research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,7-dihy­dr­oxy-6,7-di­hydro-3H-imidazo[1,2-a]purin-9(5H)-one

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
*Correspondence e-mail: jingwang@home.ipe.ac.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 May 2016; accepted 6 June 2016; online 19 July 2016)

The title purine derivative, C7H7N5O3, is an adduct of guanine with glyoxal. In the mol­ecule, the di­hydro­imidazole ring adopts a twisted conformation on the C—C bond, and the two hydroxyl groups lie on opposite sides of the mean plane of the ring. In the crystal, the mol­ecules are linked by N—H⋯O, O—H⋯N and N—H⋯N hydrogen bonds forming a three-dimensional framework. The crystal packing is reinforced by C—H⋯O hydrogen bonds and by offset ππ stacking of the purine ring systems of inversion related mol­ecules [inter­centroid distance = 3.4839 (12) Å].

1. Chemical context

Purine are essential ingredients of various compounds, for example two of the five bases in nucleic acids, adenine and guanine, are purines. Purine derivatives have been developed as inhibitors of cyclin-dependent kinase (Sausville, 2002[Sausville, E. A. (2002). Trends Mol. Med. 8, S32-S37.]), and as anti­parasitic (Braga et al., 2007[Braga, F. G., Coimbra, E. S., de Oliveira Matos, M., Lino Carmo, A. M., Cancio, M. D. & da Silva, A. D. (2007). Eur. J. Med. Chem. 42, 530-537.]; Yadav et al., 2004[Yadav, V., Chu, C. K., Rais, R. H., Al Safarjalani, O. N., Guarcello, V., Naguib, F. N. M. & el Kouni, M. H. (2004). J. Med. Chem. 47, 1987-1996.]), anti­tumor (Prekupec et al., 2003[Prekupec, S., Svedružić, D., Gazivoda, T., Mrvoš-Sermek, D., Nagl, A., Grdiša, M., Pavelić, K., Balzarini, J., De Clercq, E., Folkers, G., Scapozza, L., Mintas, M. & Raić-Malić, S. (2003). J. Med. Chem. 46, 5763-5772.]; Trávníček et al., 2001[Trávníček, Z., Maloň, M., Šindelář, Z., Doležal, K., Rolč\?ík, J., Kryštof, V., Strnad, M. & Marek, J. (2001). J. Inorg. Biochem. 84, 23-32.]), anti­radical (Klanicová et al., 2010[Klanicová, A., Trávníček, Z., Vančo, J., Popa, I. & Šindelář, Z. (2010). Polyhedron, 29, 2582-2589.]) and anti­viral (Manikowski et al., 2005[Manikowski, A., Verri, A., Lossani, A., Gebhardt, B. M., Gambino, J., Focher, F., Spadari, S. & Wright, G. E. (2005). J. Med. Chem. 48, 3919-3929.]) drugs. The synthesis and the cancerostatic and anti­viral activities of the title compound were reported on many years ago (Shapiro et al., 1969[Shapiro, R., Cohen, B. I., Shiuey, S. J. & Maurer, H. (1969). Biochemistry, 8, 238-245.]). Its crystal structure has not been reported to date, and as the conformation of a biologically active mol­ecule is crucial to its activity we undertook the structure analysis of the title compound, which we report on herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of title compound is depicted in Fig. 1[link]. The C1—O1 bond length of 1.220 (2) Å shows typical double-bond character, and is coplanar with the purine moiety for their aromatic nature. The non-aromatic five-membered ring (N1/C7/C6/N5/C2) adopts a twisted conformation on the C6—C7 bond. The two hydroxyl groups lie on opposite sides of the ring mean plane with an O2—C7—C6—O3 torsion angle of 114.8 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are also linked via O—H⋯N and N—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Table 1[link] and Fig. 2[link]). The layers are linked by N—H⋯O hydrogen bonds, forming a three-dimensional framework (Table 1[link] and Fig. 3[link]). Within the framework there are also C—H⋯O hydrogen bonds present (Table 1[link]), and inversion-related mol­ecules are linked by offset ππ inter­actions involving the five-membered ring and the six-membered ring of the purine moieties [Cg2⋯Cg3i = 3.4839 (12) Å, inter­planar distance = 3.311 (1) Å, slippage = 1.112 Å; Cg2 and Cg3 are the centroids of the N3/C4/C3/N4/C5 and N1/C1/C4/C3/N2/C2 rings, respectively; symmetry code: (i) −x, −y, −z + 2].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 2.03 2.850 (2) 178
O3—H3⋯N2ii 0.82 2.21 2.947 (2) 150
N4—H4⋯O2iii 0.86 1.95 2.791 (2) 167
N5—H5⋯N3iv 0.86 2.00 2.837 (2) 166
C5—H5A⋯O3v 0.93 2.50 3.133 (8) 126
C7—H7⋯O1vi 0.98 2.51 3.449 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) -x, -y, -z+2; (vi) -x, -y, -z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,9-di­hydro-6H-6-one as substructure, gave 61 hits. Many of these compounds concern guanine and guaninium and some metal complexes, but none involve a fused third ring. The structure of the title compound has not been reported previously.

5. Synthesis and crystallization

The title compound was synthesized according to a literature method (Dey & Garner, 2000[Dey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697-7699.]): An aqueous solution (1 l) of glyoxal monohydrate (8.71 g, 0.18 mol), guanine (1.55g, 0.01 mol) and a small amount of acetic acid was stirred for 24 h at 333 K. Then the excess water was removed by rotary evaporation and 250 ml of THF was added under stirring. The white suspension that formed was suction-filtered and washed with THF. The product was obtained as white powder after drying at 313 K. Colourless block-shaped crystals suitable for X-ray diffraction were obtained by recrystallization of the powder in a DMF/ethanol/water (v/v/v = 1/2/2) medium.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the H atoms were positioned with idealized geometry and refined as riding: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O,N).

Table 2
Experimental details

Crystal data
Chemical formula C7H7N5O3
Mr 209.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 6.8925 (4), 7.6352 (4), 8.0605 (6)
α, β, γ (°) 95.063 (5), 105.135 (6), 107.647 (5)
V3) 383.69 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.26
Crystal size (mm) 0.20 × 0.18 × 0.16
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.])
Tmin, Tmax 0.52, 0.82
No. of measured, independent and observed [I > 2σ(I)] reflections 2506, 1499, 1335
Rint 0.033
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 1.00
No. of reflections 1499
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.40
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

6,7-Dihydroxy-6,7-dihydro-3H-imidazo[1,2-a]purin-9(5H)-one top
Crystal data top
C7H7N5O3Z = 2
Mr = 209.18F(000) = 216
Triclinic, P1Dx = 1.811 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.8925 (4) ÅCell parameters from 1705 reflections
b = 7.6352 (4) Åθ = 7.0–73.5°
c = 8.0605 (6) ŵ = 1.26 mm1
α = 95.063 (5)°T = 295 K
β = 105.135 (6)°Block, colorless
γ = 107.647 (5)°0.20 × 0.18 × 0.16 mm
V = 383.69 (4) Å3
Data collection top
Agilent Xcalibur, Eos, Gemini
diffractometer
1499 independent reflections
Radiation source: Enhance (Cu) X-ray Source1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 5.3031 pixels mm-1θmax = 73.7°, θmin = 5.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 97
Tmin = 0.52, Tmax = 0.82l = 109
2506 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1404P)2 + 0.079P]
where P = (Fo2 + 2Fc2)/3
1499 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Experimental. CrysAlis Pro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1803 (3)0.0561 (2)0.71668 (19)0.0330 (4)
O20.3726 (2)0.34594 (19)0.61681 (18)0.0278 (4)
H20.47250.43100.68620.042*
O30.0753 (2)0.4579 (2)0.6656 (2)0.0355 (4)
H30.10430.54340.71050.053*
N10.2147 (2)0.2403 (2)0.8339 (2)0.0222 (4)
N20.2866 (3)0.3571 (2)1.1379 (2)0.0234 (4)
N30.2741 (3)0.1191 (2)1.1004 (2)0.0267 (4)
N40.3297 (3)0.1187 (2)1.3093 (2)0.0254 (4)
H40.35630.18021.41190.031*
N50.2310 (3)0.5316 (2)0.9134 (2)0.0278 (4)
H50.26650.63840.97890.033*
C10.2159 (3)0.0573 (2)0.8471 (3)0.0227 (5)
C20.2459 (3)0.3764 (2)0.9729 (2)0.0217 (5)
C30.2944 (3)0.1830 (2)1.1558 (2)0.0212 (4)
C40.2612 (3)0.0354 (2)1.0264 (3)0.0226 (5)
C50.3142 (3)0.0636 (3)1.2673 (3)0.0277 (5)
H5A0.33060.14021.34960.033*
C60.1474 (3)0.4966 (3)0.7242 (3)0.0245 (5)
H60.22270.59990.67520.029*
C70.1903 (3)0.3160 (3)0.6712 (2)0.0232 (5)
H70.06530.23000.57930.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0427 (8)0.0254 (8)0.0294 (8)0.0170 (6)0.0067 (6)0.0085 (6)
O20.0276 (7)0.0275 (7)0.0277 (7)0.0082 (6)0.0123 (6)0.0061 (5)
O30.0370 (8)0.0364 (9)0.0395 (9)0.0203 (7)0.0142 (7)0.0028 (7)
N10.0276 (8)0.0173 (8)0.0235 (8)0.0109 (6)0.0088 (6)0.0023 (6)
N20.0298 (8)0.0183 (8)0.0239 (8)0.0102 (6)0.0106 (7)0.0020 (6)
N30.0307 (8)0.0173 (8)0.0331 (9)0.0099 (6)0.0106 (7)0.0008 (6)
N40.0315 (8)0.0225 (8)0.0242 (8)0.0107 (7)0.0112 (6)0.0002 (6)
N50.0421 (10)0.0175 (8)0.0264 (8)0.0148 (7)0.0109 (7)0.0016 (6)
C10.0224 (8)0.0172 (9)0.0276 (10)0.0078 (7)0.0073 (7)0.0038 (7)
C20.0233 (8)0.0172 (8)0.0248 (9)0.0071 (7)0.0093 (7)0.0027 (7)
C30.0213 (8)0.0160 (9)0.0269 (9)0.0069 (6)0.0095 (7)0.0007 (7)
C40.0233 (8)0.0162 (8)0.0281 (10)0.0073 (7)0.0086 (7)0.0014 (7)
C50.0323 (10)0.0212 (10)0.0313 (10)0.0115 (8)0.0102 (8)0.0025 (7)
C60.0310 (9)0.0201 (9)0.0270 (10)0.0117 (7)0.0131 (8)0.0033 (7)
C70.0259 (9)0.0202 (9)0.0237 (9)0.0088 (7)0.0084 (7)0.0018 (7)
Geometric parameters (Å, º) top
O1—C11.221 (2)N4—C31.361 (3)
O2—C71.398 (2)N4—C51.367 (2)
O2—H20.8200N4—H40.8600
O3—C61.410 (2)N5—C21.339 (3)
O3—H30.8200N5—C61.450 (2)
N1—C21.384 (2)N5—H50.8600
N1—C11.413 (2)C1—C41.433 (3)
N1—C71.470 (2)C3—C41.386 (2)
N2—C21.316 (2)C5—H5A0.9300
N2—C31.365 (2)C6—C71.543 (2)
N3—C51.304 (3)C6—H60.9800
N3—C41.384 (2)C7—H70.9800
C7—O2—H2109.5N4—C3—C4106.17 (16)
C6—O3—H3109.5N2—C3—C4128.41 (18)
C2—N1—C1125.05 (16)N3—C4—C3109.67 (17)
C2—N1—C7110.23 (15)N3—C4—C1130.23 (17)
C1—N1—C7124.65 (15)C3—C4—C1120.08 (17)
C2—N2—C3111.14 (15)N3—C5—N4113.27 (18)
C5—N3—C4104.69 (16)N3—C5—H5A123.4
C3—N4—C5106.20 (16)N4—C5—H5A123.4
C3—N4—H4126.9O3—C6—N5112.28 (16)
C5—N4—H4126.9O3—C6—C7107.73 (15)
C2—N5—C6111.39 (14)N5—C6—C7102.64 (14)
C2—N5—H5124.3O3—C6—H6111.3
C6—N5—H5124.3N5—C6—H6111.3
O1—C1—N1120.75 (18)C7—C6—H6111.3
O1—C1—C4129.30 (18)O2—C7—N1111.34 (15)
N1—C1—C4109.95 (15)O2—C7—C6114.01 (15)
N2—C2—N5125.43 (16)N1—C7—C6101.82 (14)
N2—C2—N1125.33 (17)O2—C7—H7109.8
N5—C2—N1109.23 (16)N1—C7—H7109.8
N4—C3—N2125.38 (16)C6—C7—H7109.8
C2—N1—C1—O1177.72 (17)N2—C3—C4—N3177.14 (17)
C7—N1—C1—O15.4 (3)N4—C3—C4—C1179.03 (16)
C2—N1—C1—C41.9 (2)N2—C3—C4—C11.3 (3)
C7—N1—C1—C4175.00 (15)O1—C1—C4—N31.0 (3)
C3—N2—C2—N5179.08 (18)N1—C1—C4—N3178.54 (17)
C3—N2—C2—N10.1 (3)O1—C1—C4—C3179.13 (19)
C6—N5—C2—N2169.71 (17)N1—C1—C4—C30.4 (2)
C6—N5—C2—N111.1 (2)C4—N3—C5—N40.3 (2)
C1—N1—C2—N21.8 (3)C3—N4—C5—N30.6 (2)
C7—N1—C2—N2175.41 (17)C2—N5—C6—O395.18 (19)
C1—N1—C2—N5179.00 (16)C2—N5—C6—C720.2 (2)
C7—N1—C2—N53.7 (2)C2—N1—C7—O2106.35 (17)
C5—N4—C3—N2177.11 (17)C1—N1—C7—O270.9 (2)
C5—N4—C3—C40.7 (2)C2—N1—C7—C615.51 (18)
C2—N2—C3—N4178.80 (17)C1—N1—C7—C6167.22 (16)
C2—N2—C3—C41.5 (3)O3—C6—C7—O2141.81 (16)
C5—N3—C4—C30.2 (2)N5—C6—C7—O299.53 (18)
C5—N3—C4—C1178.47 (19)O3—C6—C7—N198.19 (17)
N4—C3—C4—N30.6 (2)N5—C6—C7—N120.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.822.032.850 (2)178
O3—H3···N2ii0.822.212.947 (2)150
N4—H4···O2iii0.861.952.791 (2)167
N5—H5···N3iv0.862.002.837 (2)166
C5—H5A···O3v0.932.503.133 (8)126
C7—H7···O1vi0.982.513.449 (2)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y, z+2; (vi) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science Foundation of Hebei Province of China (B2015206500) and the Science and Technology Research Project of Higher Education of Hebei Province (QN2014073).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationBraga, F. G., Coimbra, E. S., de Oliveira Matos, M., Lino Carmo, A. M., Cancio, M. D. & da Silva, A. D. (2007). Eur. J. Med. Chem. 42, 530–537.  CrossRef PubMed CAS Google Scholar
First citationDey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697–7699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlanicová, A., Trávníček, Z., Vančo, J., Popa, I. & Šindelář, Z. (2010). Polyhedron, 29, 2582–2589.  Google Scholar
First citationManikowski, A., Verri, A., Lossani, A., Gebhardt, B. M., Gambino, J., Focher, F., Spadari, S. & Wright, G. E. (2005). J. Med. Chem. 48, 3919–3929.  CrossRef PubMed CAS Google Scholar
First citationPrekupec, S., Svedružić, D., Gazivoda, T., Mrvoš-Sermek, D., Nagl, A., Grdiša, M., Pavelić, K., Balzarini, J., De Clercq, E., Folkers, G., Scapozza, L., Mintas, M. & Raić-Malić, S. (2003). J. Med. Chem. 46, 5763–5772.  CSD CrossRef PubMed CAS Google Scholar
First citationSausville, E. A. (2002). Trends Mol. Med. 8, S32–S37.  CrossRef PubMed CAS Google Scholar
First citationShapiro, R., Cohen, B. I., Shiuey, S. J. & Maurer, H. (1969). Biochemistry, 8, 238–245.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrávníček, Z., Maloň, M., Šindelář, Z., Doležal, K., Rolč\?ík, J., Kryštof, V., Strnad, M. & Marek, J. (2001). J. Inorg. Biochem. 84, 23–32.  Google Scholar
First citationYadav, V., Chu, C. K., Rais, R. H., Al Safarjalani, O. N., Guarcello, V., Naguib, F. N. M. & el Kouni, M. H. (2004). J. Med. Chem. 47, 1987–1996.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds