research communications
YCu(TeO3)2(NO3)(H2O)3: a novel layered tellurite
aGeosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia, bSchool of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia, and cOcean and Climate Geoscience, Research School of Earth Sciences, Mills Rd, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: smills@museum.vic.gov.au
A new hydrated yttrium copper tellurite nitrate, yttrium(III) copper(II) bis[trioxidotellurate(IV)] nitrate trihydrate, has been synthesized hydrothermally in a Teflon-lined autoclave and structurally determined using synchrotron radiation. The new phase is the first example containing yttrium, copper and tellurium in one structure. Its 8, CuO4 and TeO3 polyhedra, while the NO3− anions and one third of the water molecules lie between those layers. The structural unit consists of [Cu2(TeO3)4]4− loop-branched chains of {Cu⋯Te⋯Cu⋯Te} squares running parallel to [001], which are linked further into layers only through Y(O,H2O)8 polyhedra. Weak `secondary' Te bonds and O—H⋯O hydrogen-bonding interactions, involving water molecules and layer O atoms, link the layers and interlayer species. IR spectroscopic data are also presented.
is unique, with relatively strongly bound layers extending parallel to (020), defined by YOKeywords: crystal structure; layered arrangement; tellurite; oxysalt; stereoactive lone pair; synchrotron radiation.
CCDC reference: 1493330
1. Chemical context
Recent discoveries of a wide range of novel tellurium minerals have prompted numerous structural studies of tellurium oxysalts (Kampf et al., 2013; Christy et al., 2016a). As well as the characterization of these naturally occurring minerals, various syntheses have also been undertaken as part of this ongoing study, yielding an array of new structures, including that of novel Na11H[Te(OH)3]8[SO4]10(H2O)13 (Mills et al., 2016). Several tellurium oxide species with various yttrium oxide polyhedra present in the structure have been synthesized in the past, including compounds with both TeIV and TeVI atoms. Tellurium is stable in numerous oxidation states and shows large diversity in bonding (Christy & Mills, 2013). Its +IV and +VI oxidation states are of greatest interest in relation to naturally occurring weathering products of minerals, and are able to form a wide variety of oxide polyhedra, with TeO32− most prevalent (Song et al., 2014). The TeO32− anion shows a wide variety of connectivities, with three oxido ligands and the 5s2 electron lone pair occupying the vertices of the distorted polyhedra, and are found in a variety of layer and chain structures in inorganic compounds (Johansson & Lindqvist, 1978). This is demonstrated in compounds such as NaYTe4O10 with YO8 and TeO4 polyhedra, KY(TeO3)2 and RbY(TeO3)2 with YO6 octahedra and trigonal–pyramidal TeO32− anions, CsYTe3O8 with YO6 and TeO4 polyhedra (Kim et al., 2014), as well as yttrium tellurium oxides with TeVI atoms (Kasper, 1969; Höss & Schleid, 2007; Noguera et al., 2012). As a consequence of this range of chemistry, tellurium is the most anomalously diverse element found in minerals compared to its scarcity in the earth's crust (Christy, 2015). Many copper-containing tellurium oxides have been successfully synthesized (Feger et al., 1999; Koteswararao et al., 2013; Sedello & Müller-Buschbaum, 1996), and copper is also present in many tellurium-containing minerals; indeed, out of the unusually large inventory of tellurium secondary minerals at Otto Mountain, the majority contains copper (Christy et al., 2016a). Despite this, there are very few synthetic rare earth copper tellurium oxides known, and to the best of our knowledge a compound containing all three of copper, yttrium and tellurium has not been characterized so far. Although layered structures with interstitial ions are common for TeIV compounds, nitrate is found as an anion in very few, which motivates the use of metal nitrates in the synthesis of novel tellurium oxides. The only other compounds with simple tellurite and nitrate anions whose structures have been reported to date are the layered compounds Ca6(TeO3)5(NO3)2 and Ca5(TeO3)4(NO3)2(H2O)2 (Stöger & Weil, 2013). Nitrates of polymerized Te(IV) complexes are also known. The compound AgTeO2(NO3) (Olsson et al., 1988) contains an electrically neutral [Te2O4]0 chain (Christy et al., 2016b), while [Te2O3OH](NO3) contains a cationic [Te2O3OH]+ layer (Anderson et al., 1980; Christy et al., 2016b).
2. Structural commentary
Bond-valence sums are given in Table 1. In general, the bond-valence data of Table 1 were calculated using the bond-valence parameters of Brown & Altermatt (1985), except that the Te—O data were from Mills & Christy (2013). However, Brown (2009) noted that no single pair of r0 and b values is adequate for O—H bonds, since O⋯O repulsion increases the length of weak O—H bonds relative to strong ones. Here, the parameterization of Yu et al. (2006) was used, with r0 = 0.79 Å for bond valence < 0.5 valence units, r0 = 1.409 Å for bond valence > 0.5 v.u., and b = 0.37 Å in both cases.
|
The structure of the title compound is strongly layered. Layers parallel to (020) are defined by YO8, CuO4 and TeO3 polyhedra, while NO3− anions and one third of the water molecules (OW1) lie between those layers. Tellurite and nitrate anions (involving atoms O1–O9) are clearly distinguished from water molecules OW1–OW3 by their bond-valence sums (Table 1). Within the layers, Y is eightfold coordinated in a distorted snub disphenoidal (triangular dodecahedral) arrangement by 6 × O2− and 2 × H2O at 2.290 (3)–2.497 (3) Å. Cu is in square-planar coordination, with four close oxygen neighbours at 1.904 (3)–1.999 (3) Å. Two more oxygen ligands at 2.811 (4) and 2.817 (4) Å complete an octahedron that is very elongated due to the Jahn-Teller distortion. Te1 is trigonal–pyramidally coordinated by three oxygen atoms at 1.883 (3)–1.911 (3) Å. Three `secondary bonds' to O atoms at 2.657 (3)–2.837 (3) Å complete a polyhedron that can be described as an octahedron that is very distorted due to the lone-pair stereoactivity. Te2 has very similar coordination, with three primary Te—O bonds of 1.893 (3)–1.905 (3) Å and three secondary bonds of 2.681 (4)–2.798 (3) Å. In each case, two of the secondary bonds provide additional bracing within the {Y⋯Cu⋯Te} layer, while the third is to a nitrate oxygen (Te1—O7 and Te2—O8, both ≃ 2.72 Å), and thus provides weak bridging between the layers and interlayer species. The nitrate oxygen atom O9 makes a seventh very distant ligand for both Te1 [3.231 (4) Å] and Te2 [3.350 (4) Å], further than the shortest Te⋯Cu distances and with bond valences < 0.05 valence units, using the parameters of Mills & Christy (2013).
The identification and classification of a strongly bonded `structural unit' (Hawthorne, 2014) in the structure of this compound depends crucially on which bonds are regarded as strong enough to define such a unit. The classification of Te oxycompound structures by Christy et al. (2016b) in general used thresholds of about 2.45 Å for Te—O and 2.20 Å for Cu—O bonds, while no bonds to 8-fold coordinated cations were considered to be part of the structural unit. The same criteria applied to the current structure would regard the CuO4 squares as isolated from one another, although inclusion of the long Cu—O bonds would link CuO4+2 polyhedra to form trans edge-sharing chains parallel to [001]. Without the long bonds, CuO4 squares are linked to their neighbours most strongly via TeO3 pyramids, to produce loop-branched chains [Cu2(TeO3)4]4− of {Cu⋯Te⋯Cu⋯Te} squares running parallel to [001] (Fig. 1). These chains are the structural units, since they are linked further into layers only through Y(O,H2O)8 polyhedra (Fig. 2). It is noteworthy that this chain is similar in topology but not in geometrical configuration to the structural unit of Dy[CuCl(TeO3)2] and its Er—Cl and Er—Br analogues (Shen & Mao, 2005). However, in the current compound, the {Cu⋯Te} squares are non-planar, so that the chain periodicity is doubled, and Cu does not have chloride as an additional ligand. Furthermore, in the structures of the compounds of Shen and Mao (2005), rare earth cations link the chains into a three-dimensional framework rather than into layers.
H11, H12, H22 and H31 were found to make relatively strong hydrogen bonds (Table 2) to respectively OW3, O6, O3 and O7 at distances between 1.88–1.96 Å. H12 and H31 have additional acceptor O atoms at greater distances, respectively O4 at 2.59 Å and O8 at 2.54 Å. The remaining H atoms each have two oxygen neighbours at greater distances, suggesting weak bifurcated hydrogen bonding: OW3 at 2.23 Å and O8 at 2.40 Å for H21, and O8 at 2.44 Å, O9 at 2.64 Å for H32.
The layers of the structure are linked by only weak bonds. The bridges Te1⋯O7—N—O8⋯Te2 mentioned above have Te⋯O ≃ 2.72 Å, implying a bond of 0.15 valence units (Mills & Christy, 2013). The hydrogen bonds in the bridges OW1—H11⋯OW3⋯H21—OW2 are of comparable bond valence.
It is noteworthy that the IR spectrum shows three distinct O—H bands at 3460, 3145 and 2900 cm−1. According to Libowitzky (1999), this would be typical for O—H⋯O distances of ∼ 2.83, 2.69 and 2.63 Å. The first two of these are broadly consistent with the O⋯O distances for the strongest hydrogen bonds indicated by the OW1—H12⋯OW3 = 2.85 Å, OW2—H12⋯O3 = 2.74 Å and OW1—H11⋯O6 = 2.73 Å. However, the band at 2900 cm−1 is lower in frequency than would be expected.
3. Spectroscopy
The infrared spectrum was obtained using a Bruker Alpha FTIR with a diamond Attenuated Total Reflectance attachment (ATR), DTGS (Deuterated Triglycine Sulfate) detector, 4 cm−1 resolution and 4000–450 cm−1 range. The samples were placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. 128 scans were taken for each item and co-added. Band assignments are consistent with those given in Kampf et al. (2013). Numerical values of the spectrum and assignments of the vibration bands are given in Table 3; the spectrum is deposited as a supplementary figure.
|
4. Synthesis and crystallization
Dark blue prisms of YCu(TeO3)2(NO3)(H2O)3 were synthesized hydrothermally. For the synthesis, Y(NO3)3·6H2O (Aldrich, 99.8%), Cu(NO3)2·3H2O (Sigma–Aldrich ≥99%) and Te 200 mm mesh (Aldrich, 99.8%) were used as starting materials. A 1:1:1 molar ratio of the reagents in 20 ml water was reacted in a Teflon autoclave bomb at 473 K for 3 days. Crystals of YCu(TeO3)2(NO3)(H2O)3 were separated manually from a blue powder of undetermined composition in a few percent yield. Several unsuccessful attempts were made to synthesize YCu(TeO3)2(NO3)(H2O)3 from a stoichiometric mixture of the reagents, using the molar ratio 1:1:2. We also were unsuccessful in producing new compounds, with the same structure type or not, using La, Ce, Nd or Gd in place of Y.
5. Refinement
Single crystal X-ray diffraction experiments were carried out on the micro-focus macromolecular beam line MX2 of the Australian Synchrotron. Details of data collection and structure . Hydrogen atoms H11, H12 and H21 were located during as difference peaks of about one e− / Å3 occurring at a distance of ca. 0.9–1.0 Å from their nearest oxygen atom. In all cases, short O—H bonds were directed towards another oxygen atom, indicating the existence of hydrogen bonds. Positions were estimated for the remaining hydrogen atoms, assuming water molecule O—H distance near 0.9 Å, H—O—H bond angle near 104°, that O—H vectors were directed to make hydrogen bonds to nearby oxygen atoms, if possible, and that the arrangement of O—H and O⋯H around OW3 was approximately tetrahedral. In all cases, residuals of > 0.6 electrons were found close to the expected positions, that could be identified with the H atoms. H positions were finally included in the assuming full occupancy, isotropic displacement parameters were fixed to 1.5× of their corresponding O atom and the O—H distance was restrained at 0.90 (3) Å.
are provided in Table 4
|
Supporting information
CCDC reference: 1493330
https://doi.org/10.1107/S2056989016011464/wm5307sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011464/wm5307Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016011464/wm5307sup3.pdf
Data collection: local program; cell
XDS (Kabsch, 2010); data reduction: XPREP (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).YCu(TeO3)2(NO3)(H2O)3 | F(000) = 1124 |
Mr = 619.71 | Dx = 3.928 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.71073 Å |
a = 7.2560 (15) Å | Cell parameters from 20243 reflections |
b = 20.654 (4) Å | θ = 2.8–30.0° |
c = 7.0160 (14) Å | µ = 13.06 mm−1 |
β = 94.63 (3)° | T = 100 K |
V = 1048.0 (4) Å3 | Prism, dark blue |
Z = 4 | 0.02 × 0.02 × 0.01 mm |
ADSC Quantum 315r detector diffractometer | 2810 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.054 |
φ scan | θmax = 30.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.295, Tmax = 0.433 | k = −29→29 |
20336 measured reflections | l = −9→9 |
2901 independent reflections | 360 standard reflections every 1 reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | Only H-atom coordinates refined |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + 11.0043P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max = 0.001 |
S = 1.14 | Δρmax = 1.45 e Å−3 |
2901 reflections | Δρmin = −1.56 e Å−3 |
173 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.0094 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.21415 (4) | 0.34749 (2) | 0.49104 (4) | 0.00849 (9) | |
Te2 | 0.71124 (4) | 0.15281 (2) | 1.03341 (4) | 0.00846 (9) | |
Y1 | −0.03880 (6) | 0.28786 (2) | 0.01247 (6) | 0.00865 (11) | |
Cu1 | 0.46115 (7) | 0.24947 (2) | 0.76001 (8) | 0.00911 (12) | |
N1 | 0.8271 (7) | 0.0010 (2) | 1.1795 (7) | 0.0209 (9) | |
O1 | 0.2531 (4) | 0.26068 (15) | 0.5797 (5) | 0.0105 (6) | |
O2 | 0.0133 (4) | 0.31345 (15) | 0.3301 (5) | 0.0106 (6) | |
O3 | 0.3929 (4) | 0.34159 (15) | 0.3116 (5) | 0.0112 (6) | |
O4 | 0.6704 (4) | 0.23870 (15) | 0.9406 (5) | 0.0114 (6) | |
O5 | 0.9077 (4) | 0.18938 (15) | 1.1933 (5) | 0.0106 (6) | |
O6 | 0.5292 (5) | 0.15853 (15) | 1.2113 (5) | 0.0099 (6) | |
O7 | 0.0622 (7) | 0.45346 (18) | 0.3091 (7) | 0.0279 (10) | |
O8 | 0.8860 (6) | 0.05534 (18) | 1.2373 (6) | 0.0233 (8) | |
O9 | 0.3327 (6) | 0.49362 (19) | 0.3909 (7) | 0.0284 (9) | |
OW1 | −0.2697 (5) | 0.36731 (17) | 0.0483 (5) | 0.0134 (6) | |
H11 | −0.266 (10) | 0.4092 (16) | 0.080 (10) | 0.020* | |
H12 | −0.360 (8) | 0.364 (4) | −0.046 (8) | 0.020* | |
OW2 | 0.1872 (5) | 0.36858 (17) | −0.0246 (5) | 0.0153 (7) | |
H21 | 0.155 (10) | 0.407 (2) | −0.070 (10) | 0.023* | |
H22 | 0.279 (8) | 0.371 (4) | 0.066 (8) | 0.023* | |
OW3 | −0.2844 (7) | 0.5007 (2) | 0.1525 (8) | 0.0317 (10) | |
H31 | −0.182 (9) | 0.490 (4) | 0.225 (12) | 0.048* | |
H32 | −0.374 (10) | 0.503 (4) | 0.232 (12) | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.00827 (14) | 0.00782 (13) | 0.00912 (16) | −0.00013 (8) | −0.00084 (9) | −0.00064 (9) |
Te2 | 0.00858 (14) | 0.00783 (14) | 0.00876 (16) | 0.00007 (8) | −0.00061 (9) | −0.00066 (9) |
Y1 | 0.00832 (19) | 0.00855 (19) | 0.0089 (2) | 0.00012 (13) | −0.00055 (14) | 0.00008 (13) |
Cu1 | 0.0081 (2) | 0.0088 (2) | 0.0100 (3) | −0.00025 (17) | −0.00157 (18) | 0.00098 (18) |
N1 | 0.027 (2) | 0.0128 (19) | 0.022 (2) | −0.0008 (16) | −0.0056 (18) | 0.0026 (16) |
O1 | 0.0103 (14) | 0.0089 (13) | 0.0119 (16) | 0.0001 (11) | −0.0018 (11) | 0.0007 (11) |
O2 | 0.0089 (14) | 0.0102 (14) | 0.0125 (16) | −0.0020 (11) | −0.0009 (11) | 0.0003 (11) |
O3 | 0.0080 (14) | 0.0096 (13) | 0.0163 (17) | 0.0003 (11) | 0.0032 (12) | 0.0002 (11) |
O4 | 0.0098 (14) | 0.0093 (13) | 0.0147 (17) | 0.0005 (11) | −0.0018 (12) | 0.0038 (11) |
O5 | 0.0109 (14) | 0.0095 (13) | 0.0109 (16) | −0.0014 (11) | −0.0015 (11) | −0.0007 (11) |
O6 | 0.0115 (14) | 0.0116 (14) | 0.0067 (15) | 0.0012 (11) | 0.0017 (11) | −0.0014 (11) |
O7 | 0.038 (2) | 0.0108 (16) | 0.032 (2) | −0.0057 (16) | −0.0148 (19) | 0.0042 (15) |
O8 | 0.034 (2) | 0.0136 (16) | 0.020 (2) | 0.0006 (15) | −0.0072 (16) | −0.0014 (14) |
O9 | 0.026 (2) | 0.0194 (18) | 0.038 (3) | 0.0027 (15) | −0.0085 (18) | 0.0027 (17) |
OW1 | 0.0137 (15) | 0.0128 (15) | 0.0128 (17) | 0.0022 (12) | −0.0036 (12) | −0.0031 (12) |
OW2 | 0.0176 (16) | 0.0140 (15) | 0.0137 (18) | −0.0029 (13) | −0.0016 (13) | 0.0024 (12) |
OW3 | 0.039 (3) | 0.025 (2) | 0.031 (3) | 0.0023 (19) | 0.000 (2) | 0.0002 (18) |
Te1—O3 | 1.883 (3) | O2—Cu1i | 3.571 (3) |
Te1—O2 | 1.905 (3) | O3—Cu1i | 1.986 (3) |
Te1—O1 | 1.911 (3) | O3—Te2i | 2.681 (3) |
Te1—O6i | 2.657 (3) | O4—Y1ix | 2.359 (3) |
Te1—O7 | 2.722 (4) | O4—Cu1iii | 2.817 (4) |
Te1—O5ii | 2.837 (3) | O4—Te2i | 3.661 (3) |
Te2—O6 | 1.893 (3) | O4—Te1iii | 3.801 (3) |
Te2—O5 | 1.898 (3) | O4—Y1iv | 3.847 (4) |
Te2—O4 | 1.905 (3) | O5—Y1x | 2.290 (3) |
Te2—O3iii | 2.681 (4) | O5—Y1ix | 2.445 (3) |
Te2—O8 | 2.723 (4) | O5—Te1iv | 2.837 (3) |
Te2—O2iv | 2.798 (3) | O5—Cu1iii | 3.543 (3) |
Y1—O5v | 2.290 (3) | O6—Cu1iii | 1.999 (3) |
Y1—O2 | 2.292 (3) | O6—Te1iii | 2.657 (3) |
Y1—O1i | 2.357 (3) | O6—Y1x | 3.801 (3) |
Y1—O4vi | 2.359 (3) | O7—N1xi | 1.267 (6) |
Y1—OW2 | 2.367 (4) | O7—Te2ii | 3.798 (5) |
Y1—OW1 | 2.373 (3) | O8—Te1iv | 3.653 (5) |
Y1—O5vi | 2.445 (3) | O8—Y1x | 3.787 (4) |
Y1—O2i | 2.497 (3) | O9—N1xi | 1.233 (6) |
Cu1—O1 | 1.904 (3) | O9—Te2xi | 3.350 (4) |
Cu1—O4 | 1.910 (3) | O9—Te2i | 4.153 (4) |
Cu1—O3iii | 1.986 (3) | OW1—Te2ii | 3.442 (4) |
Cu1—O6i | 1.999 (3) | OW1—Cu1ii | 3.508 (4) |
Cu1—O1iii | 2.811 (4) | OW1—Te2v | 3.628 (4) |
Cu1—O4i | 2.817 (4) | OW1—Cu1vi | 3.632 (4) |
N1—O9vii | 1.233 (6) | OW1—H11 | 0.89 (3) |
N1—O8 | 1.256 (6) | OW1—H12 | 0.89 (3) |
N1—O7vii | 1.267 (6) | OW2—Te1xii | 3.447 (4) |
N1—Te1vii | 3.394 (4) | OW2—Cu1xii | 3.574 (4) |
O1—Y1iii | 2.357 (3) | OW2—Cu1i | 3.639 (4) |
O1—Cu1i | 2.811 (4) | OW2—H21 | 0.89 (3) |
O1—Te1iii | 3.679 (3) | OW2—H22 | 0.89 (3) |
O1—Te2i | 3.811 (3) | OW3—Te1xiii | 4.018 (5) |
O1—Y1viii | 3.881 (4) | OW3—Te2ii | 4.148 (5) |
O2—Y1iii | 2.497 (3) | OW3—H31 | 0.90 (3) |
O2—Te2ii | 2.798 (3) | OW3—H32 | 0.89 (3) |
O3—Te1—O2 | 96.62 (15) | Cu1i—O3—Te2i | 86.04 (11) |
O3—Te1—O1 | 93.73 (14) | Te1—O3—Cu1 | 60.91 (10) |
O2—Te1—O1 | 86.15 (14) | Cu1i—O3—Cu1 | 69.36 (10) |
O3—Te1—O6i | 77.24 (13) | Te2i—O3—Cu1 | 58.36 (7) |
O2—Te1—O6i | 155.35 (12) | Te1—O3—Y1 | 78.82 (10) |
O1—Te1—O6i | 70.67 (12) | Cu1i—O3—Y1 | 80.15 (10) |
O3—Te1—O7 | 90.77 (15) | Te2i—O3—Y1 | 165.46 (11) |
O2—Te1—O7 | 75.93 (13) | Cu1—O3—Y1 | 111.74 (8) |
O1—Te1—O7 | 161.92 (13) | Te2—O4—Cu1 | 115.38 (17) |
O6i—Te1—O7 | 127.41 (11) | Te2—O4—Y1ix | 102.48 (14) |
O3—Te1—O5ii | 157.99 (12) | Cu1—O4—Y1ix | 137.81 (17) |
O2—Te1—O5ii | 66.69 (13) | Te2—O4—Cu1iii | 83.55 (12) |
O1—Te1—O5ii | 71.75 (12) | Cu1—O4—Cu1iii | 93.83 (13) |
O6i—Te1—O5ii | 111.64 (10) | Y1ix—O4—Cu1iii | 108.82 (13) |
O7—Te1—O5ii | 98.40 (13) | Te2—O4—Te2i | 144.76 (16) |
O6—Te2—O5 | 96.67 (15) | Cu1—O4—Te2i | 61.40 (9) |
O6—Te2—O4 | 94.00 (14) | Y1ix—O4—Te2i | 77.07 (9) |
O5—Te2—O4 | 85.42 (14) | Cu1iii—O4—Te2i | 130.56 (10) |
O6—Te2—O3iii | 76.45 (13) | Te2—O4—Te1iii | 69.18 (9) |
O5—Te2—O3iii | 153.70 (12) | Cu1—O4—Te1iii | 57.63 (9) |
O4—Te2—O3iii | 70.03 (12) | Y1ix—O4—Te1iii | 162.26 (14) |
O6—Te2—O8 | 91.15 (14) | Cu1iii—O4—Te1iii | 55.74 (6) |
O5—Te2—O8 | 71.82 (13) | Te2i—O4—Te1iii | 119.03 (9) |
O4—Te2—O8 | 157.11 (13) | Te2—O4—Y1iv | 93.11 (12) |
O3iii—Te2—O8 | 132.81 (11) | Cu1—O4—Y1iv | 87.45 (12) |
O6—Te2—O2iv | 159.67 (12) | Y1ix—O4—Y1iv | 72.00 (9) |
O5—Te2—O2iv | 67.71 (13) | Cu1iii—O4—Y1iv | 176.66 (11) |
O4—Te2—O2iv | 72.56 (12) | Te2i—O4—Y1iv | 52.71 (5) |
O3iii—Te2—O2iv | 111.52 (10) | Te1iii—O4—Y1iv | 122.87 (9) |
O8—Te2—O2iv | 95.81 (12) | Te2—O5—Y1x | 136.03 (17) |
O5v—Y1—O2 | 154.82 (12) | Te2—O5—Y1ix | 99.64 (14) |
O5v—Y1—O1i | 111.21 (12) | Y1x—O5—Y1ix | 108.37 (12) |
O2—Y1—O1i | 80.12 (12) | Te2—O5—Te1iv | 100.31 (13) |
O5v—Y1—O4vi | 78.52 (12) | Y1x—O5—Te1iv | 117.78 (13) |
O2—Y1—O4vi | 112.44 (12) | Y1ix—O5—Te1iv | 78.46 (10) |
O1i—Y1—O4vi | 129.31 (11) | Te2—O5—Cu1iii | 64.46 (9) |
O5v—Y1—OW2 | 79.18 (12) | Y1x—O5—Cu1iii | 83.26 (10) |
O2—Y1—OW2 | 83.29 (12) | Y1ix—O5—Cu1iii | 87.55 (9) |
O1i—Y1—OW2 | 72.67 (12) | Te1iv—O5—Cu1iii | 157.47 (12) |
O4vi—Y1—OW2 | 153.52 (12) | Te2—O6—Cu1iii | 111.53 (16) |
O5v—Y1—OW1 | 84.04 (12) | Te2—O6—Te1iii | 103.11 (14) |
O2—Y1—OW1 | 78.45 (12) | Cu1iii—O6—Te1iii | 86.06 (11) |
O1i—Y1—OW1 | 154.67 (12) | Te2—O6—Cu1 | 61.11 (9) |
O4vi—Y1—OW1 | 72.15 (12) | Cu1iii—O6—Cu1 | 69.15 (9) |
OW2—Y1—OW1 | 91.49 (13) | Te1iii—O6—Cu1 | 58.27 (7) |
O5v—Y1—O5vi | 131.04 (10) | Te2—O6—Y1x | 78.26 (10) |
O2—Y1—O5vi | 73.01 (11) | Cu1iii—O6—Y1x | 80.34 (10) |
O1i—Y1—O5vi | 73.74 (11) | Te1iii—O6—Y1x | 165.75 (11) |
O4vi—Y1—O5vi | 64.91 (11) | Cu1—O6—Y1x | 112.14 (9) |
OW2—Y1—O5vi | 141.57 (12) | N1xi—O7—Te1 | 111.3 (3) |
OW1—Y1—O5vi | 112.16 (12) | N1xi—O7—Te2ii | 149.8 (4) |
O5v—Y1—O2i | 72.04 (11) | Te1—O7—Te2ii | 66.47 (9) |
O2—Y1—O2i | 132.19 (10) | N1xi—O7—Y1 | 140.9 (4) |
O1i—Y1—O2i | 64.87 (11) | Te1—O7—Y1 | 67.08 (8) |
O4vi—Y1—O2i | 72.51 (11) | Te2ii—O7—Y1 | 67.94 (6) |
OW2—Y1—O2i | 113.51 (12) | N1—O8—Te2 | 111.0 (3) |
OW1—Y1—O2i | 140.45 (11) | N1—O8—Te1iv | 123.8 (4) |
O5vi—Y1—O2i | 66.79 (12) | Te2—O8—Te1iv | 68.84 (9) |
O1—Cu1—O4 | 179.67 (14) | N1—O8—Y1x | 163.7 (4) |
O1—Cu1—O3iii | 92.32 (14) | Te2—O8—Y1x | 71.18 (8) |
O4—Cu1—O3iii | 88.01 (14) | Te1iv—O8—Y1x | 72.46 (7) |
O1—Cu1—O6i | 87.95 (13) | N1xi—O9—Te1 | 86.8 (3) |
O4—Cu1—O6i | 91.72 (14) | N1xi—O9—Te2xi | 81.0 (3) |
O3iii—Cu1—O6i | 179.29 (14) | Te1—O9—Te2xi | 148.43 (17) |
O1—Cu1—O1iii | 95.24 (13) | N1xi—O9—Te2i | 140.3 (3) |
O4—Cu1—O1iii | 84.92 (13) | Te1—O9—Te2i | 56.63 (6) |
O3iii—Cu1—O1iii | 68.03 (12) | Te2xi—O9—Te2i | 138.25 (13) |
O6i—Cu1—O1iii | 111.29 (12) | Y1—OW1—Te2ii | 96.11 (11) |
O1—Cu1—O4i | 84.84 (13) | Y1—OW1—Cu1ii | 89.51 (11) |
O4—Cu1—O4i | 94.99 (13) | Te2ii—OW1—Cu1ii | 55.27 (6) |
O3iii—Cu1—O4i | 112.68 (12) | Y1—OW1—Te2v | 77.63 (10) |
O6i—Cu1—O4i | 68.00 (12) | Te2ii—OW1—Te2v | 165.76 (11) |
O1iii—Cu1—O4i | 179.28 (9) | Cu1ii—OW1—Te2v | 111.41 (9) |
O9vii—N1—O8 | 121.6 (5) | Y1—OW1—Cu1vi | 80.22 (9) |
O9vii—N1—O7vii | 120.0 (4) | Te2ii—OW1—Cu1vi | 114.02 (10) |
O8—N1—O7vii | 118.3 (5) | Cu1ii—OW1—Cu1vi | 58.82 (6) |
O9vii—N1—Te2 | 77.9 (3) | Te2v—OW1—Cu1vi | 52.63 (5) |
O8—N1—Te2 | 48.7 (2) | Y1—OW1—H11 | 134 (5) |
O7vii—N1—Te2 | 151.4 (4) | Te2ii—OW1—H11 | 83 (5) |
O9vii—N1—Te1vii | 71.9 (3) | Cu1ii—OW1—H11 | 125 (5) |
O8—N1—Te1vii | 165.1 (4) | Te2v—OW1—H11 | 111 (5) |
O7vii—N1—Te1vii | 48.4 (2) | Cu1vi—OW1—H11 | 142 (5) |
Te2—N1—Te1vii | 138.27 (15) | Y1—OW1—H12 | 110 (5) |
Cu1—O1—Te1 | 114.77 (16) | Te2ii—OW1—H12 | 129 (5) |
Cu1—O1—Y1iii | 137.13 (17) | Cu1ii—OW1—H12 | 82 (5) |
Te1—O1—Y1iii | 103.12 (14) | Te2v—OW1—H12 | 45 (5) |
Cu1—O1—Cu1i | 94.20 (13) | Cu1vi—OW1—H12 | 37 (5) |
Te1—O1—Cu1i | 83.41 (12) | H11—OW1—H12 | 106 (6) |
Y1iii—O1—Cu1i | 109.90 (13) | Y1—OW2—Te1xii | 96.56 (11) |
Cu1—O1—Te1iii | 60.78 (9) | Y1—OW2—Cu1xii | 88.60 (11) |
Te1—O1—Te1iii | 143.74 (15) | Te1xii—OW2—Cu1xii | 54.44 (6) |
Y1iii—O1—Te1iii | 76.93 (9) | Y1—OW2—Te1 | 77.77 (10) |
Cu1i—O1—Te1iii | 131.38 (10) | Te1xii—OW2—Te1 | 164.50 (12) |
Cu1—O1—Te2i | 57.54 (9) | Cu1xii—OW2—Te1 | 110.57 (10) |
Te1—O1—Te2i | 68.88 (9) | Y1—OW2—Cu1i | 79.66 (10) |
Y1iii—O1—Te2i | 163.46 (14) | Te1xii—OW2—Cu1i | 112.61 (10) |
Cu1i—O1—Te2i | 55.85 (6) | Cu1xii—OW2—Cu1i | 58.20 (6) |
Te1iii—O1—Te2i | 118.32 (9) | Te1—OW2—Cu1i | 52.42 (5) |
Cu1—O1—Y1viii | 87.20 (12) | Y1—OW2—H21 | 121 (5) |
Te1—O1—Y1viii | 92.47 (11) | Te1xii—OW2—H21 | 78 (5) |
Y1iii—O1—Y1viii | 71.31 (9) | Cu1xii—OW2—H21 | 128 (5) |
Cu1i—O1—Y1viii | 175.87 (11) | Te1—OW2—H21 | 117 (5) |
Te1iii—O1—Y1viii | 52.60 (5) | Cu1i—OW2—H21 | 157 (5) |
Te2i—O1—Y1viii | 122.26 (9) | Y1—OW2—H22 | 117 (5) |
Te1—O2—Y1 | 136.04 (17) | Te1xii—OW2—H22 | 128 (5) |
Te1—O2—Y1iii | 98.37 (14) | Cu1xii—OW2—H22 | 86 (5) |
Y1—O2—Y1iii | 106.57 (12) | Te1—OW2—H22 | 47 (5) |
Te1—O2—Te2ii | 101.48 (14) | Cu1i—OW2—H22 | 46 (5) |
Y1—O2—Te2ii | 118.61 (13) | H21—OW2—H22 | 112 (7) |
Y1iii—O2—Te2ii | 77.90 (9) | Te1xiii—OW3—Te2ii | 101.69 (12) |
Te1—O2—Cu1i | 63.55 (9) | Te1xiii—OW3—H31 | 77 (6) |
Y1—O2—Cu1i | 82.11 (10) | Te2ii—OW3—H31 | 59 (6) |
Y1iii—O2—Cu1i | 86.71 (9) | Te1xiii—OW3—H32 | 69 (6) |
Te2ii—O2—Cu1i | 156.91 (12) | Te2ii—OW3—H32 | 66 (6) |
Te1—O3—Cu1i | 112.24 (16) | H31—OW3—H32 | 106 (9) |
Te1—O3—Te2i | 102.52 (15) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) x+1, −y+1/2, z+1/2; (v) x−1, −y+1/2, z−3/2; (vi) x−1, y, z−1; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y, z+1; (ix) x+1, y, z+1; (x) x+1, −y+1/2, z+3/2; (xi) −x+1, y+1/2, −z+3/2; (xii) x, y, z−1; (xiii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H11···OW3 | 0.89 (3) | 1.96 (3) | 2.854 (6) | 174 (7) |
OW1—H12···O6v | 0.89 (3) | 1.88 (4) | 2.729 (5) | 157 (7) |
OW2—H21···O8v | 0.89 (3) | 2.41 (6) | 3.074 (5) | 132 (6) |
OW2—H21···OW3xiv | 0.89 (3) | 2.22 (5) | 2.949 (6) | 139 (6) |
OW2—H22···O3 | 0.89 (3) | 1.95 (5) | 2.745 (5) | 149 (7) |
OW3—H31···O7 | 0.90 (3) | 1.97 (4) | 2.834 (7) | 162 (9) |
OW3—H31···O8xi | 0.90 (3) | 2.53 (8) | 3.141 (7) | 126 (7) |
OW3—H32···O9xv | 0.89 (3) | 2.49 (4) | 3.360 (7) | 166 (9) |
OW3—H32···O9xiii | 0.89 (3) | 2.64 (9) | 3.253 (8) | 127 (8) |
Symmetry codes: (v) x−1, −y+1/2, z−3/2; (xi) −x+1, y+1/2, −z+3/2; (xiii) −x, −y+1, −z+1; (xiv) −x, −y+1, −z; (xv) x−1, y, z. |
Y1 | Cu1 | Te1 | Te2 | N1 | H11 | H12 | H21 | H22 | H31 | H32 | Σ | Σ(excluding H) | |
O1 | 0.401 | 0.544, 0.047 | 1.128 | 2.12 | 2.12 | ||||||||
O2 | 0.478, 0.275 | 1.145 | 0.130 | 2.03 | 2.03 | ||||||||
O3 | 0.436 | 1.208 | 0.173 | 0.232 | 2.05 | 1.82 | |||||||
O4 | 0.399 | 0.534, 0.046 | 1.148 | 0.041 | 2.17 | 2.13 | |||||||
O5 | 0.481, 0.316 | 0.421 | 0.118 | 1.165 | 2.08 | 2.08 | |||||||
O6 | 0.183 | 1.179 | 0.279 | 2.06 | 1.78 | ||||||||
O7 | 0.156 | 1.562 | 1.72 | 1.72 | |||||||||
O8 | 0.156 | 1.609 | 0.068 | 0.047 | 1.88 | 1.77 | |||||||
O9 | 1.712 | 0.062, 0.036 | 1.81 | 1.71 | |||||||||
OW1 | 0.384 | 0.755 | 0.755 | 1.89 | 0.38 | ||||||||
OW2 | 0.389 | 0.771 | 0.769 | 1.93 | 0.39 | ||||||||
OW3 | 0.224 | 0.110 | 0.743 | 0.761 | 1.84 | 0.00 | |||||||
Σ | 3.12 | 2.03 | 3.93 | 3.94 | 4.88 | 0.98 | 1.08 | 0.95 | 1.00 | 0.79 | 0.86 |
Absorption bands | Assignment | |
3460w | O—H stretch | |
3145w | O—H stretch | |
\sim2900w | O—H stretch | |
1755 | H—O—H bend | |
1645 | H—O—H bend | |
1605 | H—O—H bend | |
1345 | ν3 antisymmetric stretch NO3- | |
1044 | ν1 symmetric stretch NO3- | |
734 | ν1 (TeO3)2- symmetric stretch | |
636 | ν3 (TeO3)2- antisymmetric stretch | |
547 | M—O lattice modes | |
447 | M—O lattice modes |
Acknowledgements
This study has been funded by The Ian Potter Foundation grant `tracking tellurium' to SJM, which we gratefully acknowledge.
References
Anderson, J. B., Rapposch, M. H., Anderson, C. P. & Kostiner, E. (1980). Monatsh. Chem. 111, 789–796. CrossRef CAS Google Scholar
Brown, I. D. (2009). Chem. Rev. 109, 6858–6919. Web of Science CrossRef PubMed CAS Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2001). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christy, A. G. (2015). Mineral. Mag. 79, 33–49. CrossRef Google Scholar
Christy, A. G. & Mills, S. J. (2013). Acta Cryst. B69, 446–456. CrossRef IUCr Journals Google Scholar
Christy, A. G., Mills, S. J. & Kampf, A. R. (2016b). Mineral. Mag. 80, 415–545. CrossRef Google Scholar
Christy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B. & Marty, J. (2016a). Mineral. Mag. 80, 291–310. CrossRef Google Scholar
Feger, C. R., Schimek, G. L. & Kolis, J. W. (1999). J. Solid State Chem. 143, 246–253. Web of Science CrossRef CAS Google Scholar
Hawthorne, F. C. (2014). Mineral. Mag. 78, 957–1027. CrossRef Google Scholar
Höss, P. & Schleid, T. (2007). Acta Cryst. E63, i133–i135. CrossRef IUCr Journals Google Scholar
Johansson, G. B. & Lindqvist, O. (1978). Acta Cryst. B34, 2959–2962. CrossRef CAS IUCr Journals Google Scholar
Kabsch, W. (2010). Acta Cryst. D66, 125–132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kampf, A. R., Mills, S. J., Housley, R. M., Rossman, G. R., Marty, J. & Thorne, B. (2013). Am. Mineral. 98, 1315–1321. CrossRef CAS Google Scholar
Kasper, H. M. (1969). Mater. Res. Bull. 4, 33–37. CrossRef CAS Google Scholar
Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 5240–5245. CrossRef CAS PubMed Google Scholar
Koteswararao, B., Kumar, R., Chakraborty, J., Jeon, B. G., Mahajan, A. V., Dasgupta, I., Kim, K. H. & Chou, F. C. (2013). J. Phys. Condens. Matter, 25, 336003. CrossRef PubMed Google Scholar
Libowitzky, E. (1999). In Correlation of OH stretching frequencies and OH-O hydrogen bond lengths in minerals. Vienna: Springer. Google Scholar
Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149. CrossRef CAS IUCr Journals Google Scholar
Mills, S. J., Dunstan, M. A. & Christy, A. G. (2016). Dalton Trans. Submitted. Google Scholar
Noguera, O., Jouin, J., Masson, O., Jancar, B. & Thomas, P. J. (2012). J. Eur. Ceram. Soc. 32, 4263–4269. CrossRef CAS Google Scholar
Olsson, C., Johansson, L.-G. & Kazikowski, S. (1988). Acta Cryst. C44, 427–429. CrossRef CAS IUCr Journals Google Scholar
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sedello, O. & Müller-Buschbaum, H. (1996). Z. Naturforsch. Teil B, 51, 465–468. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, Y.-L. & Mao, J.-G. (2005). Inorg. Chem. 44, 5328–5335. CrossRef PubMed CAS Google Scholar
Song, S. Y., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 7040–7046. CrossRef CAS PubMed Google Scholar
Stöger, B. & Weil, M. (2013). Mineral. Petrol. 107, 257–263. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, D., Xue, D. & Ratajczak, H. (2006). Physica B, 371, 170–176. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.