research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

YCu(TeO3)2(NO3)(H2O)3: a novel layered tellurite

CROSSMARK_Color_square_no_text.svg

aGeosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia, bSchool of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia, and cOcean and Climate Geoscience, Research School of Earth Sciences, Mills Rd, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: smills@museum.vic.gov.au

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 June 2016; accepted 14 July 2016; online 19 July 2016)

A new hydrated yttrium copper tellurite nitrate, yttrium(III) copper(II) bis­[trioxidotellurate(IV)] nitrate trihydrate, has been synthesized hydro­thermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its crystal structure is unique, with relatively strongly bound layers extending parallel to (020), defined by YO8, CuO4 and TeO3 polyhedra, while the NO3 anions and one third of the water mol­ecules lie between those layers. The structural unit consists of [Cu2(TeO3)4]4− loop-branched chains of {Cu⋯Te⋯Cu⋯Te} squares running parallel to [001], which are linked further into layers only through Y(O,H2O)8 polyhedra. Weak `secondary' Te bonds and O—H⋯O hydrogen-bonding inter­actions, involving water mol­ecules and layer O atoms, link the layers and inter­layer species. IR spectroscopic data are also presented.

1. Chemical context

Recent discoveries of a wide range of novel tellurium minerals have prompted numerous structural studies of tellurium oxysalts (Kampf et al., 2013[Kampf, A. R., Mills, S. J., Housley, R. M., Rossman, G. R., Marty, J. & Thorne, B. (2013). Am. Mineral. 98, 1315-1321.]; Christy et al., 2016a[Christy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B. & Marty, J. (2016a). Mineral. Mag. 80, 291-310.]). As well as the characterization of these naturally occurring minerals, various syntheses have also been undertaken as part of this ongoing study, yielding an array of new structures, including that of novel Na11H[Te(OH)3]8[SO4]10(H2O)13 (Mills et al., 2016[Mills, S. J., Dunstan, M. A. & Christy, A. G. (2016). Dalton Trans. Submitted.]). Several tellurium oxide species with various yttrium oxide polyhedra present in the structure have been synthesized in the past, including compounds with both TeIV and TeVI atoms. Tellurium is stable in numerous oxidation states and shows large diversity in bonding (Christy & Mills, 2013[Christy, A. G. & Mills, S. J. (2013). Acta Cryst. B69, 446-456.]). Its +IV and +VI oxidation states are of greatest inter­est in relation to naturally occurring weathering products of minerals, and are able to form a wide variety of oxide polyhedra, with TeO32− most prevalent (Song et al., 2014[Song, S. Y., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 7040-7046.]). The TeO32− anion shows a wide variety of connectivities, with three oxido ligands and the 5s2 electron lone pair occupying the vertices of the distorted polyhedra, and are found in a variety of layer and chain structures in inorganic compounds (Johansson & Lindqvist, 1978[Johansson, G. B. & Lindqvist, O. (1978). Acta Cryst. B34, 2959-2962.]). This is demonstrated in compounds such as NaYTe4O10 with YO8 and TeO4 polyhedra, KY(TeO3)2 and RbY(TeO3)2 with YO6 octa­hedra and trigonal–pyramidal TeO32− anions, CsYTe3O8 with YO6 and TeO4 polyhedra (Kim et al., 2014[Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 5240-5245.]), as well as yttrium tellurium oxides with TeVI atoms (Kasper, 1969[Kasper, H. M. (1969). Mater. Res. Bull. 4, 33-37.]; Höss & Schleid, 2007[Höss, P. & Schleid, T. (2007). Acta Cryst. E63, i133-i135.]; Noguera et al., 2012[Noguera, O., Jouin, J., Masson, O., Jancar, B. & Thomas, P. J. (2012). J. Eur. Ceram. Soc. 32, 4263-4269.]). As a consequence of this range of chemistry, tellurium is the most anomalously diverse element found in minerals compared to its scarcity in the earth's crust (Christy, 2015[Christy, A. G. (2015). Mineral. Mag. 79, 33-49.]). Many copper-containing tellurium oxides have been successfully synthesized (Feger et al., 1999[Feger, C. R., Schimek, G. L. & Kolis, J. W. (1999). J. Solid State Chem. 143, 246-253.]; Koteswararao et al., 2013[Koteswararao, B., Kumar, R., Chakraborty, J., Jeon, B. G., Mahajan, A. V., Dasgupta, I., Kim, K. H. & Chou, F. C. (2013). J. Phys. Condens. Matter, 25, 336003.]; Sedello & Müller-Buschbaum, 1996[Sedello, O. & Müller-Buschbaum, H. (1996). Z. Naturforsch. Teil B, 51, 465-468.]), and copper is also present in many tellurium-containing minerals; indeed, out of the unusually large inventory of tellurium secondary minerals at Otto Mountain, the majority contains copper (Christy et al., 2016a[Christy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B. & Marty, J. (2016a). Mineral. Mag. 80, 291-310.]). Despite this, there are very few synthetic rare earth copper tellurium oxides known, and to the best of our knowledge a compound containing all three of copper, yttrium and tellurium has not been characterized so far. Although layered structures with inter­stitial ions are common for TeIV compounds, nitrate is found as an anion in very few, which motivates the use of metal nitrates in the synthesis of novel tellurium oxides. The only other compounds with simple tellurite and nitrate anions whose structures have been reported to date are the layered compounds Ca6(TeO3)5(NO3)2 and Ca5(TeO3)4(NO3)2(H2O)2 (Stöger & Weil, 2013[Stöger, B. & Weil, M. (2013). Mineral. Petrol. 107, 257-263.]). Nitrates of polymerized Te(IV) complexes are also known. The compound AgTeO2(NO3) (Olsson et al., 1988[Olsson, C., Johansson, L.-G. & Kazikowski, S. (1988). Acta Cryst. C44, 427-429.]) contains an electrically neutral [Te2O4]0 chain (Christy et al., 2016b[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016b). Mineral. Mag. 80, 415-545.]), while [Te2O3OH](NO3) contains a cationic [Te2O3OH]+ layer (Anderson et al., 1980[Anderson, J. B., Rapposch, M. H., Anderson, C. P. & Kostiner, E. (1980). Monatsh. Chem. 111, 789-796.]; Christy et al., 2016b[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016b). Mineral. Mag. 80, 415-545.]).

2. Structural commentary

Bond-valence sums are given in Table 1[link]. In general, the bond-valence data of Table 1[link] were calculated using the bond-valence parameters of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), except that the Te—O data were from Mills & Christy (2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]). However, Brown (2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]) noted that no single pair of r0 and b values is adequate for O—H bonds, since O⋯O repulsion increases the length of weak O—H bonds relative to strong ones. Here, the parameterization of Yu et al. (2006[Yu, D., Xue, D. & Ratajczak, H. (2006). Physica B, 371, 170-176.]) was used, with r0 = 0.79 Å for bond valence < 0.5 valence units, r0 = 1.409 Å for bond valence > 0.5 v.u., and b = 0.37 Å in both cases.

Table 1
Bond-valence sums (in valence units) for YCu(TeO3)2(NO3)(H2O)3

  Y1 Cu1 Te1 Te2 N1 H11 H12 H21 H22 H31 H32 Σ Σ(excluding H)
O1 0.401 0.544, 0.047 1.128                 2.12 2.12
O2 0.478, 0.275   1.145 0.130               2.03 2.03
O3   0.436 1.208 0.173         0.232     2.05 1.82
O4 0.399 0.534, 0.046   1.148     0.041         2.17 2.13
O5 0.481, 0.316 0.421 0.118 1.165               2.08 2.08
O6     0.183 1.179     0.279         2.06 1.78
O7     0.156   1.562             1.72 1.72
O8       0.156 1.609     0.068   0.047   1.88 1.77
O9         1.712           0.062, 0.036 1.81 1.71
OW1 0.384         0.755 0.755         1.89 0.38
OW2 0.389             0.771 0.769     1.93 0.39
OW3           0.224   0.110   0.743 0.761 1.84 0.00
Σ 3.12 2.03 3.93 3.94 4.88 0.98 1.08 0.95 1.00 0.79 0.86    

The structure of the title compound is strongly layered. Layers parallel to (020) are defined by YO8, CuO4 and TeO3 polyhedra, while NO3 anions and one third of the water mol­ecules (OW1) lie between those layers. Tellurite and nitrate anions (involving atoms O1–O9) are clearly distinguished from water mol­ecules OW1–OW3 by their bond-valence sums (Table 1[link]). Within the layers, Y is eightfold coordinated in a distorted snub disphenoidal (triangular dodeca­hedral) arrangement by 6 × O2− and 2 × H2O at 2.290 (3)–2.497 (3) Å. Cu is in square-planar coordination, with four close oxygen neighbours at 1.904 (3)–1.999 (3) Å. Two more oxygen ligands at 2.811 (4) and 2.817 (4) Å complete an octa­hedron that is very elongated due to the Jahn-Teller distortion. Te1 is trigonal–pyramidally coordin­ated by three oxygen atoms at 1.883 (3)–1.911 (3) Å. Three `secondary bonds' to O atoms at 2.657 (3)–2.837 (3) Å complete a polyhedron that can be described as an octa­hedron that is very distorted due to the lone-pair stereoactivity. Te2 has very similar coordination, with three primary Te—O bonds of 1.893 (3)–1.905 (3) Å and three secondary bonds of 2.681 (4)–2.798 (3) Å. In each case, two of the secondary bonds provide additional bracing within the {Y⋯Cu⋯Te} layer, while the third is to a nitrate oxygen (Te1—O7 and Te2—O8, both ≃ 2.72 Å), and thus provides weak bridging between the layers and inter­layer species. The nitrate oxygen atom O9 makes a seventh very distant ligand for both Te1 [3.231 (4) Å] and Te2 [3.350 (4) Å], further than the shortest Te⋯Cu distances and with bond valences < 0.05 valence units, using the parameters of Mills & Christy (2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]).

The identification and classification of a strongly bonded `structural unit' (Hawthorne, 2014[Hawthorne, F. C. (2014). Mineral. Mag. 78, 957-1027.]) in the structure of this compound depends crucially on which bonds are regarded as strong enough to define such a unit. The classification of Te oxycompound structures by Christy et al. (2016b[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016b). Mineral. Mag. 80, 415-545.]) in general used thresholds of about 2.45 Å for Te—O and 2.20 Å for Cu—O bonds, while no bonds to 8-fold coordinated cations were considered to be part of the structural unit. The same criteria applied to the current structure would regard the CuO4 squares as isolated from one another, although inclusion of the long Cu—O bonds would link CuO4+2 polyhedra to form trans edge-sharing chains parallel to [001]. Without the long bonds, CuO4 squares are linked to their neighbours most strongly via TeO3 pyramids, to produce loop-branched chains [Cu2(TeO3)4]4− of {Cu⋯Te⋯Cu⋯Te} squares running parallel to [001] (Fig. 1[link]). These chains are the structural units, since they are linked further into layers only through Y(O,H2O)8 polyhedra (Fig. 2[link]). It is noteworthy that this chain is similar in topology but not in geometrical configuration to the structural unit of Dy[CuCl(TeO3)2] and its Er—Cl and Er—Br analogues (Shen & Mao, 2005[Shen, Y.-L. & Mao, J.-G. (2005). Inorg. Chem. 44, 5328-5335.]). However, in the current compound, the {Cu⋯Te} squares are non-planar, so that the chain periodicity is doubled, and Cu does not have chloride as an additional ligand. Furthermore, in the structures of the compounds of Shen and Mao (2005[Shen, Y.-L. & Mao, J.-G. (2005). Inorg. Chem. 44, 5328-5335.]), rare earth cations link the chains into a three-dimensional framework rather than into layers.

[Figure 1]
Figure 1
View in polyhedral mode of the [Cu2(TeO3)4]4− loop-branched chains running parallel to [001]. CuO4 polyhedra are cyan, TeO3 polyhedra are green
[Figure 2]
Figure 2
The crystal structure of YCu(TeO3)2(NO3)(H2O)3 viewed down [100]. O atoms are red, Y yellow, Cu cyan, Te green, N light-blue and O atoms of water mol­ecules pink. Displacement ellipsoids are drawn at the 50% probability level.

H11, H12, H22 and H31 were found to make relatively strong hydrogen bonds (Table 2[link]) to respectively OW3, O6, O3 and O7 at distances between 1.88–1.96 Å. H12 and H31 have additional acceptor O atoms at greater distances, respectively O4 at 2.59 Å and O8 at 2.54 Å. The remaining H atoms each have two oxygen neighbours at greater distances, suggesting weak bifurcated hydrogen bonding: OW3 at 2.23 Å and O8 at 2.40 Å for H21, and O8 at 2.44 Å, O9 at 2.64 Å for H32.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H11⋯OW3 0.89 (3) 1.96 (3) 2.854 (6) 174 (7)
OW1—H12⋯O6i 0.89 (3) 1.88 (4) 2.729 (5) 157 (7)
OW2—H21⋯O8i 0.89 (3) 2.41 (6) 3.074 (5) 132 (6)
OW2—H21⋯OW3ii 0.89 (3) 2.22 (5) 2.949 (6) 139 (6)
OW2—H22⋯O3 0.89 (3) 1.95 (5) 2.745 (5) 149 (7)
OW3—H31⋯O7 0.90 (3) 1.97 (4) 2.834 (7) 162 (9)
OW3—H31⋯O8iii 0.90 (3) 2.53 (8) 3.141 (7) 126 (7)
OW3—H32⋯O9iv 0.89 (3) 2.49 (4) 3.360 (7) 166 (9)
OW3—H32⋯O9v 0.89 (3) 2.64 (9) 3.253 (8) 127 (8)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z; (v) -x, -y+1, -z+1.

The layers of the structure are linked by only weak bonds. The bridges Te1⋯O7—N—O8⋯Te2 mentioned above have Te⋯O ≃ 2.72 Å, implying a bond of 0.15 valence units (Mills & Christy, 2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]). The hydrogen bonds in the bridges OW1—H11⋯OW3⋯H21—OW2 are of comparable bond valence.

It is noteworthy that the IR spectrum shows three distinct O—H bands at 3460, 3145 and 2900 cm−1. According to Libowitzky (1999[Libowitzky, E. (1999). In Correlation of OH stretching frequencies and OH-O hydrogen bond lengths in minerals. Vienna: Springer.]), this would be typical for O—H⋯O distances of ∼ 2.83, 2.69 and 2.63 Å. The first two of these are broadly consistent with the O⋯O distances for the strongest hydrogen bonds indicated by the refinement: OW1—H12⋯OW3 = 2.85 Å, OW2—H12⋯O3 = 2.74 Å and OW1—H11⋯O6 = 2.73 Å. However, the band at 2900 cm−1 is lower in frequency than would be expected.

3. Spectroscopy

The infrared spectrum was obtained using a Bruker Alpha FTIR with a diamond Attenuated Total Reflectance attachment (ATR), DTGS (Deuterated Triglycine Sulfate) detector, 4 cm−1 resolution and 4000–450 cm−1 range. The samples were placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. 128 scans were taken for each item and co-added. Band assignments are consistent with those given in Kampf et al. (2013[Kampf, A. R., Mills, S. J., Housley, R. M., Rossman, G. R., Marty, J. & Thorne, B. (2013). Am. Mineral. 98, 1315-1321.]). Numerical values of the spectrum and assignments of the vibration bands are given in Table 3[link]; the spectrum is deposited as a supplementary figure.

Table 3
IR band assignments (cm−1) for YCu(TeO3)2(NO3)(H2O)3

Absorption bands Assignment  
3460w O—H stretch  
3145w O—H stretch  
∼2900w O—H stretch  
1755 H—O—H bend  
1645 H—O—H bend  
1605 H—O—H bend  
1345 ν3 anti­symmetric stretch NO3  
1044 ν1 symmetric stretch NO3  
734 ν1 (TeO3)2− symmetric stretch  
636 ν3 (TeO3)2− anti­symmetric stretch  
547 M—O lattice modes  
447 M—O lattice modes  

4. Synthesis and crystallization

Dark blue prisms of YCu(TeO3)2(NO3)(H2O)3 were synthesized hydro­thermally. For the synthesis, Y(NO3)3·6H2O (Aldrich, 99.8%), Cu(NO3)2·3H2O (Sigma–Aldrich ≥99%) and Te 200 mm mesh (Aldrich, 99.8%) were used as starting materials. A 1:1:1 molar ratio of the reagents in 20 ml water was reacted in a Teflon autoclave bomb at 473 K for 3 days. Crystals of YCu(TeO3)2(NO3)(H2O)3 were separated manually from a blue powder of undetermined composition in a few percent yield. Several unsuccessful attempts were made to synthesize YCu(TeO3)2(NO3)(H2O)3 from a stoichiometric mixture of the reagents, using the molar ratio 1:1:2. We also were unsuccessful in producing new compounds, with the same structure type or not, using La, Ce, Nd or Gd in place of Y.

5. Refinement

Single crystal X-ray diffraction experiments were carried out on the micro-focus macromolecular beam line MX2 of the Australian Synchrotron. Details of data collection and structure refinement are provided in Table 4[link]. Hydrogen atoms H11, H12 and H21 were located during refinement as difference peaks of about one e / Å3 occurring at a distance of ca. 0.9–1.0 Å from their nearest oxygen atom. In all cases, short O—H bonds were directed towards another oxygen atom, indicating the existence of hydrogen bonds. Positions were estimated for the remaining hydrogen atoms, assuming water mol­ecule O—H distance near 0.9 Å, H—O—H bond angle near 104°, that O—H vectors were directed to make hydrogen bonds to nearby oxygen atoms, if possible, and that the arrangement of O—H and O⋯H around OW3 was approximately tetra­hedral. In all cases, residuals of > 0.6 electrons were found close to the expected positions, that could be identified with the H atoms. H positions were finally included in the refinement, assuming full occupancy, isotropic displacement parameters were fixed to 1.5× of their corresponding O atom and the O—H distance was restrained at 0.90 (3) Å.

Table 4
Experimental details

Crystal data
Chemical formula YCu(TeO3)2(NO3)(H2O)3
Mr 619.71
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.2560 (15), 20.654 (4), 7.0160 (14)
β (°) 94.63 (3)
V3) 1048.0 (4)
Z 4
Radiation type Synchrotron, λ = 0.71073 Å
μ (mm−1) 13.06
Crystal size (mm) 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer ADSC Quantum 315r detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.295, 0.433
No. of measured, independent and observed [I > 2σ(I)] reflections 20336, 2901, 2810
Rint 0.054
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.14
No. of reflections 2901
No. of parameters 173
No. of restraints 6
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.45, −1.56
Computer programs: local program, XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), XPREP (Bruker, 2001[Bruker (2001). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: local program; cell refinement: XDS (Kabsch, 2010); data reduction: XPREP (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Yttrium(III) copper(II) bis[trioxidotellurate(IV)] nitrate trihydrate top
Crystal data top
YCu(TeO3)2(NO3)(H2O)3F(000) = 1124
Mr = 619.71Dx = 3.928 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.71073 Å
a = 7.2560 (15) ÅCell parameters from 20243 reflections
b = 20.654 (4) Åθ = 2.8–30.0°
c = 7.0160 (14) ŵ = 13.06 mm1
β = 94.63 (3)°T = 100 K
V = 1048.0 (4) Å3Prism, dark blue
Z = 40.02 × 0.02 × 0.01 mm
Data collection top
ADSC Quantum 315r detector
diffractometer
2810 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.054
φ scanθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.295, Tmax = 0.433k = 2929
20336 measured reflectionsl = 99
2901 independent reflections360 standard reflections every 1 reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + 11.0043P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.14Δρmax = 1.45 e Å3
2901 reflectionsΔρmin = 1.56 e Å3
173 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0094 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.21415 (4)0.34749 (2)0.49104 (4)0.00849 (9)
Te20.71124 (4)0.15281 (2)1.03341 (4)0.00846 (9)
Y10.03880 (6)0.28786 (2)0.01247 (6)0.00865 (11)
Cu10.46115 (7)0.24947 (2)0.76001 (8)0.00911 (12)
N10.8271 (7)0.0010 (2)1.1795 (7)0.0209 (9)
O10.2531 (4)0.26068 (15)0.5797 (5)0.0105 (6)
O20.0133 (4)0.31345 (15)0.3301 (5)0.0106 (6)
O30.3929 (4)0.34159 (15)0.3116 (5)0.0112 (6)
O40.6704 (4)0.23870 (15)0.9406 (5)0.0114 (6)
O50.9077 (4)0.18938 (15)1.1933 (5)0.0106 (6)
O60.5292 (5)0.15853 (15)1.2113 (5)0.0099 (6)
O70.0622 (7)0.45346 (18)0.3091 (7)0.0279 (10)
O80.8860 (6)0.05534 (18)1.2373 (6)0.0233 (8)
O90.3327 (6)0.49362 (19)0.3909 (7)0.0284 (9)
OW10.2697 (5)0.36731 (17)0.0483 (5)0.0134 (6)
H110.266 (10)0.4092 (16)0.080 (10)0.020*
H120.360 (8)0.364 (4)0.046 (8)0.020*
OW20.1872 (5)0.36858 (17)0.0246 (5)0.0153 (7)
H210.155 (10)0.407 (2)0.070 (10)0.023*
H220.279 (8)0.371 (4)0.066 (8)0.023*
OW30.2844 (7)0.5007 (2)0.1525 (8)0.0317 (10)
H310.182 (9)0.490 (4)0.225 (12)0.048*
H320.374 (10)0.503 (4)0.232 (12)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.00827 (14)0.00782 (13)0.00912 (16)0.00013 (8)0.00084 (9)0.00064 (9)
Te20.00858 (14)0.00783 (14)0.00876 (16)0.00007 (8)0.00061 (9)0.00066 (9)
Y10.00832 (19)0.00855 (19)0.0089 (2)0.00012 (13)0.00055 (14)0.00008 (13)
Cu10.0081 (2)0.0088 (2)0.0100 (3)0.00025 (17)0.00157 (18)0.00098 (18)
N10.027 (2)0.0128 (19)0.022 (2)0.0008 (16)0.0056 (18)0.0026 (16)
O10.0103 (14)0.0089 (13)0.0119 (16)0.0001 (11)0.0018 (11)0.0007 (11)
O20.0089 (14)0.0102 (14)0.0125 (16)0.0020 (11)0.0009 (11)0.0003 (11)
O30.0080 (14)0.0096 (13)0.0163 (17)0.0003 (11)0.0032 (12)0.0002 (11)
O40.0098 (14)0.0093 (13)0.0147 (17)0.0005 (11)0.0018 (12)0.0038 (11)
O50.0109 (14)0.0095 (13)0.0109 (16)0.0014 (11)0.0015 (11)0.0007 (11)
O60.0115 (14)0.0116 (14)0.0067 (15)0.0012 (11)0.0017 (11)0.0014 (11)
O70.038 (2)0.0108 (16)0.032 (2)0.0057 (16)0.0148 (19)0.0042 (15)
O80.034 (2)0.0136 (16)0.020 (2)0.0006 (15)0.0072 (16)0.0014 (14)
O90.026 (2)0.0194 (18)0.038 (3)0.0027 (15)0.0085 (18)0.0027 (17)
OW10.0137 (15)0.0128 (15)0.0128 (17)0.0022 (12)0.0036 (12)0.0031 (12)
OW20.0176 (16)0.0140 (15)0.0137 (18)0.0029 (13)0.0016 (13)0.0024 (12)
OW30.039 (3)0.025 (2)0.031 (3)0.0023 (19)0.000 (2)0.0002 (18)
Geometric parameters (Å, º) top
Te1—O31.883 (3)O2—Cu1i3.571 (3)
Te1—O21.905 (3)O3—Cu1i1.986 (3)
Te1—O11.911 (3)O3—Te2i2.681 (3)
Te1—O6i2.657 (3)O4—Y1ix2.359 (3)
Te1—O72.722 (4)O4—Cu1iii2.817 (4)
Te1—O5ii2.837 (3)O4—Te2i3.661 (3)
Te2—O61.893 (3)O4—Te1iii3.801 (3)
Te2—O51.898 (3)O4—Y1iv3.847 (4)
Te2—O41.905 (3)O5—Y1x2.290 (3)
Te2—O3iii2.681 (4)O5—Y1ix2.445 (3)
Te2—O82.723 (4)O5—Te1iv2.837 (3)
Te2—O2iv2.798 (3)O5—Cu1iii3.543 (3)
Y1—O5v2.290 (3)O6—Cu1iii1.999 (3)
Y1—O22.292 (3)O6—Te1iii2.657 (3)
Y1—O1i2.357 (3)O6—Y1x3.801 (3)
Y1—O4vi2.359 (3)O7—N1xi1.267 (6)
Y1—OW22.367 (4)O7—Te2ii3.798 (5)
Y1—OW12.373 (3)O8—Te1iv3.653 (5)
Y1—O5vi2.445 (3)O8—Y1x3.787 (4)
Y1—O2i2.497 (3)O9—N1xi1.233 (6)
Cu1—O11.904 (3)O9—Te2xi3.350 (4)
Cu1—O41.910 (3)O9—Te2i4.153 (4)
Cu1—O3iii1.986 (3)OW1—Te2ii3.442 (4)
Cu1—O6i1.999 (3)OW1—Cu1ii3.508 (4)
Cu1—O1iii2.811 (4)OW1—Te2v3.628 (4)
Cu1—O4i2.817 (4)OW1—Cu1vi3.632 (4)
N1—O9vii1.233 (6)OW1—H110.89 (3)
N1—O81.256 (6)OW1—H120.89 (3)
N1—O7vii1.267 (6)OW2—Te1xii3.447 (4)
N1—Te1vii3.394 (4)OW2—Cu1xii3.574 (4)
O1—Y1iii2.357 (3)OW2—Cu1i3.639 (4)
O1—Cu1i2.811 (4)OW2—H210.89 (3)
O1—Te1iii3.679 (3)OW2—H220.89 (3)
O1—Te2i3.811 (3)OW3—Te1xiii4.018 (5)
O1—Y1viii3.881 (4)OW3—Te2ii4.148 (5)
O2—Y1iii2.497 (3)OW3—H310.90 (3)
O2—Te2ii2.798 (3)OW3—H320.89 (3)
O3—Te1—O296.62 (15)Cu1i—O3—Te2i86.04 (11)
O3—Te1—O193.73 (14)Te1—O3—Cu160.91 (10)
O2—Te1—O186.15 (14)Cu1i—O3—Cu169.36 (10)
O3—Te1—O6i77.24 (13)Te2i—O3—Cu158.36 (7)
O2—Te1—O6i155.35 (12)Te1—O3—Y178.82 (10)
O1—Te1—O6i70.67 (12)Cu1i—O3—Y180.15 (10)
O3—Te1—O790.77 (15)Te2i—O3—Y1165.46 (11)
O2—Te1—O775.93 (13)Cu1—O3—Y1111.74 (8)
O1—Te1—O7161.92 (13)Te2—O4—Cu1115.38 (17)
O6i—Te1—O7127.41 (11)Te2—O4—Y1ix102.48 (14)
O3—Te1—O5ii157.99 (12)Cu1—O4—Y1ix137.81 (17)
O2—Te1—O5ii66.69 (13)Te2—O4—Cu1iii83.55 (12)
O1—Te1—O5ii71.75 (12)Cu1—O4—Cu1iii93.83 (13)
O6i—Te1—O5ii111.64 (10)Y1ix—O4—Cu1iii108.82 (13)
O7—Te1—O5ii98.40 (13)Te2—O4—Te2i144.76 (16)
O6—Te2—O596.67 (15)Cu1—O4—Te2i61.40 (9)
O6—Te2—O494.00 (14)Y1ix—O4—Te2i77.07 (9)
O5—Te2—O485.42 (14)Cu1iii—O4—Te2i130.56 (10)
O6—Te2—O3iii76.45 (13)Te2—O4—Te1iii69.18 (9)
O5—Te2—O3iii153.70 (12)Cu1—O4—Te1iii57.63 (9)
O4—Te2—O3iii70.03 (12)Y1ix—O4—Te1iii162.26 (14)
O6—Te2—O891.15 (14)Cu1iii—O4—Te1iii55.74 (6)
O5—Te2—O871.82 (13)Te2i—O4—Te1iii119.03 (9)
O4—Te2—O8157.11 (13)Te2—O4—Y1iv93.11 (12)
O3iii—Te2—O8132.81 (11)Cu1—O4—Y1iv87.45 (12)
O6—Te2—O2iv159.67 (12)Y1ix—O4—Y1iv72.00 (9)
O5—Te2—O2iv67.71 (13)Cu1iii—O4—Y1iv176.66 (11)
O4—Te2—O2iv72.56 (12)Te2i—O4—Y1iv52.71 (5)
O3iii—Te2—O2iv111.52 (10)Te1iii—O4—Y1iv122.87 (9)
O8—Te2—O2iv95.81 (12)Te2—O5—Y1x136.03 (17)
O5v—Y1—O2154.82 (12)Te2—O5—Y1ix99.64 (14)
O5v—Y1—O1i111.21 (12)Y1x—O5—Y1ix108.37 (12)
O2—Y1—O1i80.12 (12)Te2—O5—Te1iv100.31 (13)
O5v—Y1—O4vi78.52 (12)Y1x—O5—Te1iv117.78 (13)
O2—Y1—O4vi112.44 (12)Y1ix—O5—Te1iv78.46 (10)
O1i—Y1—O4vi129.31 (11)Te2—O5—Cu1iii64.46 (9)
O5v—Y1—OW279.18 (12)Y1x—O5—Cu1iii83.26 (10)
O2—Y1—OW283.29 (12)Y1ix—O5—Cu1iii87.55 (9)
O1i—Y1—OW272.67 (12)Te1iv—O5—Cu1iii157.47 (12)
O4vi—Y1—OW2153.52 (12)Te2—O6—Cu1iii111.53 (16)
O5v—Y1—OW184.04 (12)Te2—O6—Te1iii103.11 (14)
O2—Y1—OW178.45 (12)Cu1iii—O6—Te1iii86.06 (11)
O1i—Y1—OW1154.67 (12)Te2—O6—Cu161.11 (9)
O4vi—Y1—OW172.15 (12)Cu1iii—O6—Cu169.15 (9)
OW2—Y1—OW191.49 (13)Te1iii—O6—Cu158.27 (7)
O5v—Y1—O5vi131.04 (10)Te2—O6—Y1x78.26 (10)
O2—Y1—O5vi73.01 (11)Cu1iii—O6—Y1x80.34 (10)
O1i—Y1—O5vi73.74 (11)Te1iii—O6—Y1x165.75 (11)
O4vi—Y1—O5vi64.91 (11)Cu1—O6—Y1x112.14 (9)
OW2—Y1—O5vi141.57 (12)N1xi—O7—Te1111.3 (3)
OW1—Y1—O5vi112.16 (12)N1xi—O7—Te2ii149.8 (4)
O5v—Y1—O2i72.04 (11)Te1—O7—Te2ii66.47 (9)
O2—Y1—O2i132.19 (10)N1xi—O7—Y1140.9 (4)
O1i—Y1—O2i64.87 (11)Te1—O7—Y167.08 (8)
O4vi—Y1—O2i72.51 (11)Te2ii—O7—Y167.94 (6)
OW2—Y1—O2i113.51 (12)N1—O8—Te2111.0 (3)
OW1—Y1—O2i140.45 (11)N1—O8—Te1iv123.8 (4)
O5vi—Y1—O2i66.79 (12)Te2—O8—Te1iv68.84 (9)
O1—Cu1—O4179.67 (14)N1—O8—Y1x163.7 (4)
O1—Cu1—O3iii92.32 (14)Te2—O8—Y1x71.18 (8)
O4—Cu1—O3iii88.01 (14)Te1iv—O8—Y1x72.46 (7)
O1—Cu1—O6i87.95 (13)N1xi—O9—Te186.8 (3)
O4—Cu1—O6i91.72 (14)N1xi—O9—Te2xi81.0 (3)
O3iii—Cu1—O6i179.29 (14)Te1—O9—Te2xi148.43 (17)
O1—Cu1—O1iii95.24 (13)N1xi—O9—Te2i140.3 (3)
O4—Cu1—O1iii84.92 (13)Te1—O9—Te2i56.63 (6)
O3iii—Cu1—O1iii68.03 (12)Te2xi—O9—Te2i138.25 (13)
O6i—Cu1—O1iii111.29 (12)Y1—OW1—Te2ii96.11 (11)
O1—Cu1—O4i84.84 (13)Y1—OW1—Cu1ii89.51 (11)
O4—Cu1—O4i94.99 (13)Te2ii—OW1—Cu1ii55.27 (6)
O3iii—Cu1—O4i112.68 (12)Y1—OW1—Te2v77.63 (10)
O6i—Cu1—O4i68.00 (12)Te2ii—OW1—Te2v165.76 (11)
O1iii—Cu1—O4i179.28 (9)Cu1ii—OW1—Te2v111.41 (9)
O9vii—N1—O8121.6 (5)Y1—OW1—Cu1vi80.22 (9)
O9vii—N1—O7vii120.0 (4)Te2ii—OW1—Cu1vi114.02 (10)
O8—N1—O7vii118.3 (5)Cu1ii—OW1—Cu1vi58.82 (6)
O9vii—N1—Te277.9 (3)Te2v—OW1—Cu1vi52.63 (5)
O8—N1—Te248.7 (2)Y1—OW1—H11134 (5)
O7vii—N1—Te2151.4 (4)Te2ii—OW1—H1183 (5)
O9vii—N1—Te1vii71.9 (3)Cu1ii—OW1—H11125 (5)
O8—N1—Te1vii165.1 (4)Te2v—OW1—H11111 (5)
O7vii—N1—Te1vii48.4 (2)Cu1vi—OW1—H11142 (5)
Te2—N1—Te1vii138.27 (15)Y1—OW1—H12110 (5)
Cu1—O1—Te1114.77 (16)Te2ii—OW1—H12129 (5)
Cu1—O1—Y1iii137.13 (17)Cu1ii—OW1—H1282 (5)
Te1—O1—Y1iii103.12 (14)Te2v—OW1—H1245 (5)
Cu1—O1—Cu1i94.20 (13)Cu1vi—OW1—H1237 (5)
Te1—O1—Cu1i83.41 (12)H11—OW1—H12106 (6)
Y1iii—O1—Cu1i109.90 (13)Y1—OW2—Te1xii96.56 (11)
Cu1—O1—Te1iii60.78 (9)Y1—OW2—Cu1xii88.60 (11)
Te1—O1—Te1iii143.74 (15)Te1xii—OW2—Cu1xii54.44 (6)
Y1iii—O1—Te1iii76.93 (9)Y1—OW2—Te177.77 (10)
Cu1i—O1—Te1iii131.38 (10)Te1xii—OW2—Te1164.50 (12)
Cu1—O1—Te2i57.54 (9)Cu1xii—OW2—Te1110.57 (10)
Te1—O1—Te2i68.88 (9)Y1—OW2—Cu1i79.66 (10)
Y1iii—O1—Te2i163.46 (14)Te1xii—OW2—Cu1i112.61 (10)
Cu1i—O1—Te2i55.85 (6)Cu1xii—OW2—Cu1i58.20 (6)
Te1iii—O1—Te2i118.32 (9)Te1—OW2—Cu1i52.42 (5)
Cu1—O1—Y1viii87.20 (12)Y1—OW2—H21121 (5)
Te1—O1—Y1viii92.47 (11)Te1xii—OW2—H2178 (5)
Y1iii—O1—Y1viii71.31 (9)Cu1xii—OW2—H21128 (5)
Cu1i—O1—Y1viii175.87 (11)Te1—OW2—H21117 (5)
Te1iii—O1—Y1viii52.60 (5)Cu1i—OW2—H21157 (5)
Te2i—O1—Y1viii122.26 (9)Y1—OW2—H22117 (5)
Te1—O2—Y1136.04 (17)Te1xii—OW2—H22128 (5)
Te1—O2—Y1iii98.37 (14)Cu1xii—OW2—H2286 (5)
Y1—O2—Y1iii106.57 (12)Te1—OW2—H2247 (5)
Te1—O2—Te2ii101.48 (14)Cu1i—OW2—H2246 (5)
Y1—O2—Te2ii118.61 (13)H21—OW2—H22112 (7)
Y1iii—O2—Te2ii77.90 (9)Te1xiii—OW3—Te2ii101.69 (12)
Te1—O2—Cu1i63.55 (9)Te1xiii—OW3—H3177 (6)
Y1—O2—Cu1i82.11 (10)Te2ii—OW3—H3159 (6)
Y1iii—O2—Cu1i86.71 (9)Te1xiii—OW3—H3269 (6)
Te2ii—O2—Cu1i156.91 (12)Te2ii—OW3—H3266 (6)
Te1—O3—Cu1i112.24 (16)H31—OW3—H32106 (9)
Te1—O3—Te2i102.52 (15)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x1, y+1/2, z3/2; (vi) x1, y, z1; (vii) x+1, y1/2, z+3/2; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x+1, y+1/2, z+3/2; (xi) x+1, y+1/2, z+3/2; (xii) x, y, z1; (xiii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H11···OW30.89 (3)1.96 (3)2.854 (6)174 (7)
OW1—H12···O6v0.89 (3)1.88 (4)2.729 (5)157 (7)
OW2—H21···O8v0.89 (3)2.41 (6)3.074 (5)132 (6)
OW2—H21···OW3xiv0.89 (3)2.22 (5)2.949 (6)139 (6)
OW2—H22···O30.89 (3)1.95 (5)2.745 (5)149 (7)
OW3—H31···O70.90 (3)1.97 (4)2.834 (7)162 (9)
OW3—H31···O8xi0.90 (3)2.53 (8)3.141 (7)126 (7)
OW3—H32···O9xv0.89 (3)2.49 (4)3.360 (7)166 (9)
OW3—H32···O9xiii0.89 (3)2.64 (9)3.253 (8)127 (8)
Symmetry codes: (v) x1, y+1/2, z3/2; (xi) x+1, y+1/2, z+3/2; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) x1, y, z.
Bond-valence sums for YCu(TeO3)2(NO3)(H2O)3 top
Y1Cu1Te1Te2N1H11H12H21H22H31H32ΣΣ(excluding H)
O10.4010.544, 0.0471.1282.122.12
O20.478, 0.2751.1450.1302.032.03
O30.4361.2080.1730.2322.051.82
O40.3990.534, 0.0461.1480.0412.172.13
O50.481, 0.3160.4210.1181.1652.082.08
O60.1831.1790.2792.061.78
O70.1561.5621.721.72
O80.1561.6090.0680.0471.881.77
O91.7120.062, 0.0361.811.71
OW10.3840.7550.7551.890.38
OW20.3890.7710.7691.930.39
OW30.2240.1100.7430.7611.840.00
Σ3.122.033.933.944.880.981.080.951.000.790.86
IR band assignments (cm-1) for YCu(TeO3)2(NO3)(H2O)3 top
Absorption bandsAssignment
3460wO—H stretch
3145wO—H stretch
\sim2900wO—H stretch
1755H—O—H bend
1645H—O—H bend
1605H—O—H bend
1345ν3 antisymmetric stretch NO3-
1044ν1 symmetric stretch NO3-
734ν1 (TeO3)2- symmetric stretch
636ν3 (TeO3)2- antisymmetric stretch
547M—O lattice modes
447M—O lattice modes
 

Acknowledgements

This study has been funded by The Ian Potter Foundation grant `tracking tellurium' to SJM, which we gratefully acknowledge.

References

First citationAnderson, J. B., Rapposch, M. H., Anderson, C. P. & Kostiner, E. (1980). Monatsh. Chem. 111, 789–796.  CrossRef CAS Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristy, A. G. (2015). Mineral. Mag. 79, 33–49.  CrossRef Google Scholar
First citationChristy, A. G. & Mills, S. J. (2013). Acta Cryst. B69, 446–456.  CrossRef IUCr Journals Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016b). Mineral. Mag. 80, 415–545.  CrossRef Google Scholar
First citationChristy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B. & Marty, J. (2016a). Mineral. Mag. 80, 291–310.  CrossRef Google Scholar
First citationFeger, C. R., Schimek, G. L. & Kolis, J. W. (1999). J. Solid State Chem. 143, 246–253.  Web of Science CrossRef CAS Google Scholar
First citationHawthorne, F. C. (2014). Mineral. Mag. 78, 957–1027.  CrossRef Google Scholar
First citationHöss, P. & Schleid, T. (2007). Acta Cryst. E63, i133–i135.  CrossRef IUCr Journals Google Scholar
First citationJohansson, G. B. & Lindqvist, O. (1978). Acta Cryst. B34, 2959–2962.  CrossRef CAS IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKampf, A. R., Mills, S. J., Housley, R. M., Rossman, G. R., Marty, J. & Thorne, B. (2013). Am. Mineral. 98, 1315–1321.  CrossRef CAS Google Scholar
First citationKasper, H. M. (1969). Mater. Res. Bull. 4, 33–37.  CrossRef CAS Google Scholar
First citationKim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 5240–5245.  CrossRef CAS PubMed Google Scholar
First citationKoteswararao, B., Kumar, R., Chakraborty, J., Jeon, B. G., Mahajan, A. V., Dasgupta, I., Kim, K. H. & Chou, F. C. (2013). J. Phys. Condens. Matter, 25, 336003.  CrossRef PubMed Google Scholar
First citationLibowitzky, E. (1999). In Correlation of OH stretching frequencies and OH-O hydrogen bond lengths in minerals. Vienna: Springer.  Google Scholar
First citationMills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149.  CrossRef CAS IUCr Journals Google Scholar
First citationMills, S. J., Dunstan, M. A. & Christy, A. G. (2016). Dalton Trans. Submitted.  Google Scholar
First citationNoguera, O., Jouin, J., Masson, O., Jancar, B. & Thomas, P. J. (2012). J. Eur. Ceram. Soc. 32, 4263–4269.  CrossRef CAS Google Scholar
First citationOlsson, C., Johansson, L.-G. & Kazikowski, S. (1988). Acta Cryst. C44, 427–429.  CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSedello, O. & Müller-Buschbaum, H. (1996). Z. Naturforsch. Teil B, 51, 465–468.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Y.-L. & Mao, J.-G. (2005). Inorg. Chem. 44, 5328–5335.  CrossRef PubMed CAS Google Scholar
First citationSong, S. Y., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 7040–7046.  CrossRef CAS PubMed Google Scholar
First citationStöger, B. & Weil, M. (2013). Mineral. Petrol. 107, 257–263.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, D., Xue, D. & Ratajczak, H. (2006). Physica B, 371, 170–176.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds