research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three substituted 3-aryl-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 10 May 2016; accepted 6 July 2016; online 12 July 2016)

Three ring-substituted 3-aryl analogs of 2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one, namely 3-(4-meth­oxy­phen­yl)-2-phenyl-4H-1,3-benzo­thia­zin-4-one, C21H17NO2S, (I), 2-phenyl-3-[4-(tri­fluoro­meth­yl)phen­yl]-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one toluene hemisolvate, C21H14F3NOS·0.5C7H8, (II), and 3-(3-bromo­phen­yl)-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one toluene hemisolvate, C20H14BrNOS·0.5C7H8, (III), were synthesized and their crystal structures determined. The hemisolvates differ in that in (II), the asymmetric unit comprises two molecules of the benzo­thia­zinone compound and a toluene solvent mol­ecule, whereas in (III), the unit comprises one benzo­thia­zinone mol­ecule and a half-occupancy toluene solvent mol­ecule. All crystals are of racemic mixtures of the chiral 2-C atom of the thia­zine moiety, which in all structures has a screw-boat puckering, with the puckering amplitude values within the range 0.575–0.603 Å. In all three structures, the benzene plane of the benzo­thia­zine system makes a dihedral angle in the range 78.60 (5) to 98.40 (5)° with the unsubstituted benzene plane and in the range 70.50 (1) to 121.00 (5)° with the substituted benzene plane. The CF3 substituent group in one of the mol­ecules of (II) shows positional disorder, with an occupancy ratio of 0.57 (3):0.43 (3). In the crystals of (I) and (II), weak inter­molecular C—H⋯O inter­actions are present, giving in (I), mol­ecules arranged in a plane parallel to (010), and in (II), chains along a. In addition, all three structures show weak C—H⋯π inter­actions involving various aromatic rings.

1. Chemical context

We have previously reported the crystal structures of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]) and three 2-aryl-3-phenyl-2,3-di­hydro-4H-1,3-benzo­­thia­zin-4-ones (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.]). In the pre­sent communication, we report the synthesis and crystal structures of three ring-substituted 3-aryl-2-phenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-ones, namely the 4-meth­oxy­phenyl com­pound, (I)[link], the 4-(tri­fluoro­meth­yl)phenyl com­pound as the toluene hemisolvate, (II)[link], and the 4-bromo­phenyl compound as the toluene hemisolvate, (III)[link]. However, (II)[link] and (III)[link] differ in that the asymmetric unit of (II)[link] comprises two independent benzo­thia­zinone mol­ecules and one toluene solvent mol­ecule, while that of (III)[link] comprises one benzo­thia­zinone mol­ecule and a half-occupancy toluene solvent mol­ecule. Each compound has been synthesized using the same T3P/pyridine (T3P is 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane 2,4,6-trioxide) method that was used for the preparation of the previously mentioned analogous compounds (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.]).

[Scheme 1]

2. Structural commentary

The three benzo­thia­zinones (Figs. 1[link]–3[link][link]) exhibit fairly similar conformations. In all three, the thia­zine ring pucker is screw-boat, with θ between 63.0 and 67.1°, and puckering amplitudes within the range 0.575–0.603 Å. The inter­planar angle between the benzene ring of the benzo­thia­zine system and the substituent benzene rings at the 2-position are 82.68 (6)° in (I)[link], 95.69 (5) and 78.10 (5)° in (II)[link], and 98.37 (1)° in (III)[link]. Those with the benzene rings at the 3-position are 59.10 (6)° in (I)[link], 70.56 (5) and 72.26 (5)° in (II)[link], and 78.66 (1)° in (III)[link]. The CF3 substituent group in one of the mol­ecules of (II)[link] shows positional disorder, with an occupancy ratio of 0.57 (3):0.43 (3).

[Figure 1]
Figure 1
The mol­ecular conformation and atom-numbering scheme for (I)[link], with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular conformation and atom-numbering scheme for (II)[link], with non-H atoms shown as 50% probability displacement ellipsoids. The minor component of the disordered CF3 group is not shown.
[Figure 3]
Figure 3
The mol­ecular conformation and atom-numbering scheme for (III)[link], with non-H atoms shown as 50% probability ellipsoids. The partial-occupancy disordered toluene solvent mol­ecule has a site occupancy of 0.50.

3. Supra­molecular features

In (I)[link] and (II)[link], weak inter­molecular C—H⋯O inter­actions are observed (Tables 1[link] and 2[link], respectively), giving in (I)[link], mol­ecules arranged in a plane parallel to (010) (Fig. 4[link]), and in (II)[link], chains along the a-axis direction (Fig. 5[link]). The crystals also feature T-type C—H⋯π inter­actions (Tables 1[link]–3[link][link]), as analyzed using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). In (I)[link], a weak C—H⋯Cg(π ring) inter­action of 3.8068 (10) Å is present with an inter­acting angle of 148°. In (II)[link], the toluene mol­ecule participates in tilted-T-type inter­actions by placing itself obliquely between phenyl rings of the two enanti­omers, with C—H⋯Cg(toluene) distances of 3.5916 (7) and 3.6009 (7) Å, with inter­acting angles of 145 and 147°, respectively. In (III)[link], two C—H⋯π inter­actions, one between the thia­zine ring and the toluene solvent mol­ecule and the other between the fused benzene ring and the 2-phenyl ring, have C—H⋯Cg distances of 3.5802 (6) and 3.6823 (6) Å, with inter­acting angles of 156 and 153°, respectively (Fig. 6[link]). Structure (I)[link] also shows a very weak parallel-displaced ππ inter­action between symmetry-related benzene rings, with an inter-centroid (Cg⋯Cg) distance of 3.977 (1) Å and an inter­planar angle of 8°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

CgX = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.59 3.447 (2) 154
C5—H5⋯O2ii 0.93 2.46 3.387 (2) 173
C21—H21ACg4iii 0.96 2.96 3.8068 (10) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

CgX = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.98 2.25 3.2053 (7) 165
C22—H22⋯O1i 0.98 2.34 3.3140 (7) 171
C17—H17⋯Cg9 0.93 2.79 3.5916 (7) 145
C38—H38⋯Cg9ii 0.93 2.78 3.6009 (7) 147
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

CgX = center of gravity of ring X; D—H⋯CgX = angle of the D—H bond with the π plane

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg5 0.98 2.66 3.5802 (6) 156
C6—H6⋯Cg3i 0.93 2.83 3.6823 (6) 153
Symmetry code: (i) -x-1, -y, -z.
[Figure 4]
Figure 4
The crystal packing of (I)[link] in the unit cell, viewed along b, showing C—H⋯O hydrogen bonds as dashed lines.
[Figure 5]
Figure 5
The crystal packing of (II)[link] in the unit cell, viewed along b, showing C—H⋯O hydrogen bonds as dashed lines.
[Figure 6]
Figure 6
A perspective view of the crystal packing of (III)[link], with the half-occupancy toluene solvent mol­ecules shown as dashed bonds.

4. Database survey

The three structures reported here and four previously reported analogous structures (Yennawar et al., 2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.], 2015[Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414-417.]) have very similar screw-boat puckering for the thia­zine ring. Among the seven crystal structures, the variation in the inter­planar angles between the benzene ring of the benzo­thia­zine moiety and the two substituent benzene rings at positions 2 and 3 lie within 26 and 30°, respectively. A structure for 2-(5-methyl­thio­phen-2-yl)-3-phenyl-2,3-di­hydro­quin­az­olin-4(1H)-one has been reported in a patent application (Atwood et al., 2015[Atwood, W., Nelson, C., Sello, J. K. & William, D. (2015). US Patent Appl. 2015/0166517 A1.]).

5. Synthesis and crystallization

A two-necked 25 ml round-bottomed flask was oven-dried, cooled under N2 and charged with a stir bar and an N-aryl-C-phenylimine (6 mmol). Tetra­hydro­furan or 2-methyl­tetra­hydro­furan (2.3 ml) was added, the solid dissolved and the solution stirred. Pyridine (1.95 ml, 24 mmol) was added, followed by thio­salicylic acid (0.93 g, 6 mmol). Finally, 2,4,6-tri­propyl-1,3,5,2,4,6-trioxatri­phospho­rinane 2,4,6-tri­ox­ide (T3P) in 2-methyl­tetra­hydro­furan (50 wt%, 7.3 ml, 12 mmol) was added. The mixture was stirred at room temperature and the reaction was followed using thin-layer chromatography. The mixture was then poured into a separatory funnel and di­chloro­methane and distilled water were added. The layers were separated and the aqueous layer was then extracted twice with di­chloro­methane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic extract was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed on 30 g of flash silica gel using mixtures of ethyl acetate and hexa­nes, and then further purified as indicated below.

Compound (I)[link] was recrystallized from ethanol solution to give yellow crystals (yield 0.72 g, 34.6%; m.p. 365–369 K). RF = 0.52 (50% ethyl acetate/hexa­nes). Colorless block-shaped crystals suitable for the X-ray analysis were grown by slow evaporation from ethanol solution.

Compound (II)[link] was recrystallized from methyl­ene chloride/hexa­nes to give yellow crystals (yield 0.5639 g, 24.4%; m.p. 404–406 K). RF = 0.56 (30% ethyl acetate/hexa­nes solution). Colorless needle-shaped crystals suitable for the X-ray analysis were grown by slow evaporation from toluene solution.

Compound (III)[link] was triturated with hexa­nes solution to give a solid (0.7242 g) and then recrystallized from toluene/hexa­nes to give white crystals (yield 0.3544 g, 14.5%; m.p.: 358–359 K). RF = 0.39 (20% ethyl acetate/hexa­nes). A second crop of 0.30 g (12.7%) was obtained by slow evaporation of the mother liquor, giving colorless blocks suitable for the X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In the refinement of (II)[link], the two mol­ecules in the asymmetric unit were restrained using the SAME command in SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). One of the mol­ecules shows positional disorder in the –CF3 group, with the occupancy ratio refining to 0.57 (3):0.43 (3). We tried to address the high R values (relative to Rint) by looking for twinning and using restraints but we have had no success in achieving respectable R values. In (III)[link], the disordered partial toluene mol­ecule was refined with a site-occupancy factor determined as 0.50 and with positional constraints (AFIX 6). In all three compounds, the H atoms were placed geometrically and allowed to ride on the C atoms during refinement, with C—H distances of 0.98 (methine), 0.96 (meth­yl) or 0.93 Å (aromatic) and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C21H17NO2S 2C21H14F3NOS·C7H8 2C20H14BrNOS·C7H8
Mr 347.42 862.92 884.72
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 298 298 298
a, b, c (Å) 17.820 (4), 11.016 (3), 17.890 (4) 11.953 (2), 14.516 (3), 24.546 (5) 15.736 (2), 9.3530 (15), 27.259 (4)
β (°) 98.385 (5) 101.024 (4) 99.560 (3)
V3) 3474.4 (15) 4180.5 (14) 3956.2 (10)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.20 2.20
Crystal size (mm) 0.26 × 0.24 × 0.12 0.29 × 0.09 × 0.07 0.21 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker CCD area-detector Bruker CCD area-detector Bruker CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.940, 0.986 0.592, 0.920 0.103, 0.901
No. of measured, independent and observed reflections 15005, 4284, 3414 [I > 2σ(I)] 39335, 10359, 8329 [I > 2σ(I)] 18289, 4903, 2424 [I > 2σ(I)]
Rint 0.024 0.052 0.064
(sin θ/λ)max−1) 0.666 0.668 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.05 0.133, 0.240, 1.31 0.049, 0.153, 0.79
No. of reflections 4284 10359 4903
No. of parameters 227 580 266
No. of restraints 0 74 186
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.37 0.48, −0.34 0.73, −0.71
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL97 (Sheldrick, 2008) for (II); SHELXL014 (Sheldrick, 2015) for (III). For all compounds, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) 3-(4-Methoxyphenyl)-2-phenyl-4H-1,3-benzothiazin-4-one top
Crystal data top
C21H17NO2SF(000) = 1456
Mr = 347.42Dx = 1.328 Mg m3
Monoclinic, C2/cMelting point = 365–369 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.820 (4) ÅCell parameters from 4847 reflections
b = 11.016 (3) Åθ = 2.3–28.3°
c = 17.890 (4) ŵ = 0.20 mm1
β = 98.385 (5)°T = 298 K
V = 3474.4 (15) Å3Block, colorless
Z = 80.26 × 0.24 × 0.12 mm
Data collection top
Bruker CCD area-detector
diffractometer
4284 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2023
Tmin = 0.940, Tmax = 0.986k = 1414
15005 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.7957P]
where P = (Fo2 + 2Fc2)/3
4284 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Experimental. Absorption correction: SADABS (Bruker, 2001) was used for absorption correction. R(int) was 0.0415 before and 0.0233 after correction. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17986 (7)0.37162 (13)0.33545 (8)0.0429 (3)
H10.18120.33320.38500.052*
C20.28205 (7)0.42680 (12)0.26124 (7)0.0387 (3)
C30.22572 (8)0.41320 (12)0.19132 (8)0.0411 (3)
C40.16382 (8)0.33411 (13)0.18637 (8)0.0453 (3)
C50.11974 (9)0.31295 (16)0.11634 (10)0.0604 (4)
H50.07930.25880.11260.072*
C60.13587 (11)0.3717 (2)0.05331 (10)0.0709 (5)
H60.10680.35650.00680.085*
C70.19525 (11)0.4538 (2)0.05825 (10)0.0689 (5)
H70.20470.49570.01550.083*
C80.24026 (9)0.47316 (15)0.12662 (8)0.0529 (4)
H80.28080.52700.12950.063*
C90.12871 (7)0.48211 (12)0.33619 (7)0.0395 (3)
C100.15308 (9)0.59940 (14)0.32618 (9)0.0491 (3)
H100.20230.61310.31680.059*
C110.10443 (10)0.69663 (15)0.33011 (10)0.0571 (4)
H110.12130.77520.32320.068*
C120.03146 (10)0.67779 (16)0.34414 (10)0.0578 (4)
H120.00100.74330.34690.069*
C130.00683 (9)0.56148 (16)0.35406 (10)0.0562 (4)
H130.04250.54840.36350.067*
C140.05456 (8)0.46423 (15)0.35005 (8)0.0484 (3)
H140.03720.38590.35670.058*
C150.31352 (7)0.39619 (13)0.39612 (7)0.0405 (3)
C160.34533 (10)0.28627 (14)0.42046 (9)0.0530 (4)
H160.33290.21650.39210.064*
C170.39550 (10)0.27956 (15)0.48685 (9)0.0568 (4)
H170.41670.20530.50310.068*
C180.41438 (8)0.38303 (14)0.52936 (7)0.0441 (3)
C190.38413 (9)0.49301 (14)0.50441 (9)0.0499 (4)
H190.39750.56320.53200.060*
C200.33346 (8)0.49867 (13)0.43761 (9)0.0492 (4)
H200.31280.57310.42090.059*
C210.48531 (10)0.46879 (18)0.64109 (9)0.0625 (5)
H21A0.50660.52950.61190.094*
H21B0.52240.44480.68290.094*
H21C0.44160.50140.65980.094*
N10.25868 (6)0.39985 (11)0.32831 (6)0.0424 (3)
O10.34743 (5)0.45779 (10)0.25787 (6)0.0511 (3)
O20.46342 (7)0.36572 (11)0.59465 (6)0.0601 (3)
S10.14215 (2)0.25763 (3)0.26647 (3)0.05493 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (7)0.0455 (7)0.0465 (7)0.0048 (6)0.0049 (6)0.0087 (6)
C20.0370 (7)0.0353 (6)0.0438 (7)0.0003 (5)0.0057 (5)0.0008 (5)
C30.0392 (7)0.0404 (7)0.0431 (7)0.0045 (6)0.0043 (5)0.0041 (5)
C40.0393 (7)0.0398 (7)0.0558 (8)0.0048 (6)0.0040 (6)0.0100 (6)
C50.0439 (8)0.0628 (10)0.0712 (11)0.0028 (8)0.0025 (7)0.0260 (9)
C60.0614 (11)0.0961 (15)0.0507 (9)0.0139 (10)0.0065 (8)0.0204 (9)
C70.0690 (12)0.0926 (14)0.0445 (8)0.0150 (11)0.0065 (8)0.0023 (9)
C80.0531 (9)0.0593 (9)0.0465 (8)0.0037 (7)0.0083 (7)0.0012 (7)
C90.0349 (6)0.0451 (7)0.0379 (6)0.0037 (6)0.0031 (5)0.0028 (5)
C100.0403 (7)0.0490 (8)0.0594 (8)0.0051 (6)0.0116 (6)0.0050 (7)
C110.0588 (10)0.0440 (8)0.0702 (10)0.0028 (7)0.0151 (8)0.0016 (7)
C120.0535 (9)0.0549 (9)0.0662 (10)0.0077 (8)0.0126 (8)0.0030 (8)
C130.0381 (8)0.0645 (10)0.0678 (10)0.0003 (7)0.0135 (7)0.0004 (8)
C140.0399 (7)0.0506 (8)0.0556 (8)0.0065 (6)0.0097 (6)0.0043 (6)
C150.0350 (7)0.0462 (7)0.0398 (6)0.0015 (6)0.0040 (5)0.0035 (5)
C160.0606 (10)0.0422 (8)0.0521 (8)0.0055 (7)0.0059 (7)0.0043 (6)
C170.0659 (10)0.0439 (8)0.0553 (9)0.0126 (7)0.0089 (8)0.0021 (7)
C180.0383 (7)0.0537 (8)0.0397 (6)0.0043 (6)0.0039 (5)0.0015 (6)
C190.0502 (8)0.0452 (8)0.0521 (8)0.0014 (6)0.0001 (7)0.0062 (6)
C200.0476 (8)0.0415 (8)0.0558 (8)0.0054 (6)0.0015 (7)0.0037 (6)
C210.0509 (9)0.0859 (13)0.0483 (8)0.0029 (9)0.0013 (7)0.0147 (8)
N10.0325 (6)0.0506 (7)0.0432 (6)0.0013 (5)0.0028 (4)0.0065 (5)
O10.0384 (5)0.0636 (7)0.0520 (6)0.0094 (5)0.0083 (4)0.0003 (5)
O20.0631 (7)0.0654 (7)0.0461 (6)0.0108 (6)0.0111 (5)0.0018 (5)
S10.0508 (2)0.0384 (2)0.0756 (3)0.00997 (16)0.00913 (19)0.00040 (17)
Geometric parameters (Å, º) top
C1—N11.4622 (17)C11—H110.9300
C1—C91.522 (2)C12—C131.374 (2)
C1—S11.8192 (15)C12—H120.9300
C1—H10.9800C13—C141.376 (2)
C2—O11.2240 (16)C13—H130.9300
C2—N11.3591 (18)C14—H140.9300
C2—C31.4929 (18)C15—C201.369 (2)
C3—C81.389 (2)C15—C161.380 (2)
C3—C41.398 (2)C15—N11.4432 (17)
C4—C51.398 (2)C16—C171.380 (2)
C4—S11.7533 (16)C16—H160.9300
C5—C61.367 (3)C17—C181.384 (2)
C5—H50.9300C17—H170.9300
C6—C71.385 (3)C18—O21.3661 (17)
C6—H60.9300C18—C191.374 (2)
C7—C81.378 (2)C19—C201.390 (2)
C7—H70.9300C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.383 (2)C21—O21.427 (2)
C9—C141.3935 (19)C21—H21A0.9600
C10—C111.386 (2)C21—H21B0.9600
C10—H100.9300C21—H21C0.9600
C11—C121.376 (2)
N1—C1—C9114.51 (11)C13—C12—H12120.2
N1—C1—S1110.61 (10)C11—C12—H12120.2
C9—C1—S1113.29 (9)C12—C13—C14120.51 (15)
N1—C1—H1105.9C12—C13—H13119.7
C9—C1—H1105.9C14—C13—H13119.7
S1—C1—H1105.9C13—C14—C9120.56 (15)
O1—C2—N1121.40 (12)C13—C14—H14119.7
O1—C2—C3121.02 (12)C9—C14—H14119.7
N1—C2—C3117.56 (12)C20—C15—C16119.35 (13)
C8—C3—C4118.99 (13)C20—C15—N1121.54 (12)
C8—C3—C2117.78 (13)C16—C15—N1119.10 (12)
C4—C3—C2122.92 (13)C15—C16—C17120.20 (14)
C5—C4—C3119.71 (15)C15—C16—H16119.9
C5—C4—S1119.37 (13)C17—C16—H16119.9
C3—C4—S1120.89 (11)C16—C17—C18120.24 (14)
C6—C5—C4120.15 (17)C16—C17—H17119.9
C6—C5—H5119.9C18—C17—H17119.9
C4—C5—H5119.9O2—C18—C19124.93 (14)
C5—C6—C7120.48 (16)O2—C18—C17115.38 (13)
C5—C6—H6119.8C19—C18—C17119.68 (13)
C7—C6—H6119.8C18—C19—C20119.59 (14)
C8—C7—C6119.88 (17)C18—C19—H19120.2
C8—C7—H7120.1C20—C19—H19120.2
C6—C7—H7120.1C15—C20—C19120.91 (14)
C7—C8—C3120.71 (16)C15—C20—H20119.5
C7—C8—H8119.6C19—C20—H20119.5
C3—C8—H8119.6O2—C21—H21A109.5
C10—C9—C14118.62 (14)O2—C21—H21B109.5
C10—C9—C1123.11 (12)H21A—C21—H21B109.5
C14—C9—C1118.24 (13)O2—C21—H21C109.5
C9—C10—C11120.31 (14)H21A—C21—H21C109.5
C9—C10—H10119.8H21B—C21—H21C109.5
C11—C10—H10119.8C2—N1—C15119.41 (11)
C12—C11—C10120.50 (15)C2—N1—C1123.07 (11)
C12—C11—H11119.8C15—N1—C1117.51 (10)
C10—C11—H11119.8C18—O2—C21118.24 (13)
C13—C12—C11119.50 (16)C4—S1—C196.84 (7)
O1—C2—C3—C820.9 (2)N1—C15—C16—C17177.27 (15)
N1—C2—C3—C8161.10 (13)C15—C16—C17—C180.1 (3)
O1—C2—C3—C4152.55 (14)C16—C17—C18—O2178.86 (16)
N1—C2—C3—C425.42 (19)C16—C17—C18—C191.3 (3)
C8—C3—C4—C52.6 (2)O2—C18—C19—C20178.67 (14)
C2—C3—C4—C5170.80 (13)C17—C18—C19—C201.5 (2)
C8—C3—C4—S1179.16 (11)C16—C15—C20—C191.2 (2)
C2—C3—C4—S17.43 (18)N1—C15—C20—C19177.45 (13)
C3—C4—C5—C61.7 (2)C18—C19—C20—C150.3 (2)
S1—C4—C5—C6179.94 (13)O1—C2—N1—C156.1 (2)
C4—C5—C6—C70.8 (3)C3—C2—N1—C15171.89 (12)
C5—C6—C7—C82.4 (3)O1—C2—N1—C1175.13 (13)
C6—C7—C8—C31.5 (3)C3—C2—N1—C16.91 (19)
C4—C3—C8—C71.0 (2)C20—C15—N1—C286.36 (17)
C2—C3—C8—C7172.71 (14)C16—C15—N1—C295.04 (17)
N1—C1—C9—C103.89 (19)C20—C15—N1—C194.78 (16)
S1—C1—C9—C10124.24 (13)C16—C15—N1—C183.83 (17)
N1—C1—C9—C14173.97 (12)C9—C1—N1—C280.00 (16)
S1—C1—C9—C1457.90 (15)S1—C1—N1—C249.48 (16)
C14—C9—C10—C110.1 (2)C9—C1—N1—C15101.18 (14)
C1—C9—C10—C11177.71 (14)S1—C1—N1—C15129.34 (11)
C9—C10—C11—C120.1 (3)C19—C18—O2—C210.1 (2)
C10—C11—C12—C130.2 (3)C17—C18—O2—C21179.91 (15)
C11—C12—C13—C140.0 (3)C5—C4—S1—C1152.63 (12)
C12—C13—C14—C90.3 (2)C3—C4—S1—C129.14 (12)
C10—C9—C14—C130.3 (2)N1—C1—S1—C454.14 (10)
C1—C9—C14—C13177.63 (13)C9—C1—S1—C475.99 (10)
C20—C15—C16—C171.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg(X) = center of gravity of ring (X); D—H···CgX = angle of the D—H bond with the π plane
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.593.447 (2)154
C21—H21B···O1ii0.962.633.352 (2)132
C5—H5···O2iii0.932.463.387 (2)173
C21—H21A···Cg4iv0.962.963.8068 (10)148
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+3/2, z+1.
(II) 2-Phenyl-3-[4-(trifluoromethyl)phenyl]-2,3-dihydro-4H-1,3-benzothiazin-4-one toluene hemisolvate top
Crystal data top
2C21H14F3NOS·C7H8Dx = 1.371 Mg m3
Mr = 862.92Melting point = 404–406 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.953 (2) ÅCell parameters from 6665 reflections
b = 14.516 (3) Åθ = 2.2–28.2°
c = 24.546 (5) ŵ = 0.20 mm1
β = 101.024 (4)°T = 298 K
V = 4180.5 (14) Å3Needle, colourless
Z = 40.29 × 0.09 × 0.07 mm
F(000) = 1784
Data collection top
Bruker CCD area-detector
diffractometer
10359 independent reflections
Radiation source: fine-focus sealed tube8329 reflections with I > 2˘I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.592, Tmax = 0.920k = 1919
39335 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.133H-atom parameters constrained
wR(F2) = 0.240 w = 1/[σ2(Fo2) + (0.0482P)2 + 8.2026P]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.001
10359 reflectionsΔρmax = 0.48 e Å3
580 parametersΔρmin = 0.34 e Å3
74 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Special details top

Experimental. Absorption correction: SADABS (Bruker, 2001) was used for absorption correction. R(int) was 0.0709 before and 0.0303 after correction. The Ratio of minimum to maximum transmission is 0.5920. The λ/2 correction factor is 0.0015.

The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7415 (3)1.0190 (3)0.11278 (17)0.0326 (9)
H10.68340.97190.10050.039*
C20.9318 (3)1.0494 (3)0.09051 (15)0.0292 (8)
C30.9144 (3)1.1495 (3)0.10152 (15)0.0296 (9)
C40.8087 (4)1.1904 (3)0.09618 (16)0.0347 (9)
C50.8013 (5)1.2859 (3)0.10036 (19)0.0498 (12)
H50.73011.31400.09590.060*
C60.8979 (5)1.3387 (3)0.1109 (2)0.0597 (15)
H60.89191.40240.11340.072*
C71.0031 (5)1.2988 (3)0.1178 (2)0.0549 (14)
H71.06841.33500.12570.066*
C81.0120 (4)1.2042 (3)0.11295 (18)0.0417 (11)
H81.08361.17700.11730.050*
C90.7581 (4)1.0210 (3)0.17549 (17)0.0374 (10)
C100.6620 (5)1.0249 (4)0.1991 (2)0.0641 (16)
H100.59011.02760.17650.077*
C110.6725 (8)1.0247 (5)0.2565 (3)0.094 (3)
H110.60761.02670.27210.113*
C120.7777 (8)1.0216 (5)0.2900 (3)0.095 (3)
H120.78411.02260.32840.114*
C130.8724 (6)1.0169 (4)0.2676 (2)0.0735 (18)
H130.94401.01390.29040.088*
C140.8622 (5)1.0166 (4)0.21027 (19)0.0520 (13)
H140.92771.01340.19510.062*
C150.8522 (3)0.8954 (3)0.07876 (15)0.0287 (8)
C160.8250 (4)0.8292 (3)0.11498 (18)0.0410 (11)
H160.79990.84720.14700.049*
C170.8350 (4)0.7373 (3)0.10367 (19)0.0449 (11)
H170.81680.69310.12800.054*
C180.8718 (4)0.7104 (3)0.05646 (18)0.0368 (10)
C190.8959 (3)0.7756 (3)0.01947 (17)0.0325 (9)
H190.91870.75710.01300.039*
C200.8862 (3)0.8678 (3)0.03046 (15)0.0307 (9)
H200.90240.91170.00540.037*
C210.8898 (5)0.6098 (3)0.0469 (2)0.0543 (13)
F10.8004 (3)0.5593 (2)0.05201 (19)0.0934 (13)
F20.9121 (5)0.5909 (2)0.00173 (17)0.1125 (17)
F30.9745 (3)0.5749 (2)0.08345 (19)0.1020 (15)
N10.8416 (3)0.9909 (2)0.09121 (13)0.0287 (7)
O11.0226 (2)1.0219 (2)0.08167 (14)0.0426 (8)
S10.68361 (9)1.12577 (9)0.08114 (5)0.0443 (3)
C220.2359 (3)0.8724 (3)0.09757 (16)0.0312 (9)
H220.17930.92190.09440.037*
C230.4274 (3)0.8614 (3)0.07246 (14)0.0259 (8)
C240.4087 (3)0.7606 (3)0.06289 (15)0.0288 (8)
C250.3015 (4)0.7208 (3)0.05029 (16)0.0361 (10)
C260.2912 (5)0.6259 (3)0.0385 (2)0.0514 (13)
H260.21970.59850.03000.062*
C270.3874 (5)0.5744 (3)0.0397 (2)0.0595 (15)
H270.38050.51180.03170.071*
C280.4935 (5)0.6129 (3)0.0526 (2)0.0548 (13)
H280.55800.57660.05340.066*
C290.5046 (4)0.7060 (3)0.06431 (18)0.0397 (10)
H290.57670.73230.07320.048*
C300.2498 (4)0.8357 (3)0.15572 (18)0.0370 (10)
C350.1522 (5)0.8182 (5)0.1762 (3)0.0771 (19)
H350.08110.83040.15440.093*
C340.1596 (8)0.7825 (6)0.2291 (4)0.110 (3)
H340.09370.77190.24310.132*
C330.2635 (9)0.7628 (5)0.2606 (3)0.102 (3)
H330.26830.73720.29570.123*
C320.3592 (7)0.7803 (5)0.2412 (2)0.084 (2)
H320.42990.76720.26310.101*
C310.3528 (5)0.8178 (4)0.18866 (19)0.0548 (14)
H310.41940.83080.17580.066*
C360.3509 (3)1.0108 (3)0.08862 (15)0.0273 (8)
C370.3283 (4)1.0558 (3)0.13476 (17)0.0393 (10)
H370.30611.02250.16330.047*
C380.3386 (4)1.1501 (3)0.13847 (19)0.0435 (11)
H380.32361.18040.16970.052*
C390.3709 (3)1.1997 (3)0.09650 (17)0.0341 (9)
C400.3922 (3)1.1551 (3)0.04987 (16)0.0328 (9)
H400.41341.18880.02130.039*
C410.3820 (3)1.0614 (3)0.04573 (16)0.0305 (9)
H410.39591.03150.01420.037*
C420.3831 (5)1.3022 (3)0.1012 (2)0.0516 (13)
F6A0.308 (2)1.3467 (7)0.0659 (11)0.155 (13)0.57 (3)
F5A0.378 (3)1.3360 (6)0.1506 (5)0.104 (7)0.57 (3)
F4A0.4828 (13)1.3323 (8)0.0936 (12)0.112 (9)0.57 (3)
N20.3391 (3)0.9132 (2)0.08403 (13)0.0271 (7)
O20.5195 (2)0.89607 (19)0.06948 (12)0.0364 (7)
S20.17800 (9)0.78640 (9)0.04611 (5)0.0457 (3)
F4B0.474 (2)1.3253 (11)0.1315 (15)0.138 (16)0.43 (3)
F5B0.383 (3)1.3413 (10)0.0544 (8)0.109 (12)0.43 (3)
F6B0.301 (2)1.3415 (7)0.1170 (15)0.106 (10)0.43 (3)
C430.6833 (6)0.7489 (4)0.2230 (2)0.0640 (16)
H430.64410.80460.22000.077*
C440.7974 (6)0.7450 (5)0.2477 (2)0.0703 (18)
H440.83580.79840.26130.084*
C450.8531 (6)0.6628 (5)0.2521 (2)0.0708 (17)
H450.92970.66060.26890.085*
C460.7985 (5)0.5832 (5)0.2322 (2)0.0657 (16)
H460.83780.52760.23550.079*
C470.6844 (5)0.5861 (4)0.2072 (2)0.0599 (15)
C480.6283 (5)0.6680 (4)0.2028 (2)0.0582 (14)
H480.55170.66990.18600.070*
C490.6264 (8)0.4992 (5)0.1851 (4)0.112 (3)
H49A0.60400.46550.21490.168*
H49B0.67780.46250.16860.168*
H49C0.56020.51370.15770.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.030 (2)0.044 (2)0.0063 (17)0.0144 (17)0.0091 (18)
C20.031 (2)0.031 (2)0.0272 (19)0.0012 (17)0.0082 (16)0.0014 (16)
C30.036 (2)0.027 (2)0.0263 (19)0.0033 (17)0.0092 (16)0.0029 (16)
C40.044 (2)0.031 (2)0.027 (2)0.0055 (19)0.0029 (18)0.0022 (17)
C50.070 (3)0.036 (3)0.045 (3)0.015 (3)0.013 (2)0.003 (2)
C60.098 (5)0.030 (3)0.055 (3)0.008 (3)0.025 (3)0.001 (2)
C70.068 (4)0.038 (3)0.059 (3)0.021 (3)0.014 (3)0.002 (2)
C80.048 (3)0.040 (3)0.037 (2)0.012 (2)0.008 (2)0.006 (2)
C90.046 (3)0.029 (2)0.044 (2)0.0076 (19)0.024 (2)0.0083 (19)
C100.067 (4)0.060 (4)0.079 (4)0.008 (3)0.048 (3)0.013 (3)
C110.129 (7)0.082 (5)0.097 (6)0.012 (5)0.088 (5)0.012 (4)
C120.163 (8)0.078 (5)0.060 (4)0.021 (6)0.060 (5)0.006 (4)
C130.105 (5)0.072 (4)0.042 (3)0.015 (4)0.011 (3)0.005 (3)
C140.063 (3)0.056 (3)0.039 (3)0.011 (3)0.014 (2)0.004 (2)
C150.0273 (19)0.028 (2)0.032 (2)0.0021 (16)0.0086 (16)0.0029 (16)
C160.055 (3)0.034 (2)0.040 (2)0.005 (2)0.025 (2)0.0040 (19)
C170.057 (3)0.032 (2)0.049 (3)0.006 (2)0.019 (2)0.003 (2)
C180.033 (2)0.029 (2)0.048 (3)0.0012 (18)0.0060 (19)0.0052 (19)
C190.029 (2)0.035 (2)0.035 (2)0.0013 (18)0.0089 (17)0.0079 (18)
C200.030 (2)0.034 (2)0.0288 (19)0.0029 (18)0.0076 (16)0.0001 (17)
C210.061 (3)0.031 (3)0.069 (4)0.000 (2)0.011 (3)0.005 (2)
F10.080 (3)0.0350 (17)0.166 (4)0.0179 (17)0.025 (3)0.019 (2)
F20.206 (5)0.047 (2)0.101 (3)0.028 (3)0.071 (3)0.014 (2)
F30.095 (3)0.0451 (19)0.144 (4)0.0244 (19)0.032 (3)0.003 (2)
N10.0263 (17)0.0288 (17)0.0338 (17)0.0029 (14)0.0126 (14)0.0020 (14)
O10.0307 (16)0.0365 (17)0.065 (2)0.0004 (13)0.0208 (15)0.0002 (15)
S10.0308 (6)0.0465 (7)0.0526 (7)0.0113 (5)0.0007 (5)0.0057 (6)
C220.026 (2)0.028 (2)0.043 (2)0.0014 (17)0.0153 (17)0.0001 (18)
C230.0272 (19)0.030 (2)0.0219 (17)0.0002 (16)0.0078 (15)0.0006 (15)
C240.037 (2)0.0222 (19)0.0273 (19)0.0016 (17)0.0065 (16)0.0013 (15)
C250.044 (2)0.034 (2)0.029 (2)0.009 (2)0.0050 (18)0.0046 (18)
C260.065 (3)0.041 (3)0.047 (3)0.022 (3)0.007 (2)0.009 (2)
C270.092 (5)0.030 (3)0.058 (3)0.003 (3)0.019 (3)0.009 (2)
C280.076 (4)0.031 (3)0.061 (3)0.015 (3)0.021 (3)0.000 (2)
C290.046 (3)0.036 (2)0.039 (2)0.006 (2)0.014 (2)0.0002 (19)
C300.047 (3)0.026 (2)0.046 (2)0.0053 (19)0.028 (2)0.0014 (18)
C350.074 (4)0.089 (5)0.082 (4)0.026 (4)0.049 (4)0.003 (4)
C340.146 (8)0.101 (6)0.113 (7)0.037 (6)0.101 (6)0.005 (5)
C330.215 (11)0.047 (4)0.067 (5)0.005 (5)0.083 (6)0.009 (3)
C320.133 (6)0.077 (4)0.047 (3)0.038 (4)0.028 (4)0.017 (3)
C310.071 (4)0.060 (3)0.037 (3)0.016 (3)0.021 (2)0.013 (2)
C360.0263 (19)0.027 (2)0.0291 (19)0.0026 (16)0.0066 (15)0.0038 (16)
C370.054 (3)0.034 (2)0.036 (2)0.003 (2)0.023 (2)0.0026 (18)
C380.060 (3)0.033 (2)0.043 (2)0.004 (2)0.022 (2)0.010 (2)
C390.035 (2)0.026 (2)0.042 (2)0.0013 (18)0.0074 (18)0.0025 (18)
C400.034 (2)0.032 (2)0.034 (2)0.0029 (18)0.0098 (17)0.0094 (17)
C410.034 (2)0.031 (2)0.0288 (19)0.0031 (17)0.0105 (17)0.0001 (16)
C420.063 (4)0.035 (3)0.057 (3)0.005 (3)0.010 (3)0.003 (2)
F6A0.166 (17)0.036 (4)0.20 (2)0.001 (9)0.125 (16)0.018 (11)
F5A0.20 (2)0.038 (4)0.084 (7)0.002 (8)0.062 (10)0.020 (4)
F4A0.096 (12)0.053 (6)0.21 (2)0.034 (7)0.078 (15)0.037 (11)
N20.0268 (16)0.0257 (16)0.0306 (17)0.0005 (14)0.0098 (13)0.0017 (13)
O20.0318 (15)0.0311 (15)0.0500 (18)0.0044 (13)0.0170 (13)0.0068 (13)
S20.0273 (5)0.0535 (7)0.0526 (7)0.0094 (5)0.0015 (5)0.0055 (6)
F4B0.14 (2)0.048 (6)0.18 (3)0.020 (11)0.085 (19)0.028 (14)
F5B0.22 (3)0.029 (5)0.086 (12)0.007 (13)0.060 (17)0.007 (6)
F6B0.117 (15)0.037 (5)0.18 (3)0.028 (7)0.081 (16)0.016 (11)
C430.087 (4)0.069 (4)0.040 (3)0.004 (3)0.021 (3)0.016 (3)
C440.090 (5)0.080 (5)0.041 (3)0.032 (4)0.015 (3)0.002 (3)
C450.066 (4)0.098 (5)0.048 (3)0.010 (4)0.008 (3)0.008 (3)
C460.072 (4)0.079 (4)0.048 (3)0.019 (3)0.016 (3)0.017 (3)
C470.072 (4)0.061 (4)0.048 (3)0.008 (3)0.013 (3)0.014 (3)
C480.056 (3)0.072 (4)0.046 (3)0.004 (3)0.007 (2)0.018 (3)
C490.131 (7)0.080 (5)0.124 (7)0.012 (5)0.026 (6)0.010 (5)
Geometric parameters (Å, º) top
C1—H10.9800C25—C261.407 (6)
C1—C91.514 (6)C25—S21.743 (5)
C1—N11.456 (5)C26—H260.9300
C1—S11.811 (4)C26—C271.367 (7)
C2—C31.501 (5)C27—H270.9300
C2—N11.375 (5)C27—C281.367 (7)
C2—O11.215 (4)C28—H280.9300
C3—C41.379 (5)C28—C291.384 (6)
C3—C81.395 (6)C29—H290.9300
C4—C51.394 (6)C30—C351.379 (6)
C4—S11.744 (4)C30—C311.362 (6)
C5—H50.9300C35—H350.9300
C5—C61.369 (7)C35—C341.386 (9)
C6—H60.9300C34—H340.9300
C6—C71.365 (7)C34—C331.362 (10)
C7—H70.9300C33—H330.9300
C7—C81.384 (6)C33—C321.344 (10)
C8—H80.9300C32—H320.9300
C9—C101.383 (6)C32—C311.389 (7)
C9—C141.369 (6)C31—H310.9300
C10—H100.9300C36—C371.378 (5)
C10—C111.390 (8)C36—C411.391 (5)
C11—H110.9300C36—N21.425 (5)
C11—C121.365 (10)C37—H370.9300
C12—H120.9300C37—C381.376 (6)
C12—C131.353 (9)C38—H380.9300
C13—H130.9300C38—C391.371 (6)
C13—C141.388 (7)C39—C401.380 (5)
C14—H140.9300C39—C421.497 (6)
C15—C161.390 (5)C40—H400.9300
C15—C201.383 (5)C40—C411.368 (5)
C15—N11.430 (5)C41—H410.9300
C16—H160.9300C42—F6A1.292 (9)
C16—C171.373 (6)C42—F5A1.321 (9)
C17—H170.9300C42—F4A1.316 (10)
C17—C181.372 (6)C42—F4B1.239 (15)
C18—C191.379 (6)C42—F5B1.283 (15)
C18—C211.501 (6)C42—F6B1.262 (12)
C19—H190.9300C43—H430.9300
C19—C201.375 (5)C43—C441.383 (9)
C20—H200.9300C43—C481.390 (8)
C21—F11.321 (6)C44—H440.9300
C21—F21.301 (6)C44—C451.360 (9)
C21—F31.318 (6)C45—H450.9300
C22—H220.9800C45—C461.371 (9)
C22—C301.503 (5)C46—H460.9300
C22—N21.463 (5)C46—C471.385 (8)
C22—S21.816 (4)C47—C481.358 (8)
C23—C241.493 (5)C47—C491.491 (9)
C23—N21.370 (5)C48—H480.9300
C23—O21.225 (4)C49—H49A0.9600
C24—C251.386 (5)C49—H49B0.9600
C24—C291.388 (6)C49—H49C0.9600
C9—C1—H1106.0C25—C26—H26120.3
C9—C1—S1112.6 (3)C27—C26—C25119.4 (5)
N1—C1—H1106.0C27—C26—H26120.3
N1—C1—C9114.7 (3)C26—C27—H27119.3
N1—C1—S1110.9 (3)C28—C27—C26121.4 (5)
S1—C1—H1106.0C28—C27—H27119.3
N1—C2—C3117.4 (3)C27—C28—H28120.2
O1—C2—C3120.6 (4)C27—C28—C29119.6 (5)
O1—C2—N1122.0 (4)C29—C28—H28120.2
C4—C3—C2123.8 (4)C24—C29—H29119.8
C4—C3—C8119.4 (4)C28—C29—C24120.5 (5)
C8—C3—C2116.6 (4)C28—C29—H29119.8
C3—C4—C5119.4 (4)C35—C30—C22117.6 (5)
C3—C4—S1121.4 (3)C31—C30—C22123.7 (4)
C5—C4—S1119.1 (4)C31—C30—C35118.7 (5)
C4—C5—H5119.8C30—C35—H35119.9
C6—C5—C4120.5 (5)C30—C35—C34120.2 (7)
C6—C5—H5119.8C34—C35—H35119.9
C5—C6—H6119.7C35—C34—H34120.0
C7—C6—C5120.7 (5)C33—C34—C35119.9 (6)
C7—C6—H6119.7C33—C34—H34120.0
C6—C7—H7120.2C34—C33—H33119.8
C6—C7—C8119.7 (5)C32—C33—C34120.3 (6)
C8—C7—H7120.2C32—C33—H33119.8
C3—C8—H8119.8C33—C32—H32119.9
C7—C8—C3120.4 (5)C33—C32—C31120.2 (7)
C7—C8—H8119.8C31—C32—H32119.9
C10—C9—C1117.9 (4)C30—C31—C32120.6 (5)
C14—C9—C1124.1 (4)C30—C31—H31119.7
C14—C9—C10118.0 (5)C32—C31—H31119.7
C9—C10—H10119.9C37—C36—C41119.6 (4)
C9—C10—C11120.1 (6)C37—C36—N2120.3 (3)
C11—C10—H10119.9C41—C36—N2120.1 (3)
C10—C11—H11119.8C36—C37—H37120.1
C12—C11—C10120.4 (6)C38—C37—C36119.8 (4)
C12—C11—H11119.8C38—C37—H37120.1
C11—C12—H12120.0C37—C38—H38119.8
C13—C12—C11120.1 (6)C39—C38—C37120.5 (4)
C13—C12—H12120.0C39—C38—H38119.8
C12—C13—H13120.2C38—C39—C40120.0 (4)
C12—C13—C14119.6 (6)C38—C39—C42120.1 (4)
C14—C13—H13120.2C40—C39—C42120.0 (4)
C9—C14—C13121.7 (5)C39—C40—H40120.0
C9—C14—H14119.2C41—C40—C39120.0 (4)
C13—C14—H14119.2C41—C40—H40120.0
C16—C15—N1119.5 (3)C36—C41—H41119.9
C20—C15—C16119.4 (4)C40—C41—C36120.1 (4)
C20—C15—N1121.1 (3)C40—C41—H41119.9
C15—C16—H16119.9F6A—C42—C39113.6 (6)
C17—C16—C15120.2 (4)F6A—C42—F5A106.2 (10)
C17—C16—H16119.9F6A—C42—F4A105.4 (10)
C16—C17—H17120.0F5A—C42—C39114.8 (6)
C18—C17—C16120.1 (4)F4A—C42—C39113.4 (7)
C18—C17—H17120.0F4A—C42—F5A102.3 (8)
C17—C18—C19120.1 (4)F4B—C42—C39112.2 (9)
C17—C18—C21119.1 (4)F4B—C42—F5B105.4 (14)
C19—C18—C21120.7 (4)F4B—C42—F6B109.8 (13)
C18—C19—H19119.9F5B—C42—C39112.8 (8)
C20—C19—C18120.2 (4)F6B—C42—C39113.8 (7)
C20—C19—H19119.9F6B—C42—F5B102.2 (11)
C15—C20—H20120.0C23—N2—C22122.8 (3)
C19—C20—C15120.0 (4)C23—N2—C36119.6 (3)
C19—C20—H20120.0C36—N2—C22117.3 (3)
F1—C21—C18112.5 (4)C25—S2—C2297.41 (18)
F2—C21—C18114.1 (4)C44—C43—H43120.6
F2—C21—F1106.3 (5)C44—C43—C48118.7 (6)
F2—C21—F3106.2 (5)C48—C43—H43120.6
F3—C21—C18112.5 (4)C43—C44—H44120.1
F3—C21—F1104.6 (5)C45—C44—C43119.9 (6)
C2—N1—C1122.2 (3)C45—C44—H44120.1
C2—N1—C15119.6 (3)C44—C45—H45119.4
C15—N1—C1117.5 (3)C44—C45—C46121.2 (6)
C4—S1—C197.37 (19)C46—C45—H45119.4
C30—C22—H22106.5C45—C46—H46120.2
C30—C22—S2112.0 (3)C45—C46—C47119.6 (6)
N2—C22—H22106.5C47—C46—H46120.2
N2—C22—C30114.5 (3)C46—C47—C49119.0 (6)
N2—C22—S2110.3 (3)C48—C47—C46119.4 (6)
S2—C22—H22106.5C48—C47—C49121.6 (6)
N2—C23—C24118.2 (3)C43—C48—H48119.4
O2—C23—C24120.2 (3)C47—C48—C43121.2 (6)
O2—C23—N2121.6 (3)C47—C48—H48119.4
C25—C24—C23123.3 (4)C47—C49—H49A109.5
C25—C24—C29119.4 (4)C47—C49—H49B109.5
C29—C24—C23117.2 (4)C47—C49—H49C109.5
C24—C25—C26119.6 (4)H49A—C49—H49B109.5
C24—C25—S2121.4 (3)H49A—C49—H49C109.5
C26—C25—S2118.9 (4)H49B—C49—H49C109.5
C1—C9—C10—C11178.5 (5)C24—C25—C26—C270.1 (7)
C1—C9—C14—C13178.7 (5)C24—C25—S2—C2231.4 (4)
C2—C3—C4—C5171.8 (4)C25—C24—C29—C280.8 (6)
C2—C3—C4—S15.2 (5)C25—C26—C27—C280.5 (8)
C2—C3—C8—C7173.2 (4)C26—C25—S2—C22151.0 (4)
C3—C2—N1—C112.6 (5)C26—C27—C28—C290.4 (8)
C3—C2—N1—C15177.5 (3)C27—C28—C29—C240.3 (7)
C3—C4—C5—C61.5 (7)C29—C24—C25—C260.7 (6)
C3—C4—S1—C128.5 (4)C29—C24—C25—S2178.3 (3)
C4—C3—C8—C71.3 (6)C30—C22—N2—C2377.0 (4)
C4—C5—C6—C70.3 (8)C30—C22—N2—C3696.8 (4)
C5—C4—S1—C1154.5 (4)C30—C22—S2—C2575.1 (3)
C5—C6—C7—C81.3 (8)C30—C35—C34—C331.4 (12)
C6—C7—C8—C30.5 (7)C35—C30—C31—C321.7 (8)
C8—C3—C4—C52.2 (6)C35—C34—C33—C321.8 (13)
C8—C3—C4—S1179.3 (3)C34—C33—C32—C310.5 (11)
C9—C1—N1—C277.0 (5)C33—C32—C31—C301.3 (9)
C9—C1—N1—C1593.1 (4)C31—C30—C35—C340.4 (9)
C9—C1—S1—C476.4 (3)C36—C37—C38—C390.2 (7)
C9—C10—C11—C120.6 (10)C37—C36—C41—C401.3 (6)
C10—C9—C14—C130.6 (8)C37—C36—N2—C2246.0 (5)
C10—C11—C12—C131.2 (12)C37—C36—N2—C23128.0 (4)
C11—C12—C13—C140.9 (11)C37—C38—C39—C400.6 (7)
C12—C13—C14—C90.0 (9)C37—C38—C39—C42179.3 (5)
C14—C9—C10—C110.3 (8)C38—C39—C40—C410.5 (6)
C15—C16—C17—C180.1 (7)C38—C39—C42—F6A113 (2)
C16—C15—C20—C191.9 (6)C38—C39—C42—F5A9.7 (16)
C16—C15—N1—C141.8 (5)C38—C39—C42—F4A126.8 (15)
C16—C15—N1—C2128.6 (4)C38—C39—C42—F4B79 (2)
C16—C17—C18—C191.8 (7)C38—C39—C42—F5B162.5 (19)
C16—C17—C18—C21175.8 (5)C38—C39—C42—F6B47 (2)
C17—C18—C19—C201.8 (6)C39—C40—C41—C360.4 (6)
C17—C18—C21—F151.4 (6)C40—C39—C42—F6A67 (2)
C17—C18—C21—F2172.5 (5)C40—C39—C42—F5A170.3 (15)
C17—C18—C21—F366.5 (6)C40—C39—C42—F4A53.1 (15)
C18—C19—C20—C150.0 (6)C40—C39—C42—F4B101 (2)
C19—C18—C21—F1131.0 (5)C40—C39—C42—F5B17.5 (19)
C19—C18—C21—F29.9 (7)C40—C39—C42—F6B133 (2)
C19—C18—C21—F3111.2 (5)C41—C36—C37—C381.2 (7)
C20—C15—C16—C171.9 (7)C41—C36—N2—C22132.0 (4)
C20—C15—N1—C1136.4 (4)C41—C36—N2—C2354.0 (5)
C20—C15—N1—C253.2 (5)C42—C39—C40—C41179.4 (4)
C21—C18—C19—C20175.7 (4)N2—C22—C30—C35163.7 (4)
N1—C1—C9—C10164.6 (4)N2—C22—C30—C3117.2 (6)
N1—C1—C9—C1413.5 (6)N2—C22—S2—C2553.7 (3)
N1—C1—S1—C453.7 (3)N2—C23—C24—C2518.0 (5)
N1—C2—C3—C419.7 (6)N2—C23—C24—C29165.2 (3)
N1—C2—C3—C8166.1 (3)N2—C36—C37—C38179.2 (4)
N1—C15—C16—C17179.9 (4)N2—C36—C41—C40179.3 (4)
N1—C15—C20—C19179.9 (4)O2—C23—C24—C25161.5 (4)
O1—C2—C3—C4160.7 (4)O2—C23—C24—C2915.4 (5)
O1—C2—C3—C813.5 (6)O2—C23—N2—C22168.8 (4)
O1—C2—N1—C1167.0 (4)O2—C23—N2—C364.9 (5)
O1—C2—N1—C152.9 (6)S2—C22—C30—C3569.8 (5)
S1—C1—C9—C1067.3 (5)S2—C22—C30—C31109.3 (4)
S1—C1—C9—C14114.6 (4)S2—C22—N2—C2350.4 (4)
S1—C1—N1—C251.9 (4)S2—C22—N2—C36135.8 (3)
S1—C1—N1—C15138.0 (3)S2—C25—C26—C27177.7 (4)
S1—C4—C5—C6178.6 (4)C43—C44—C45—C460.4 (9)
C22—C30—C35—C34178.6 (6)C44—C43—C48—C470.3 (8)
C22—C30—C31—C32177.3 (5)C44—C45—C46—C470.1 (9)
C23—C24—C25—C26176.1 (4)C45—C46—C47—C480.1 (8)
C23—C24—C25—S21.5 (5)C45—C46—C47—C49179.3 (6)
C23—C24—C29—C28176.2 (4)C46—C47—C48—C430.0 (8)
C24—C23—N2—C2211.7 (5)C48—C43—C44—C450.5 (8)
C24—C23—N2—C36174.6 (3)C49—C47—C48—C43179.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg(X) = center of gravity of ring (X); D—H···CgX = angle of the D—H bond with the π plane
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.982.253.2053 (7)165
C22—H22···O1i0.982.343.3140 (7)171
C17—H17···Cg90.932.793.5916 (7)145
C38—H38···Cg9ii0.932.783.6009 (7)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
(III) 3-(3-Bromophenyl)-2-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one toluene hemisolvate top
Crystal data top
2C20H14BrNOS·C7H8Dx = 1.485 Mg m3
Mr = 884.72Melting point = 358–359 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.736 (2) ÅCell parameters from 3326 reflections
b = 9.3530 (15) Åθ = 2.5–25.0°
c = 27.259 (4) ŵ = 2.20 mm1
β = 99.560 (3)°T = 298 K
V = 3956.2 (10) Å3Block, colorless
Z = 40.21 × 0.17 × 0.10 mm
F(000) = 1800
Data collection top
Bruker CCD area-detector
diffractometer
2424 reflections with I > 2σ(I)
phi and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.103, Tmax = 0.901h = 2020
18289 measured reflectionsk = 1212
4903 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.79(Δ/σ)max < 0.001
4903 reflectionsΔρmax = 0.73 e Å3
266 parametersΔρmin = 0.71 e Å3
186 restraints
Special details top

Experimental. Absorption correction: SADABS was used for absorption correction. R(int) was 0.2680 before and 0.0355 after correction. The Ratio of minimum to maximum transmission is 0.1027. The λ/2 correction factor is 0.0015.

The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.45074 (3)0.27453 (5)0.01191 (2)0.0874 (2)
C10.3189 (2)0.2500 (3)0.12554 (12)0.0471 (8)
H10.27980.22620.10230.057*
C20.4549 (2)0.1391 (3)0.14162 (11)0.0479 (8)
C30.4821 (2)0.2827 (3)0.15744 (12)0.0506 (8)
C40.4518 (2)0.4113 (3)0.14088 (11)0.0540 (9)
C50.4858 (3)0.5405 (4)0.15463 (15)0.0736 (12)
H50.46620.62690.14380.088*
C60.5487 (3)0.5386 (5)0.18431 (16)0.0840 (14)
H60.57230.62460.19270.101*
C70.5774 (3)0.4129 (5)0.20176 (15)0.0766 (12)
H70.61780.41410.22310.092*
C80.5453 (2)0.2859 (4)0.18817 (13)0.0613 (9)
H80.56570.20060.19940.074*
C90.2622 (2)0.2733 (3)0.17542 (11)0.0441 (7)
C100.2728 (2)0.1978 (4)0.21777 (12)0.0551 (9)
H100.31760.13220.21640.066*
C110.2169 (3)0.2193 (4)0.26239 (14)0.0650 (10)
H110.22500.16860.29060.078*
C120.1505 (3)0.3137 (4)0.26511 (14)0.0653 (10)
H120.11390.32880.29510.078*
C130.1381 (2)0.3865 (3)0.22331 (15)0.0646 (10)
H130.09150.44850.22470.078*
C140.1942 (2)0.3683 (3)0.17905 (13)0.0565 (9)
H140.18610.42090.15120.068*
C150.3547 (2)0.0010 (3)0.10271 (10)0.0444 (7)
C160.2748 (2)0.0582 (4)0.11998 (12)0.0605 (9)
H160.23880.01440.14620.073*
C170.2477 (3)0.1802 (4)0.09865 (14)0.0684 (11)
H170.19400.21920.11070.082*
C180.3005 (3)0.2443 (3)0.05941 (14)0.0602 (10)
H180.28250.32620.04470.072*
C190.3790 (2)0.1866 (3)0.04242 (12)0.0519 (8)
C200.4081 (2)0.0654 (3)0.06351 (11)0.0498 (8)
H200.46240.02800.05160.060*
N10.37987 (17)0.1309 (2)0.12306 (9)0.0436 (6)
O10.49900 (16)0.0328 (3)0.14536 (9)0.0642 (7)
S10.37419 (7)0.41236 (9)0.10170 (3)0.0632 (3)
C210.3612 (7)0.228 (2)0.0506 (4)0.146 (15)0.5
H21A0.40400.29570.04400.219*0.5
H21B0.34790.24550.08320.219*0.5
H21C0.38310.13300.04890.219*0.5
C220.2809 (6)0.2458 (12)0.0125 (3)0.135 (7)0.5
C230.2341 (8)0.1264 (10)0.0081 (4)0.123 (8)0.5
H230.25370.03510.00150.147*0.5
C240.1585 (7)0.1422 (11)0.0426 (4)0.145 (9)0.5
H240.12830.06180.05580.174*0.5
C250.1282 (5)0.2785 (13)0.0573 (3)0.160 (14)0.5
H250.07790.28930.08030.192*0.5
C260.1743 (6)0.3985 (10)0.0374 (3)0.086 (3)0.5
H260.15460.48960.04700.103*0.5
C270.2498 (6)0.3820 (10)0.0028 (3)0.105 (6)0.5
H270.28000.46260.01020.125*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0933 (4)0.0782 (3)0.0831 (3)0.0078 (2)0.0077 (2)0.0405 (2)
C10.054 (2)0.0439 (17)0.0465 (18)0.0039 (14)0.0166 (15)0.0027 (13)
C20.055 (2)0.0477 (18)0.0418 (17)0.0015 (16)0.0104 (15)0.0051 (13)
C30.050 (2)0.0543 (18)0.0451 (18)0.0068 (15)0.0007 (15)0.0095 (14)
C40.058 (2)0.0494 (18)0.0483 (18)0.0078 (16)0.0085 (15)0.0059 (14)
C50.077 (3)0.050 (2)0.083 (3)0.0155 (19)0.017 (2)0.0109 (18)
C60.076 (3)0.082 (3)0.086 (3)0.043 (3)0.010 (2)0.031 (2)
C70.063 (3)0.099 (3)0.064 (2)0.026 (2)0.0003 (19)0.021 (2)
C80.050 (2)0.080 (2)0.053 (2)0.0138 (19)0.0033 (17)0.0137 (17)
C90.050 (2)0.0359 (14)0.0486 (18)0.0026 (14)0.0144 (15)0.0056 (12)
C100.056 (2)0.0550 (19)0.055 (2)0.0074 (16)0.0098 (17)0.0003 (15)
C110.070 (3)0.070 (2)0.054 (2)0.003 (2)0.0094 (19)0.0010 (17)
C120.067 (3)0.056 (2)0.067 (2)0.009 (2)0.0057 (19)0.0172 (18)
C130.056 (3)0.0447 (18)0.091 (3)0.0053 (17)0.004 (2)0.0168 (19)
C140.058 (2)0.0423 (17)0.070 (2)0.0031 (16)0.0157 (18)0.0022 (15)
C150.056 (2)0.0394 (15)0.0404 (16)0.0004 (14)0.0144 (15)0.0006 (12)
C160.062 (2)0.062 (2)0.054 (2)0.0100 (18)0.0033 (17)0.0125 (16)
C170.065 (3)0.066 (2)0.069 (2)0.024 (2)0.0027 (19)0.0134 (19)
C180.075 (3)0.0435 (18)0.064 (2)0.0102 (17)0.015 (2)0.0054 (15)
C190.063 (2)0.0442 (16)0.0478 (18)0.0006 (16)0.0085 (16)0.0081 (14)
C200.054 (2)0.0458 (17)0.0496 (18)0.0016 (15)0.0098 (15)0.0043 (14)
N10.0467 (17)0.0403 (13)0.0457 (14)0.0042 (11)0.0132 (12)0.0079 (11)
O10.0639 (17)0.0552 (14)0.0797 (16)0.0133 (12)0.0304 (13)0.0105 (12)
S10.0802 (7)0.0477 (5)0.0597 (5)0.0038 (4)0.0061 (5)0.0101 (4)
C210.062 (11)0.31 (5)0.074 (10)0.006 (17)0.029 (9)0.029 (15)
C220.131 (17)0.196 (15)0.104 (13)0.034 (15)0.096 (13)0.052 (12)
C230.147 (16)0.109 (14)0.143 (13)0.016 (13)0.118 (12)0.049 (13)
C240.19 (2)0.097 (10)0.18 (2)0.028 (11)0.128 (17)0.041 (11)
C250.120 (17)0.26 (4)0.123 (15)0.085 (18)0.076 (12)0.080 (18)
C260.088 (8)0.094 (7)0.084 (7)0.004 (6)0.040 (6)0.014 (6)
C270.174 (18)0.056 (8)0.106 (10)0.002 (9)0.088 (11)0.002 (6)
Geometric parameters (Å, º) top
Br1—C191.895 (3)C13—C141.383 (5)
C1—H10.9800C14—H140.9300
C1—C91.513 (5)C15—C161.376 (4)
C1—N11.464 (4)C15—C201.382 (4)
C1—S11.815 (3)C15—N11.435 (4)
C2—C31.494 (4)C16—H160.9300
C2—N11.362 (4)C16—C171.380 (5)
C2—O11.227 (4)C17—H170.9300
C3—C41.396 (5)C17—C181.377 (5)
C3—C81.404 (5)C18—H180.9300
C4—C51.398 (5)C18—C191.357 (5)
C4—S11.750 (4)C19—C201.384 (4)
C5—H50.9300C20—H200.9300
C5—C61.379 (6)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C6—C71.372 (6)C21—H21C0.9600
C7—H70.9297C21—C221.5069
C7—C81.365 (5)C22—C231.4022
C8—H80.9300C22—C271.4024
C9—C101.387 (5)C23—H230.9300
C9—C141.382 (4)C23—C241.3963
C10—H100.9300C24—H240.9300
C10—C111.392 (5)C24—C251.3964
C11—H110.9300C25—H250.9300
C11—C121.361 (5)C25—C261.3966
C12—H120.9300C26—H260.9300
C12—C131.369 (5)C26—C271.3963
C13—H130.9300C27—H270.9300
C9—C1—H1105.9C16—C15—N1119.8 (3)
C9—C1—S1112.2 (2)C20—C15—N1120.1 (3)
N1—C1—H1105.9C15—C16—H16119.8
N1—C1—C9115.8 (2)C15—C16—C17120.4 (3)
N1—C1—S1110.4 (2)C17—C16—H16119.8
S1—C1—H1105.9C16—C17—H17120.0
N1—C2—C3117.7 (3)C18—C17—C16119.9 (3)
O1—C2—C3120.8 (3)C18—C17—H17120.0
O1—C2—N1121.5 (3)C17—C18—H18120.4
C4—C3—C2123.5 (3)C19—C18—C17119.3 (3)
C4—C3—C8119.3 (3)C19—C18—H18120.4
C8—C3—C2117.1 (3)C18—C19—Br1119.0 (2)
C3—C4—C5119.4 (4)C18—C19—C20122.0 (3)
C3—C4—S1120.8 (2)C20—C19—Br1119.0 (3)
C5—C4—S1119.7 (3)C15—C20—C19118.5 (3)
C4—C5—H5120.3C15—C20—H20120.8
C6—C5—C4119.4 (4)C19—C20—H20120.8
C6—C5—H5120.3C2—N1—C1122.8 (2)
C5—C6—H6119.2C2—N1—C15120.2 (2)
C7—C6—C5121.6 (4)C15—N1—C1116.9 (2)
C7—C6—H6119.2C4—S1—C196.77 (15)
C6—C7—H7120.3H21A—C21—H21B109.5
C8—C7—C6119.6 (4)H21A—C21—H21C109.5
C8—C7—H7120.1H21B—C21—H21C109.5
C3—C8—H8119.6C22—C21—H21A109.5
C7—C8—C3120.7 (4)C22—C21—H21B109.5
C7—C8—H8119.6C22—C21—H21C109.5
C10—C9—C1122.7 (3)C23—C22—C21121.0
C14—C9—C1119.4 (3)C23—C22—C27118.1
C14—C9—C10117.8 (3)C27—C22—C21120.9
C9—C10—H10119.7C22—C23—H23119.4
C9—C10—C11120.5 (3)C24—C23—C22121.1
C11—C10—H10119.7C24—C23—H23119.4
C10—C11—H11119.7C23—C24—H24119.9
C12—C11—C10120.6 (4)C23—C24—C25120.1
C12—C11—H11119.7C25—C24—H24119.9
C11—C12—H12120.3C24—C25—H25120.3
C11—C12—C13119.5 (3)C24—C25—C26119.4
C13—C12—H12120.3C26—C25—H25120.3
C12—C13—H13119.8C25—C26—H26119.9
C12—C13—C14120.4 (3)C27—C26—C25120.1
C14—C13—H13119.8C27—C26—H26119.9
C9—C14—C13121.1 (3)C22—C27—H27119.5
C9—C14—H14119.4C26—C27—C22121.1
C13—C14—H14119.4C26—C27—H27119.5
C16—C15—C20119.9 (3)
Br1—C19—C20—C15179.2 (2)C17—C18—C19—Br1179.5 (3)
C1—C9—C10—C11177.6 (3)C17—C18—C19—C200.4 (6)
C1—C9—C14—C13176.3 (3)C18—C19—C20—C150.7 (5)
C2—C3—C4—C5175.0 (3)C20—C15—C16—C170.5 (5)
C2—C3—C4—S13.0 (5)C20—C15—N1—C1125.6 (3)
C2—C3—C8—C7176.0 (3)C20—C15—N1—C258.2 (4)
C3—C2—N1—C110.2 (4)N1—C1—C9—C106.7 (4)
C3—C2—N1—C15173.8 (3)N1—C1—C9—C14170.0 (3)
C3—C4—C5—C60.0 (5)N1—C1—S1—C454.9 (2)
C3—C4—S1—C131.4 (3)N1—C2—C3—C420.5 (5)
C4—C3—C8—C70.2 (5)N1—C2—C3—C8163.5 (3)
C4—C5—C6—C71.6 (6)N1—C15—C16—C17176.0 (3)
C5—C4—S1—C1150.5 (3)N1—C15—C20—C19175.2 (3)
C5—C6—C7—C82.3 (6)O1—C2—C3—C4159.5 (3)
C6—C7—C8—C31.4 (6)O1—C2—C3—C816.5 (5)
C8—C3—C4—C50.9 (5)O1—C2—N1—C1169.7 (3)
C8—C3—C4—S1179.0 (2)O1—C2—N1—C156.2 (4)
C9—C1—N1—C277.8 (4)S1—C1—C9—C10121.2 (3)
C9—C1—N1—C1598.2 (3)S1—C1—C9—C1462.0 (4)
C9—C1—S1—C475.8 (3)S1—C1—N1—C251.0 (3)
C9—C10—C11—C120.6 (5)S1—C1—N1—C15132.9 (2)
C10—C9—C14—C130.6 (5)S1—C4—C5—C6178.1 (3)
C10—C11—C12—C131.0 (6)C21—C22—C23—C24178.5
C11—C12—C13—C142.4 (5)C21—C22—C27—C26178.5
C12—C13—C14—C92.2 (5)C22—C23—C24—C250.1
C14—C9—C10—C110.8 (5)C23—C22—C27—C260.3
C15—C16—C17—C180.9 (6)C23—C24—C25—C260.1
C16—C15—C20—C190.3 (5)C24—C25—C26—C270.1
C16—C15—N1—C149.8 (4)C25—C26—C27—C220.1
C16—C15—N1—C2126.4 (3)C27—C22—C23—C240.3
C16—C17—C18—C190.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg(X) = center of gravity of ring (X); D—H···Cg(X) = angle of the D—H bond with the π plane
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg50.982.663.5802 (6)156
C6—H6···Cg3i0.932.833.6823 (6)153
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank SP Controls, Inc. for the summer support of DJC, Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan, Penn State Schuylkill for financial support, and NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationAtwood, W., Nelson, C., Sello, J. K. & William, D. (2015). US Patent Appl. 2015/0166517 A1.  Google Scholar
First citationBruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds