research communications
H-imidazo[1,2-a]purin-9(5H)-one
of 6,7-dihydroxy-6,7-dihydro-3aSchool of Pharmacy, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
*Correspondence e-mail: jingwang@home.ipe.ac.cn
The title purine derivative, C7H7N5O3, is an adduct of guanine with glyoxal. In the molecule, the dihydroimidazole ring adopts a twisted conformation on the C—C bond, and the two hydroxyl groups lie on opposite sides of the mean plane of the ring. In the crystal, the molecules are linked by N—H⋯O, O—H⋯N and N—H⋯N hydrogen bonds forming a three-dimensional framework. The crystal packing is reinforced by C—H⋯O hydrogen bonds and by offset π–π stacking of the purine ring systems of inversion related molecules [intercentroid distance = 3.4839 (12) Å].
CCDC reference: 1469976
1. Chemical context
Purine are essential ingredients of various compounds, for example two of the five bases in ), and as antiparasitic (Braga et al., 2007; Yadav et al., 2004), antitumor (Prekupec et al., 2003; Trávníček et al., 2001), antiradical (Klanicová et al., 2010) and antiviral (Manikowski et al., 2005) drugs. The synthesis and the cancerostatic and antiviral activities of the title compound were reported on many years ago (Shapiro et al., 1969). Its has not been reported to date, and as the conformation of a biologically active molecule is crucial to its activity we undertook the structure analysis of the title compound, which we report on herein.
adenine and guanine, are purines. Purine derivatives have been developed as inhibitors of cyclin-dependent kinase (Sausville, 20022. Structural commentary
The molecular structure of title compound is depicted in Fig. 1. The C1—O1 bond length of 1.220 (2) Å shows typical double-bond character, and is coplanar with the purine moiety for their aromatic nature. The non-aromatic five-membered ring (N1/C7/C6/N5/C2) adopts a twisted conformation on the C6—C7 bond. The two hydroxyl groups lie on opposite sides of the ring mean plane with an O2—C7—C6—O3 torsion angle of 114.8 (2)°.
3. Supramolecular features
In the crystal, molecules are also linked via O—H⋯N and N—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Table 1 and Fig. 2). The layers are linked by N—H⋯O hydrogen bonds, forming a three-dimensional framework (Table 1 and Fig. 3). Within the framework there are also C—H⋯O hydrogen bonds present (Table 1), and inversion-related molecules are linked by offset π–π interactions involving the five-membered ring and the six-membered ring of the purine moieties [Cg2⋯Cg3i = 3.4839 (12) Å, interplanar distance = 3.311 (1) Å, slippage = 1.112 Å; Cg2 and Cg3 are the centroids of the N3/C4/C3/N4/C5 and N1/C1/C4/C3/N2/C2 rings, respectively; symmetry code: (i) −x, −y, −z + 2].
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) for 1,9-dihydro-6H-6-one as gave 61 hits. Many of these compounds concern guanine and guaninium and some metal complexes, but none involve a fused third ring. The structure of the title compound has not been reported previously.
5. Synthesis and crystallization
The title compound was synthesized according to a literature method (Dey & Garner, 2000): An aqueous solution (1 l) of glyoxal monohydrate (8.71 g, 0.18 mol), guanine (1.55g, 0.01 mol) and a small amount of acetic acid was stirred for 24 h at 333 K. Then the excess water was removed by rotary evaporation and 250 ml of THF was added under stirring. The white suspension that formed was suction-filtered and washed with THF. The product was obtained as white powder after drying at 313 K. Colourless block-shaped crystals suitable for X-ray diffraction were obtained by recrystallization of the powder in a DMF/ethanol/water (v/v/v = 1/2/2) medium.
6. Refinement
Crystal data, data collection and structure . All of the H atoms were positioned with idealized geometry and refined as riding: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O,N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1469976
https://doi.org/10.1107/S2056989016009087/xu5887sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016009087/xu5887Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016009087/xu5887Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C7H7N5O3 | Z = 2 |
Mr = 209.18 | F(000) = 216 |
Triclinic, P1 | Dx = 1.811 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 6.8925 (4) Å | Cell parameters from 1705 reflections |
b = 7.6352 (4) Å | θ = 7.0–73.5° |
c = 8.0605 (6) Å | µ = 1.26 mm−1 |
α = 95.063 (5)° | T = 295 K |
β = 105.135 (6)° | Block, colorless |
γ = 107.647 (5)° | 0.20 × 0.18 × 0.16 mm |
V = 383.69 (4) Å3 |
Agilent Xcalibur, Eos, Gemini diffractometer | 1499 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1335 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 5.3031 pixels mm-1 | θmax = 73.7°, θmin = 5.8° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −9→7 |
Tmin = 0.52, Tmax = 0.82 | l = −10→9 |
2506 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1404P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3 |
1499 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Experimental. CrysAlis Pro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1803 (3) | −0.0561 (2) | 0.71668 (19) | 0.0330 (4) | |
O2 | 0.3726 (2) | 0.34594 (19) | 0.61681 (18) | 0.0278 (4) | |
H2 | 0.4725 | 0.4310 | 0.6862 | 0.042* | |
O3 | −0.0753 (2) | 0.4579 (2) | 0.6656 (2) | 0.0355 (4) | |
H3 | −0.1043 | 0.5434 | 0.7105 | 0.053* | |
N1 | 0.2147 (2) | 0.2403 (2) | 0.8339 (2) | 0.0222 (4) | |
N2 | 0.2866 (3) | 0.3571 (2) | 1.1379 (2) | 0.0234 (4) | |
N3 | 0.2741 (3) | −0.1191 (2) | 1.1004 (2) | 0.0267 (4) | |
N4 | 0.3297 (3) | 0.1187 (2) | 1.3093 (2) | 0.0254 (4) | |
H4 | 0.3563 | 0.1802 | 1.4119 | 0.031* | |
N5 | 0.2310 (3) | 0.5316 (2) | 0.9134 (2) | 0.0278 (4) | |
H5 | 0.2665 | 0.6384 | 0.9789 | 0.033* | |
C1 | 0.2159 (3) | 0.0573 (2) | 0.8471 (3) | 0.0227 (5) | |
C2 | 0.2459 (3) | 0.3764 (2) | 0.9729 (2) | 0.0217 (5) | |
C3 | 0.2944 (3) | 0.1830 (2) | 1.1558 (2) | 0.0212 (4) | |
C4 | 0.2612 (3) | 0.0354 (2) | 1.0264 (3) | 0.0226 (5) | |
C5 | 0.3142 (3) | −0.0636 (3) | 1.2673 (3) | 0.0277 (5) | |
H5A | 0.3306 | −0.1402 | 1.3496 | 0.033* | |
C6 | 0.1474 (3) | 0.4966 (3) | 0.7242 (3) | 0.0245 (5) | |
H6 | 0.2227 | 0.5999 | 0.6752 | 0.029* | |
C7 | 0.1903 (3) | 0.3160 (3) | 0.6712 (2) | 0.0232 (5) | |
H7 | 0.0653 | 0.2300 | 0.5793 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0427 (8) | 0.0254 (8) | 0.0294 (8) | 0.0170 (6) | 0.0067 (6) | −0.0085 (6) |
O2 | 0.0276 (7) | 0.0275 (7) | 0.0277 (7) | 0.0082 (6) | 0.0123 (6) | −0.0061 (5) |
O3 | 0.0370 (8) | 0.0364 (9) | 0.0395 (9) | 0.0203 (7) | 0.0142 (7) | 0.0028 (7) |
N1 | 0.0276 (8) | 0.0173 (8) | 0.0235 (8) | 0.0109 (6) | 0.0088 (6) | −0.0023 (6) |
N2 | 0.0298 (8) | 0.0183 (8) | 0.0239 (8) | 0.0102 (6) | 0.0106 (7) | −0.0020 (6) |
N3 | 0.0307 (8) | 0.0173 (8) | 0.0331 (9) | 0.0099 (6) | 0.0106 (7) | 0.0008 (6) |
N4 | 0.0315 (8) | 0.0225 (8) | 0.0242 (8) | 0.0107 (7) | 0.0112 (6) | 0.0002 (6) |
N5 | 0.0421 (10) | 0.0175 (8) | 0.0264 (8) | 0.0148 (7) | 0.0109 (7) | −0.0016 (6) |
C1 | 0.0224 (8) | 0.0172 (9) | 0.0276 (10) | 0.0078 (7) | 0.0073 (7) | −0.0038 (7) |
C2 | 0.0233 (8) | 0.0172 (8) | 0.0248 (9) | 0.0071 (7) | 0.0093 (7) | −0.0027 (7) |
C3 | 0.0213 (8) | 0.0160 (9) | 0.0269 (9) | 0.0069 (6) | 0.0095 (7) | −0.0007 (7) |
C4 | 0.0233 (8) | 0.0162 (8) | 0.0281 (10) | 0.0073 (7) | 0.0086 (7) | −0.0014 (7) |
C5 | 0.0323 (10) | 0.0212 (10) | 0.0313 (10) | 0.0115 (8) | 0.0102 (8) | 0.0025 (7) |
C6 | 0.0310 (9) | 0.0201 (9) | 0.0270 (10) | 0.0117 (7) | 0.0131 (8) | 0.0033 (7) |
C7 | 0.0259 (9) | 0.0202 (9) | 0.0237 (9) | 0.0088 (7) | 0.0084 (7) | −0.0018 (7) |
O1—C1 | 1.221 (2) | N4—C3 | 1.361 (3) |
O2—C7 | 1.398 (2) | N4—C5 | 1.367 (2) |
O2—H2 | 0.8200 | N4—H4 | 0.8600 |
O3—C6 | 1.410 (2) | N5—C2 | 1.339 (3) |
O3—H3 | 0.8200 | N5—C6 | 1.450 (2) |
N1—C2 | 1.384 (2) | N5—H5 | 0.8600 |
N1—C1 | 1.413 (2) | C1—C4 | 1.433 (3) |
N1—C7 | 1.470 (2) | C3—C4 | 1.386 (2) |
N2—C2 | 1.316 (2) | C5—H5A | 0.9300 |
N2—C3 | 1.365 (2) | C6—C7 | 1.543 (2) |
N3—C5 | 1.304 (3) | C6—H6 | 0.9800 |
N3—C4 | 1.384 (2) | C7—H7 | 0.9800 |
C7—O2—H2 | 109.5 | N4—C3—C4 | 106.17 (16) |
C6—O3—H3 | 109.5 | N2—C3—C4 | 128.41 (18) |
C2—N1—C1 | 125.05 (16) | N3—C4—C3 | 109.67 (17) |
C2—N1—C7 | 110.23 (15) | N3—C4—C1 | 130.23 (17) |
C1—N1—C7 | 124.65 (15) | C3—C4—C1 | 120.08 (17) |
C2—N2—C3 | 111.14 (15) | N3—C5—N4 | 113.27 (18) |
C5—N3—C4 | 104.69 (16) | N3—C5—H5A | 123.4 |
C3—N4—C5 | 106.20 (16) | N4—C5—H5A | 123.4 |
C3—N4—H4 | 126.9 | O3—C6—N5 | 112.28 (16) |
C5—N4—H4 | 126.9 | O3—C6—C7 | 107.73 (15) |
C2—N5—C6 | 111.39 (14) | N5—C6—C7 | 102.64 (14) |
C2—N5—H5 | 124.3 | O3—C6—H6 | 111.3 |
C6—N5—H5 | 124.3 | N5—C6—H6 | 111.3 |
O1—C1—N1 | 120.75 (18) | C7—C6—H6 | 111.3 |
O1—C1—C4 | 129.30 (18) | O2—C7—N1 | 111.34 (15) |
N1—C1—C4 | 109.95 (15) | O2—C7—C6 | 114.01 (15) |
N2—C2—N5 | 125.43 (16) | N1—C7—C6 | 101.82 (14) |
N2—C2—N1 | 125.33 (17) | O2—C7—H7 | 109.8 |
N5—C2—N1 | 109.23 (16) | N1—C7—H7 | 109.8 |
N4—C3—N2 | 125.38 (16) | C6—C7—H7 | 109.8 |
C2—N1—C1—O1 | 177.72 (17) | N2—C3—C4—N3 | −177.14 (17) |
C7—N1—C1—O1 | −5.4 (3) | N4—C3—C4—C1 | 179.03 (16) |
C2—N1—C1—C4 | −1.9 (2) | N2—C3—C4—C1 | 1.3 (3) |
C7—N1—C1—C4 | 175.00 (15) | O1—C1—C4—N3 | −1.0 (3) |
C3—N2—C2—N5 | −179.08 (18) | N1—C1—C4—N3 | 178.54 (17) |
C3—N2—C2—N1 | −0.1 (3) | O1—C1—C4—C3 | −179.13 (19) |
C6—N5—C2—N2 | −169.71 (17) | N1—C1—C4—C3 | 0.4 (2) |
C6—N5—C2—N1 | 11.1 (2) | C4—N3—C5—N4 | −0.3 (2) |
C1—N1—C2—N2 | 1.8 (3) | C3—N4—C5—N3 | 0.6 (2) |
C7—N1—C2—N2 | −175.41 (17) | C2—N5—C6—O3 | 95.18 (19) |
C1—N1—C2—N5 | −179.00 (16) | C2—N5—C6—C7 | −20.2 (2) |
C7—N1—C2—N5 | 3.7 (2) | C2—N1—C7—O2 | 106.35 (17) |
C5—N4—C3—N2 | 177.11 (17) | C1—N1—C7—O2 | −70.9 (2) |
C5—N4—C3—C4 | −0.7 (2) | C2—N1—C7—C6 | −15.51 (18) |
C2—N2—C3—N4 | −178.80 (17) | C1—N1—C7—C6 | 167.22 (16) |
C2—N2—C3—C4 | −1.5 (3) | O3—C6—C7—O2 | 141.81 (16) |
C5—N3—C4—C3 | −0.2 (2) | N5—C6—C7—O2 | −99.53 (18) |
C5—N3—C4—C1 | −178.47 (19) | O3—C6—C7—N1 | −98.19 (17) |
N4—C3—C4—N3 | 0.6 (2) | N5—C6—C7—N1 | 20.48 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2i | 0.82 | 2.03 | 2.850 (2) | 178 |
O3—H3···N2ii | 0.82 | 2.21 | 2.947 (2) | 150 |
N4—H4···O2iii | 0.86 | 1.95 | 2.791 (2) | 167 |
N5—H5···N3iv | 0.86 | 2.00 | 2.837 (2) | 166 |
C5—H5A···O3v | 0.93 | 2.50 | 3.133 (8) | 126 |
C7—H7···O1vi | 0.98 | 2.51 | 3.449 (2) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) −x, −y, −z+2; (vi) −x, −y, −z+1. |
Acknowledgements
The authors gratefully acknowledge financial support from the Natural Science Foundation of Hebei Province of China (B2015206500) and the Science and Technology Research Project of Higher Education of Hebei Province (QN2014073).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Braga, F. G., Coimbra, E. S., de Oliveira Matos, M., Lino Carmo, A. M., Cancio, M. D. & da Silva, A. D. (2007). Eur. J. Med. Chem. 42, 530–537. CrossRef PubMed CAS Google Scholar
Dey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697–7699. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Klanicová, A., Trávníček, Z., Vančo, J., Popa, I. & Šindelář, Z. (2010). Polyhedron, 29, 2582–2589. Google Scholar
Manikowski, A., Verri, A., Lossani, A., Gebhardt, B. M., Gambino, J., Focher, F., Spadari, S. & Wright, G. E. (2005). J. Med. Chem. 48, 3919–3929. CrossRef PubMed CAS Google Scholar
Prekupec, S., Svedružić, D., Gazivoda, T., Mrvoš-Sermek, D., Nagl, A., Grdiša, M., Pavelić, K., Balzarini, J., De Clercq, E., Folkers, G., Scapozza, L., Mintas, M. & Raić-Malić, S. (2003). J. Med. Chem. 46, 5763–5772. CSD CrossRef PubMed CAS Google Scholar
Sausville, E. A. (2002). Trends Mol. Med. 8, S32–S37. CrossRef PubMed CAS Google Scholar
Shapiro, R., Cohen, B. I., Shiuey, S. J. & Maurer, H. (1969). Biochemistry, 8, 238–245. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trávníček, Z., Maloň, M., Šindelář, Z., Doležal, K., Rolč\?ík, J., Kryštof, V., Strnad, M. & Marek, J. (2001). J. Inorg. Biochem. 84, 23–32. Google Scholar
Yadav, V., Chu, C. K., Rais, R. H., Al Safarjalani, O. N., Guarcello, V., Naguib, F. N. M. & el Kouni, M. H. (2004). J. Med. Chem. 47, 1987–1996. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.