research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isotypic one-dimensional coordination polymers: catena-poly[[di­chlorido­cadmium]-μ-5,6-bis­­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ato-κ2N5:N6] and catena-poly[[di­chlorido­mercury(II)]-μ-5,6-bis­­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ato-κ2N5:N6]

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInsitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Zeller, Purdue University, USA (Received 22 July 2016; accepted 25 July 2016; online 29 July 2016)

The isotypic title one-dimensional coordination polymers, [CdCl2(C18H14N4O4)]n, (I), and [HgCl2(C18H14N4O4)]n, (II), are, respectively, the cadmium(II) and mercury(II) complexes of the dimethyl ester of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid. In both compounds, the metal ions are located on a twofold rotation axis and a second such axis bis­ects the Car—Car bonds of the pyrazine ring. The metal ions are bridged by binding to the N atoms of the two pyridine rings and have an MN2Cl2 bisphenoidal coordination geometry. The metal–Npyrazine distances are much longer than the metal–Npyridine distances; the difference is 0.389 (2) Å for the Cd—N bonds but only 0.286 (5) Å for the Hg—N bond lengths. In the crystals of both compounds, the polymer chains are linked via pairs of C—H⋯Cl hydrogen bonds, forming corrugated slabs parallel to the ac plane.

1. Chemical context

The crystal structures of the dimethyl and diethyl esters of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (L1H2; Alfonso et al., 2001[Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184-1188.]) have been reported on recently (Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 233-237.]). They were originally synthesized to study the hydrolysis of these esters with first row transition metals (Alfonso, 1999[Alfonso, M. (1999). PhD thesis, University of Neuchâtel, Switzerland.]). Subsequent studies of their reaction with d10 or post-transition metals lead to the formation of the title compounds, and we report herein on the syntheses and crystal structures of the title isotypic cadmium(II) and mercury(II) coordination polymers.

[Scheme 1]

2. Structural commentary

In compounds (I)[link] and (II)[link], the metal atom is located on a twofold rotation axis and a second such axis bis­ects the Car—Car bonds of the pyrazine ring; as illustrated in Fig. 1[link] for the cadmium complex (I)[link], and in Fig. 2[link] for the mercury complex (II)[link]. Details of the bond lengths and bond angles involving the metal atoms are given in Table 1[link] for (I)[link], and in Table 2[link] for (II)[link]. The metal atoms are bridged by binding to the N atoms of the two pyridine rings, N2 and N2i; Cd1—N2 = 2.3862 (17) Å in (I)[link] and Hg1—N2 = 2.590 (5) Å in (II)[link]. The Cd1—Cl1 bonds [2.4137 (6) Å] are longer than the Hg1—Cl1 bonds [2.3464 (16) Å], while the reverse is true for the metal–Npyridine bonds: Cd1—N2 [2.3862 (17) Å] is shorter than Hg1—N2 [2.590 (5) Å]. The link to the pyrazine N atoms, N2 and N2i, is much weaker: Cd1⋯N1 = 2.7757 (17) Å and Hg1⋯N1 = 2.876 (5) Å. The difference in the metal–Npyrazine and metal–Npyridine bond lengths is 0.389 (2) Å for the Cd—N bonds but only 0.286 (5) Å for the Hg—N bonds (see Tables 1[link] and 2[link]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Cd1—Cl1 2.4137 (6) Cd1—N1 2.7757 (17)
Cd1—N2 2.3862 (17)    
       
Cl1i—Cd1—Cl1 142.43 (3) N2—Cd1—Cl1i 110.87 (4)
N2—Cd1—N2i 85.02 (8) N2—Cd1—Cl1 96.81 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}].

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Hg1—Cl1 2.3464 (16) Hg1—N1 2.876 (5)
Hg1—N2 2.590 (5)    
       
Cl1i—Hg1—Cl1 158.87 (12) Cl1i—Hg1—N2 102.86 (12)
N2—Hg1—N2i 83.1 (2) Cl1—Hg1—N2 92.97 (12)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling [symmetry codes: (a) −x + [{1\over 2}], y, −z + [{3\over 2}]; (b) −x + [{3\over 2}], y, −z + [{3\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling [symmetry codes: (a) −x + [{1\over 2}], y, −z + [{3\over 2}]; (b) −x + [{3\over 2}], y, −z + [{3\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.

The fourfold coordination geometry of the metal atoms differ slightly, as illustrated in Fig. 3[link] a structural overlap of the two compounds. In (I)[link] atom Cd1 has a τ4 parameter of 0.53, while for the Hg1 atom in (II)[link] the τ4 parameter = 0.30 (extreme values: τ4 = 0 for square-planar, 1 for tetra­hedral and 0.85 for trigonal–pyramidal geometry; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). When also considering the values of the Cl—M—Cl and N—M—N bond angles in both compounds (see Tables 1[link] and 2[link]), we conclude that both metal atoms (M) have a bisphenoidal MN2Cl2 coordination environment.

[Figure 3]
Figure 3
A view of the structural overlap of the cadmium complex (I)[link] in blue and the mercury complex (II)[link] in red; also illustrating the slight difference in the bisphenoidal coordination geometry of the two metal atoms (MN2Cl2).

In both compounds, the pyrazine rings (N1/C1/C2/N1i/C1i/C2i) are not ideally planar [r.m.s. deviations are 0.096 and 0.092 Å for (I)[link] and (II)[link], respectively] and have twist-boat-like conformations [puckering parameters: amplitude (Q) = 0.166 (2) Å, θ = 87.8 (7)°, φ = 270.0 (7)° for (I)[link], and amplitude (Q) = 0.160 (6) Å, θ = 90 (2)°, φ = 270 (2)° for (II)[link]; symmetry code: (i) −x + [{1\over 2}], y, −z + [{3\over 2}]].

The pyridine rings (N2/C3–C7), are inclined to the pyrazine ring mean planes by 40.58 (10)° in (I)[link] and 42.1 (3)° in (II)[link], and to one another by 67.37 (10)° in (I)[link] and 67.3 (3)° in (II)[link]. The methyl­carboxyl­ate groups (C9/O2/C8/O1) are planar to within 0.019 (2) Å for atom O2 in (I)[link] and 0.20 (7) Å for atom C8 in (II)[link]. Their mean planes are inclined to the mean plane of the pyrazine ring and to one another by 44.44 (16) and 68.8 (2)°, respectively, in (I)[link], and by 43.0 (3) and 75.7 (5)°, respectively, in (II)[link].

It can be seen from Fig. 4[link], a structural overlap of the ligand itself (Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 233-237.]) with the coordinating ligand in compound (I)[link], that both the pyridine ring involving atom N4, and the carboxyl­ate group, involving atoms O1 and O2, have been rotated by ca 100 and 160°, respectively, on coordination to the metal atom. While the pyrazine ring is ideally planar in the ligand (r.m.s. deviation = 0.032 Å), on coordination it is less planar with r.m.s. deviations of 0.096 and 0.092 Å for (I)[link] and (II)[link], respectively.

[Figure 4]
Figure 4
A view of the structural overlap of the ligand (Me2L, green; Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 233-237.]) and the coordinating ligand (blue) in compound (I)[link].

3. Supra­molecular features

In the crystals of both compounds, the polymer chains are linked via a pair of C—H⋯Cl hydrogen bonds, forming corrugated slabs parallel to the ac plane, as illustrated in Fig. 5[link]. Within the slabs, the hydrogen bonding forms R22(16) and R22(18) type loops, as shown in Fig. 6[link]. Details of the hydrogen bonding are given in Table 3[link] for compound (I)[link] and Table 4[link] for compound (II)[link]. There are no other significant inter­molecular inter­actions present for either structure.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl1ii 0.97 2.69 3.577 (3) 151
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl1ii 0.96 2.81 3.647 (9) 146
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 3[link]; only H atom H9A has been included).
[Figure 6]
Figure 6
A projection along the b axis of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 4[link]; only H atom H9A has been included).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for MN2Cl2 (where M = Cd and Hg; Npyridine) four-coordinate metal ions yielded eight hits for M = cadmium and 52 hits for M = mercury. For the cadmium complexes, the Cd—Cl bonds are consistently longer than the Cd—Npyridine bonds, and the Cl—Cd—Cl bond angles are consistently larger than the N—Cd—N bond angle, as in compound (I)[link]. A good example is di­chloridobis­{2-[(tri­phenyl­meth­yl)amino]­pyridine-κN}cadmium (VIWKIW; Zhang, 2008[Zhang, G.-N. (2008). Acta Cryst. E64, m357.]), with approximate bond lengths and bond angles of Cd—Cl = 2.387, Cd—N = 2.285 Å, Cl—Cd—Cl = 121.2 and N—Cd—N = 95.2 °.

For the mercury complexes, the Hg—Cl bond lengths are either longer or shorter than the Hg—Npyridine bond lengths. For example, in bis­(2-amino-3-methyl­pyridine)­dichlorido­mercury(II) (LEHMAO; Tadjarodi et al., 2012[Tadjarodi, A., Bijanzad, K. & Notash, B. (2012). Acta Cryst. E68, m1099.]) the approximate bond lengths and angles are Hg—Cl = 2.452, Hg—N = 2.267 Å, Cl—Hg—Cl = 119.9 and N—Hg—N = 101.3°, while in di­chlorido­bis­(3,3,3′,3′-tetra­methyl-2,2′,3,3′-tetra­hydro-1,1′-spiro­bi[indene]6,6′-diyl diisonicotinato)mercury (HUKTAJ; Lin et al., 2010[Lin, M.-J., Jouaiti, A., Kyritsakas, N. & Hosseini, M. W. (2010). Chem. Commun. 46, 115-117.]) the approximate bond lengths and angles are Hg—Cl = 2.345, Hg—N = 2.593 Å, Cl—Hg—Cl = 167.5 and N—Hg—N = 104.7°. This latter example is similar to the situation in compound (II)[link].

5. Synthesis and crystallization

The synthesis of the ligand dimethyl-5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ate (Me2L) has been reported on recently (Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 233-237.]).

Synthesis of compound (I): CdCl2·2H2O (22 mg, 0.1 mmol) in 25 ml of dry MeOH was slowly added to a solution of Me2L in 10 ml of dry MeOH. The colourless solution that formed was stirred at room temperature for 1 h, then filtered to remove any impurities. The filtrate was allowed to stand over several days until colourless square rod-like crystals were obtained (yield: 40 mg, 75%). Elemental analysis for C18H14N4CdCl2O4 (Mw = 533.63); calculated C 40.51, H 2.64, N 10.50%; found C 40.49, H 2.53, N 10.59%. Selected IR bands (KBr pellet, cm−1): ν = 3066(w), 2997(w), 1751(vs), 1593(m), 1568(w), 1549(w), 1479(m), 1450(m), 1403(m), 1339(s), 1297(m), 1273(m), 1261(m), 1228(s), 1193(m), 1177(m), 1162(m), 1120(m), 1109(w), 1088(s), 1009(m), 974(m), 918(w), 827(m), 803(m), 789(m), 770(w), 758(m), 554(m).

Synthesis of compound (II): Me2L (35 mg, 0.1 mmol) was added in solid form to a solution of HgCl2·2H2O (30 mg, 0.1 mmol) in 25 ml of dry MeOH. The colourless solution immediately obtained was stirred at room temperature for 2 h, filtered to remove any impurity, and the filtrate allowed to evaporate slowly. After two days colourless needle-like crystals were obtained (yield: 47mg, 76%). Elemental analysis for C18H14N4Cl2HgO4 (Mw = 621.82); calculated C 34.77, H 2.27, N 9.01%; found C 34.79, H 2.44, N 9.03%. Selected IR bands (KBr pellet, cm−1): ν = 3065(w), 2997(w), 2951(w), 2882(w), 1747(vs), 1590(m), 1568(m), 1546(w), 1477(m), 1447(m), 1402(m), 1338(s), 1279(m), 1223(s), 1195(m), 1176(s), 1105(w), 1086(s), 1003(m), 973(w), 827(w), 802(m), 788(m), 769(m), 755(m), 553(m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both compounds the C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H-atoms. For the mercury complex (II)[link], Rint = 0.000 as only one equivalent was measured.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [CdCl2(C18H14N4O4)] [HgCl2(C18H14N4O4)]
Mr 533.63 621.82
Crystal system, space group Monoclinic, P2/n Monoclinic, P2/n
Temperature (K) 223 293
a, b, c (Å) 7.8919 (7), 10.5898 (7), 12.0875 (12) 8.1042 (6), 10.6002 (16), 12.2063 (10)
β (°) 102.061 (11) 103.158 (7)
V3) 987.90 (15) 1021.07 (19)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.41 7.83
Crystal size (mm) 0.40 × 0.20 × 0.10 0.49 × 0.23 × 0.04
 
Data collection
Diffractometer Stoe IPDS 1 image-plate Stoe–Siemens AED2 four-circle
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) ψ scan (X-RED; Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.])
Tmin, Tmax 0.938, 1.000 0.319, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7196, 1918, 1684 1855, 1855, 1723
Rint 0.037 0.000
(sin θ/λ)max−1) 0.614 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 0.95 0.032, 0.074, 1.11
No. of reflections 1918 1855
No. of parameters 133 133
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.64 1.23, −1.08
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004) for (I); STADI4 Software (Stoe & Cie, 1997) for (II). Cell refinement: CELL in IPDS-I (Stoe & Cie, 2004) for (I); STADI4 Software (Stoe & Cie, 1997) for (II). Data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (I); X-RED Software (Stoe & Cie, 1997) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) catena-Poly[[dichloridocadmium(II)]-µ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato-κ2N5:N6] top
Crystal data top
[CdCl2(C18H14N4O4)]F(000) = 528
Mr = 533.63Dx = 1.794 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 7.8919 (7) ÅCell parameters from 5000 reflections
b = 10.5898 (7) Åθ = 2.0–25.9°
c = 12.0875 (12) ŵ = 1.41 mm1
β = 102.061 (11)°T = 223 K
V = 987.90 (15) Å3Plate, colourless
Z = 20.40 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS 1 image-plate
diffractometer
1918 independent reflections
Radiation source: fine-focus sealed tube1684 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.037
φ rotation scansθmax = 25.9°, θmin = 2.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 98
Tmin = 0.938, Tmax = 1.000k = 1212
7196 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
1918 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.75000.62102 (2)0.75000.02022 (8)
Cl10.91939 (8)0.69442 (6)0.92817 (4)0.03420 (15)
O10.5767 (3)0.92856 (19)0.83392 (17)0.0493 (5)
O20.3843 (2)0.97480 (15)0.67432 (14)0.0320 (4)
N10.4264 (2)0.68120 (17)0.79108 (14)0.0207 (4)
N20.6038 (2)0.45491 (16)0.82537 (14)0.0200 (4)
C10.3400 (3)0.7889 (2)0.76437 (17)0.0212 (4)
C20.3377 (3)0.5727 (2)0.77768 (16)0.0186 (4)
C30.4350 (3)0.45962 (19)0.82904 (15)0.0183 (4)
C40.3567 (3)0.3710 (2)0.88644 (17)0.0235 (4)
H40.23840.37740.88780.028*
C50.4558 (3)0.2725 (2)0.94191 (18)0.0280 (5)
H50.40580.21110.98130.034*
C60.6287 (3)0.2667 (2)0.93806 (19)0.0292 (5)
H60.69870.20070.97420.035*
C70.6976 (3)0.3592 (2)0.88040 (18)0.0254 (5)
H70.81630.35520.87940.030*
C80.4490 (3)0.9051 (2)0.7648 (2)0.0277 (5)
C90.4881 (4)1.0825 (3)0.6553 (3)0.0502 (8)
H9A0.44111.11830.58140.075*
H9B0.60651.05550.65870.075*
H9C0.48611.14560.71310.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01561 (12)0.02520 (13)0.01861 (12)0.0000.00071 (8)0.000
Cl10.0255 (3)0.0559 (4)0.0204 (3)0.0113 (3)0.0031 (2)0.0094 (2)
O10.0389 (11)0.0448 (11)0.0538 (12)0.0200 (9)0.0140 (9)0.0170 (9)
O20.0327 (9)0.0284 (8)0.0340 (9)0.0013 (7)0.0045 (7)0.0099 (7)
N10.0177 (9)0.0279 (9)0.0163 (8)0.0020 (8)0.0032 (7)0.0030 (7)
N20.0157 (9)0.0263 (9)0.0177 (8)0.0006 (7)0.0025 (7)0.0027 (7)
C10.0200 (11)0.0264 (11)0.0165 (10)0.0007 (9)0.0023 (8)0.0011 (8)
C20.0152 (11)0.0263 (10)0.0151 (9)0.0007 (9)0.0052 (8)0.0016 (8)
C30.0166 (11)0.0243 (10)0.0132 (9)0.0014 (8)0.0010 (8)0.0014 (8)
C40.0172 (10)0.0323 (11)0.0204 (10)0.0041 (10)0.0023 (8)0.0027 (9)
C50.0304 (13)0.0296 (12)0.0232 (11)0.0044 (10)0.0037 (9)0.0076 (9)
C60.0297 (13)0.0295 (12)0.0258 (12)0.0050 (10)0.0000 (10)0.0069 (9)
C70.0189 (11)0.0331 (13)0.0235 (11)0.0046 (9)0.0030 (9)0.0033 (9)
C80.0253 (13)0.0280 (12)0.0295 (12)0.0001 (9)0.0049 (10)0.0069 (9)
C90.0538 (19)0.0375 (15)0.0599 (18)0.0097 (13)0.0134 (15)0.0201 (13)
Geometric parameters (Å, º) top
Cd1—Cl1i2.4137 (6)C2—C2ii1.406 (4)
Cd1—Cl12.4137 (6)C2—C31.486 (3)
Cd1—N22.3862 (17)C3—C41.387 (3)
Cd1—N2i2.3862 (17)C4—C51.389 (3)
Cd1—N12.7757 (17)C4—H40.9400
O1—C81.193 (3)C5—C61.377 (4)
O2—C81.330 (3)C5—H50.9400
O2—C91.450 (3)C6—C71.378 (3)
N1—C11.333 (3)C6—H60.9400
N1—C21.337 (3)C7—H70.9400
N2—C31.343 (3)C9—H9A0.9700
N2—C71.346 (3)C9—H9B0.9700
C1—C1ii1.390 (4)C9—H9C0.9700
C1—C81.501 (3)
Cl1i—Cd1—Cl1142.43 (3)C3—C4—H4120.5
N2—Cd1—N2i85.02 (8)C5—C4—H4120.5
N2—Cd1—Cl1i110.87 (4)C6—C5—C4118.7 (2)
N2i—Cd1—Cl1i96.81 (4)C6—C5—H5120.7
N2—Cd1—Cl196.81 (4)C4—C5—H5120.7
N2i—Cd1—Cl1110.87 (4)C5—C6—C7118.9 (2)
C8—O2—C9115.7 (2)C5—C6—H6120.5
C1—N1—C2118.54 (18)C7—C6—H6120.5
C3—N2—C7117.28 (18)N2—C7—C6123.4 (2)
C3—N2—Cd1123.17 (13)N2—C7—H7118.3
C7—N2—Cd1118.96 (14)C6—C7—H7118.3
N1—C1—C1ii120.30 (13)O1—C8—O2125.7 (2)
N1—C1—C8115.93 (19)O1—C8—C1124.9 (2)
C1ii—C1—C8123.75 (12)O2—C8—C1109.33 (19)
N1—C2—C2ii119.71 (12)O2—C9—H9A109.5
N1—C2—C3115.48 (17)O2—C9—H9B109.5
C2ii—C2—C3124.75 (12)H9A—C9—H9B109.5
N2—C3—C4122.68 (18)O2—C9—H9C109.5
N2—C3—C2116.45 (17)H9A—C9—H9C109.5
C4—C3—C2120.60 (19)H9B—C9—H9C109.5
C3—C4—C5119.0 (2)
C2—N1—C1—C1ii7.2 (3)C2—C3—C4—C5174.32 (19)
C2—N1—C1—C8171.29 (18)C3—C4—C5—C60.1 (3)
C1—N1—C2—C2ii8.5 (3)C4—C5—C6—C70.6 (3)
C1—N1—C2—C3168.82 (18)C3—N2—C7—C60.8 (3)
C7—N2—C3—C40.0 (3)Cd1—N2—C7—C6172.27 (17)
Cd1—N2—C3—C4171.05 (15)C5—C6—C7—N21.2 (3)
C7—N2—C3—C2174.10 (18)C9—O2—C8—O15.2 (4)
Cd1—N2—C3—C23.0 (2)C9—O2—C8—C1172.5 (2)
N1—C2—C3—N236.1 (2)N1—C1—C8—O141.0 (3)
C2ii—C2—C3—N2146.7 (2)C1ii—C1—C8—O1140.6 (3)
N1—C2—C3—C4138.1 (2)N1—C1—C8—O2136.7 (2)
C2ii—C2—C3—C439.0 (3)C1ii—C1—C8—O241.7 (3)
N2—C3—C4—C50.5 (3)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl1iii0.972.693.577 (3)151
Symmetry code: (iii) x1/2, y+2, z1/2.
(II) catena-Poly[[dichloridomercury(II)]-µ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato-κ2N5:N6] top
Crystal data top
[HgCl2(C18H14N4O4)]F(000) = 592
Mr = 621.82Dx = 2.023 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 8.1042 (6) ÅCell parameters from 31 reflections
b = 10.6002 (16) Åθ = 12.5–15.9°
c = 12.2063 (10) ŵ = 7.83 mm1
β = 103.158 (7)°T = 293 K
V = 1021.07 (19) Å3Plate, colourless
Z = 20.49 × 0.23 × 0.04 mm
Data collection top
Stoe–Siemens AED2 four-circle
diffractometer
1723 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Plane graphite monochromatorθmax = 25.2°, θmin = 2.6°
ω/\2q scansh = 99
Absorption correction: ψ scan
(X-RED software; Stoe & Cie, 1997)
k = 012
Tmin = 0.319, Tmax = 1.000l = 014
1855 measured reflections2 standard reflections every 60 min
1855 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.028P)2 + 4.815P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 1.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.75000.64352 (4)0.75000.03521 (13)
Cl10.9248 (2)0.6841 (2)0.92787 (14)0.0574 (5)
O10.5742 (7)0.9336 (6)0.8357 (5)0.0780 (19)
O20.3825 (7)0.9822 (5)0.6779 (4)0.0557 (13)
N10.4215 (6)0.6897 (5)0.7942 (4)0.0319 (11)
N20.5940 (6)0.4607 (5)0.8247 (4)0.0341 (12)
C10.3392 (7)0.7964 (6)0.7663 (5)0.0315 (13)
C20.3366 (7)0.5809 (6)0.7789 (4)0.0279 (12)
C30.4304 (7)0.4674 (6)0.8294 (4)0.0289 (12)
C40.3561 (7)0.3796 (6)0.8876 (5)0.0365 (15)
H40.24280.38740.89030.044*
C50.4514 (9)0.2810 (7)0.9412 (5)0.0467 (17)
H50.40300.22070.97950.056*
C60.6207 (9)0.2725 (7)0.9373 (6)0.0463 (17)
H60.68860.20700.97290.056*
C70.6856 (8)0.3655 (7)0.8783 (5)0.0419 (16)
H70.79950.36090.87610.050*
C80.4467 (9)0.9113 (7)0.7670 (6)0.0432 (16)
C90.4826 (13)1.0900 (9)0.6588 (9)0.084 (3)
H9A0.44771.11610.58170.126*
H9B0.60031.06710.67520.126*
H9C0.46611.15810.70700.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02386 (18)0.0439 (2)0.03582 (19)0.0000.00254 (12)0.000
Cl10.0379 (9)0.0962 (16)0.0361 (8)0.0145 (10)0.0041 (7)0.0109 (9)
O10.061 (4)0.065 (4)0.090 (4)0.029 (3)0.022 (3)0.019 (3)
O20.053 (3)0.045 (3)0.067 (3)0.007 (3)0.010 (3)0.018 (3)
N10.023 (2)0.036 (3)0.037 (3)0.003 (2)0.008 (2)0.004 (2)
N20.025 (2)0.040 (3)0.036 (3)0.000 (2)0.006 (2)0.003 (2)
C10.031 (3)0.028 (3)0.036 (3)0.001 (3)0.008 (2)0.003 (3)
C20.022 (3)0.037 (3)0.028 (3)0.003 (3)0.011 (2)0.001 (3)
C30.027 (3)0.031 (3)0.027 (3)0.001 (2)0.004 (2)0.000 (2)
C40.024 (3)0.046 (4)0.039 (3)0.002 (3)0.007 (2)0.003 (3)
C50.048 (4)0.053 (5)0.036 (3)0.005 (4)0.002 (3)0.008 (3)
C60.044 (4)0.044 (4)0.045 (4)0.011 (3)0.001 (3)0.014 (3)
C70.028 (3)0.054 (4)0.042 (3)0.009 (3)0.005 (3)0.010 (3)
C80.041 (4)0.038 (4)0.051 (4)0.003 (3)0.009 (3)0.003 (3)
C90.092 (7)0.055 (6)0.105 (8)0.020 (5)0.022 (6)0.031 (5)
Geometric parameters (Å, º) top
Hg1—Cl1i2.3464 (16)C2—C2ii1.420 (11)
Hg1—Cl12.3464 (16)C2—C31.480 (8)
Hg1—N22.590 (5)C3—C41.389 (8)
Hg1—N2i2.590 (5)C4—C51.373 (9)
Hg1—N12.876 (5)C4—H40.9300
O1—C81.197 (8)C5—C61.386 (10)
O2—C81.327 (8)C5—H50.9300
O2—C91.450 (9)C6—C71.393 (10)
N1—C11.317 (8)C6—H60.9300
N1—C21.334 (8)C7—H70.9300
N2—C71.333 (8)C9—H9A0.9600
N2—C31.342 (7)C9—H9B0.9600
C1—C1ii1.409 (12)C9—H9C0.9600
C1—C81.497 (9)
Cl1i—Hg1—Cl1158.87 (12)C5—C4—H4120.3
N2—Hg1—N2i83.1 (2)C3—C4—H4120.3
Cl1i—Hg1—N2102.86 (12)C4—C5—C6119.1 (7)
Cl1—Hg1—N292.97 (12)C4—C5—H5120.4
Cl1i—Hg1—N2i92.97 (12)C6—C5—H5120.4
Cl1—Hg1—N2i102.86 (12)C5—C6—C7117.7 (6)
C8—O2—C9116.6 (6)C5—C6—H6121.1
C1—N1—C2119.4 (5)C7—C6—H6121.1
C7—N2—C3117.7 (5)N2—C7—C6123.8 (6)
C7—N2—Hg1118.5 (4)N2—C7—H7118.1
C3—N2—Hg1122.8 (4)C6—C7—H7118.1
N1—C1—C1ii120.0 (3)O1—C8—O2125.3 (7)
N1—C1—C8115.9 (5)O1—C8—C1125.0 (7)
C1ii—C1—C8124.0 (4)O2—C8—C1109.7 (6)
N1—C2—C2ii119.3 (3)O2—C9—H9A109.5
N1—C2—C3116.4 (5)O2—C9—H9B109.5
C2ii—C2—C3124.2 (3)H9A—C9—H9B109.5
N2—C3—C4122.3 (5)O2—C9—H9C109.5
N2—C3—C2116.4 (5)H9A—C9—H9C109.5
C4—C3—C2121.1 (5)H9B—C9—H9C109.5
C5—C4—C3119.4 (6)
C2—N1—C1—C1ii7.6 (10)C2—C3—C4—C5174.7 (6)
C2—N1—C1—C8169.7 (5)C3—C4—C5—C61.0 (10)
C1—N1—C2—C2ii7.3 (9)C4—C5—C6—C70.2 (11)
C1—N1—C2—C3170.0 (5)C3—N2—C7—C60.8 (10)
C7—N2—C3—C40.1 (9)Hg1—N2—C7—C6169.5 (6)
Hg1—N2—C3—C4168.1 (4)C5—C6—C7—N20.7 (11)
C7—N2—C3—C2174.1 (5)C9—O2—C8—O14.7 (12)
Hg1—N2—C3—C25.9 (7)C9—O2—C8—C1173.0 (7)
N1—C2—C3—N238.4 (7)N1—C1—C8—O139.6 (10)
C2ii—C2—C3—N2144.5 (7)C1ii—C1—C8—O1143.2 (9)
N1—C2—C3—C4135.7 (6)N1—C1—C8—O2138.2 (6)
C2ii—C2—C3—C441.5 (9)C1ii—C1—C8—O239.0 (10)
N2—C3—C4—C51.0 (9)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl1iii0.962.813.647 (9)146
Symmetry code: (iii) x1/2, y+2, z1/2.
 

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationAlfonso, M. (1999). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAlfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 233–237.  CrossRef IUCr Journals Google Scholar
First citationAlfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184–1188.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, M.-J., Jouaiti, A., Kyritsakas, N. & Hosseini, M. W. (2010). Chem. Commun. 46, 115–117.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationStoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTadjarodi, A., Bijanzad, K. & Notash, B. (2012). Acta Cryst. E68, m1099.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, G.-N. (2008). Acta Cryst. E64, m357.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds