N1S—H2NS0.899 (10)
C2—H2A0.9800
O1—Cr1—O1i180.00 (5)O2—K1S—O3ii112.23 (4)
O1—Cr1—O390.23 (6)O3iv—K1S—O3ii100.26 (7)
O1i—Cr1—O389.77 (6)O2iii—K1S—O4iv150.81 (4)
O1—Cr1—O3i89.77 (6)O2—K1S—O4iv74.40 (4)
O1i—Cr1—O3i90.23 (6)O3iv—K1S—O4iv43.35 (4)
O3—Cr1—O3i180.0O3ii—K1S—O4iv92.48 (6)
O1—Cr1—N184.66 (6)O2iii—K1S—O4ii74.40 (4)
O1i—Cr1—N195.34 (6)O2—K1S—O4ii150.82 (4)
O3—Cr1—N182.62 (5)O3iv—K1S—O4ii92.48 (6)
O3i—Cr1—N197.38 (5)O3ii—K1S—O4ii43.36 (4)
O1—Cr1—N1i95.34 (6)O4iv—K1S—O4ii115.53 (8)
O1i—Cr1—N1i84.66 (6)O2iii—K1S—O1iii43.90 (4)
O3—Cr1—N1i97.38 (5)O2—K1S—O1iii84.65 (6)
O3i—Cr1—N1i82.62 (5)O3iv—K1S—O1iii91.19 (4)
N1—Cr1—N1i180.00 (7)O3ii—K1S—O1iii154.19 (4)
C1—O1—Cr1117.20 (11)O4iv—K1S—O1iii111.36 (5)
C1—O1—K1S90.53 (10)O4ii—K1S—O1iii113.71 (4)
Cr1—O1—K1S152.23 (6)O2iii—K1S—O184.65 (6)
C1—O2—K1S101.75 (11)O2—K1S—O143.90 (4)
C3—O3—Cr1116.48 (11)O3iv—K1S—O1154.19 (4)
C3—O3—K1Sii96.63 (10)O3ii—K1S—O191.19 (4)
Cr1—O3—K1Sii142.48 (6)O4iv—K1S—O1113.71 (4)
C3—O4—K1Sii95.27 (12)O4ii—K1S—O1111.36 (5)
C5—N1—C4109.69 (15)O1iii—K1S—O188.15 (7)
C5—N1—C2110.46 (15)O2iii—K1S—C1iii21.17 (4)
C4—N1—C2110.50 (15)O2—K1S—C1iii98.43 (6)
C5—N1—Cr1113.95 (11)O3iv—K1S—C1iii103.11 (4)
C4—N1—Cr1105.34 (10)O3ii—K1S—C1iii131.52 (4)
C2—N1—Cr1106.75 (10)O4iv—K1S—C1iii132.69 (5)
O2—C1—O1123.79 (16)O4ii—K1S—C1iii93.56 (4)
O2—C1—C2119.04 (16)O1iii—K1S—C1iii22.73 (4)
O1—C1—C2117.17 (15)O1—K1S—C1iii85.72 (6)
O2—C1—K1S57.08 (10)O2iii—K1S—C198.43 (6)
O1—C1—K1S66.74 (9)O2—K1S—C121.17 (4)
C2—C1—K1S175.95 (12)O3iv—K1S—C1131.52 (4)
N1—C2—C1114.11 (15)O3ii—K1S—C1103.11 (4)
N1—C2—H2A108.7O4iv—K1S—C193.56 (4)
C1—C2—H2A108.7O4ii—K1S—C1132.69 (5)
N1—C2—H2B108.7O1iii—K1S—C185.72 (6)
C1—C2—H2B108.7O1—K1S—C122.73 (4)
H2A—C2—H2B107.6C1iii—K1S—C192.12 (7)
O4—C3—O3123.62 (17)O2iii—K1S—C3ii93.03 (5)
O4—C3—C4120.65 (16)O2—K1S—C3ii133.81 (4)
O3—C3—C4115.66 (15)O3iv—K1S—C3ii94.64 (6)
O4—C3—K1Sii63.63 (11)O3ii—K1S—C3ii22.45 (4)
O3—C3—K1Sii60.92 (9)O4iv—K1S—C3ii103.37 (7)
C4—C3—K1Sii166.70 (13)O4ii—K1S—C3ii21.10 (4)
N1—C4—C3112.21 (14)O1iii—K1S—C3ii134.49 (4)
N1—C4—H4A109.2O1—K1S—C3ii104.15 (4)
C3—C4—H4A109.2C1iii—K1S—C3ii113.34 (5)
N1—C4—H4B109.2C1—K1S—C3ii121.12 (4)
C3—C4—H4B109.2O2iii—K1S—C3iv133.81 (4)
H4A—C4—H4B107.9O2—K1S—C3iv93.03 (5)
N1—C5—H5A109.5O3iv—K1S—C3iv22.45 (4)
N1—C5—H5B109.5O3ii—K1S—C3iv94.64 (6)
H5A—C5—H5B109.5O4iv—K1S—C3iv21.10 (4)
N1—C5—H5C109.5O4ii—K1S—C3iv103.37 (7)
H5A—C5—H5C109.5O1iii—K1S—C3iv104.15 (4)
H5B—C5—H5C109.5O1—K1S—C3iv134.49 (4)
O2iii—K1S—O2111.01 (8)C1iii—K1S—C3iv121.12 (4)
O2iii—K1S—O3iv112.23 (4)C1—K1S—C3iv113.34 (5)
O2—K1S—O3iv110.35 (4)C3ii—K1S—C3iv97.73 (8)
O2iii—K1S—O3ii110.35 (4)H1NS—N1S—H2NS105.9 (19)
K1S—O2—C1—O11.9 (2)K1Sii—O4—C3—C4165.65 (16)
K1S—O2—C1—C2178.67 (16)Cr1—O3—C3—O4173.25 (15)
Cr1—O1—C1—O2179.97 (14)K1Sii—O3—C3—O411.5 (2)
K1S—O1—C1—O21.73 (19)Cr1—O3—C3—C43.7 (2)
Cr1—O1—C1—C20.5 (2)K1Sii—O3—C3—C4165.51 (14)
K1S—O1—C1—C2178.83 (16)Cr1—O3—C3—K1Sii161.79 (12)
Cr1—O1—C1—K1S178.30 (12)C5—N1—C4—C3151.02 (16)
C5—N1—C2—C1127.82 (19)C2—N1—C4—C386.96 (18)
C4—N1—C2—C1110.61 (19)Cr1—N1—C4—C327.99 (18)
Cr1—N1—C2—C13.4 (2)O4—C3—C4—N1165.12 (17)
O2—C1—C2—N1177.29 (16)O3—C3—C4—N117.8 (2)
O1—C1—C2—N12.2 (3)K1Sii—C3—C4—N189.7 (5)
K1Sii—O4—C3—O311.2 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+3/2; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1S—H1NS···O3iv0.92 (1)2.07 (1)2.9658 (16)166 (3)
N1S—H2NS···O20.90 (1)1.95 (1)2.8485 (17)175 (3)
Symmetry code: (iv) x, y, z+1/2.
 

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Xu, D.-J. & Yin, K.-L. (2003). Acta Cryst. E59, m671–m673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 210–212.  CSD CrossRef IUCr Journals Google Scholar
First citationMootz, D. & Wunderlich, H. (1980). Acta Cryst. B36, 445–447.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShkol'nikova, L. M., Donchenko, N. V., Poznyak, A. L., Dyatlova, N. M. & Zavodnik, E. V. (1986). Zh. Strukt. Khim. 27, 89–94.  CAS Google Scholar
First citationSuh, I.-H., Lee, J.-H., Song, J.-H., Oh, M.-R., Suh, J.-S., Park, S.-J. & Lee, K.-W. (1996). J. Korean Phys. Soc. 29, 739–744.  CAS Google Scholar
First citationSuh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432–434.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationUehara, A., Kyuno, E. & Tsuchiya, R. (1970). Bull. Chem. Soc. Jpn, 43, 1394–1397.  CrossRef CAS Google Scholar
First citationWernicke, R., Schmidtke, H.-H. & Hoggard, P. E. (1977). Inorg. Chim. Acta, 24, 145–148.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds