research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1-hexyl-N,N-di­methyl­pyridinium) bis­­(maleo­nitrile­di­thiol­ato)nickelate(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Environmental Science, Nanjing Xiaozhuang College, Nanjing 211171, People's Republic of China, and bHuabao Food Flavor & Fragrance (Shanghai) Co., Ltd, Shanghai, 201821, People's Republic of China
*Correspondence e-mail: yushanshan_2005@163.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 6 June 2016; accepted 9 July 2016; online 26 July 2016)

The asymmetric unit of the title compound, (C13H23N2)2[Ni(C4N2S2)2], consists of a 1-hexyl-N,N-di­methyl­pyridinium cation and one half of a [Ni(mnt)2]2− dianion (mnt2− = maleo­nitrile­dithiol­ate) in which the Ni2+ cation lies on a crystallographic inversion centre. The square-planar coordination about Ni2+ comprises four S atoms from two bidentate chelate mnt2− ligands [Ni—S = 2.1791 (9) and 2.1810 (8) Å, and S—Ni—S bite angle = 91.93 (3)°]. The hydro­carbon chains of cations show trans-planar conformations and lie approximately parallel to the long mol­ecular axis of the [Ni(mnt)2]2− anions, giving stacks along the c axis. The anions and cations form layers lying parallel to the bc plane. Only weak C—H⋯Ni and C—H⋯π associations are present in the crystal packing.

1. Chemical context

Mol­ecular solids based on transition metal di­thiol­ene complexes have attracted much inter­est in recent years, not only regarding fundamental research of magnetic inter­actions and magneto-structural correlations but also in the development of new functional-mol­ecule-based materials (Robertson & Cronin, 2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]). Much work has been performed in mol­ecular solids based on M[di­thiol­ene]2 complexes because of their application as building blocks in mol­ecular-based materials showing magnetic, superconducting and optical properties (Nishijo et al., 2000[Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). Solid State Commun. 116, 661-664.]; Ni et al., 2004[Ni, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y., Ni, Z., Tian, Z., Wen, L. & Meng, Q. (2004). Chem. Phys. Lett. 396, 353-358.], Ren et al., 2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569-2576.]). In our previous studies, we have investigated the effect of the introduction of mobile organic cations into the rigid [Ni(mnt)2]2− spin system and created some multi-functional compounds (Yu et al., 2012[Yu, S. S., Duan, H. B., Pei, W. B., Chen, X. R., Ren, X. M. & Tian, Z. F. (2012). Inorg. Chem. Commun. 20, 307-311.], 2013[Yu, S. S., Duan, H. B., Chen, X. R., Tian, Z. F. & Ren, X. M. (2013). Dalton Trans. 42, 3827-3834.]; Duan et al., 2011[Duan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Meng, Q. J., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622-3630.]). In order to further explore the correlation between the structural features of the counter-cations and the stacking patterns of the anions as well as their physical properties, we have designed and synthesized the soft 1-hexyl-N,N-di­methyl­pyridinium cation and combined it with the [Ni(mnt)2]2− dianion, giving the title compound, (C13H23N2)2[Ni(C4N2S2)2], (I)[link], and the crystal structure is reported herein.

2. Structural comment

In the structure of (I)[link] (Fig. 1[link]), the asymmetric unit comprises a 1-hexyl-N,N-di­methyl­pyridinium cation and one half of an [Ni(mnt)2]2− dianion (mnt2− = maleo­nitrile­dithiol­ate). The Ni2+ ion lies on a crystallographic inversion centre (Fig. 1[link]). The complex dianion possesses an approximately planar geometry with Ni—S bond lengths of the bidentate ligands of 2.1791 (9) and 2.1810 (8) Å and an1 S—Ni—S2 bite angle of 91.93 (3)°. These values are in good agreement with those found in various [Ni(mnt)2]2− compounds (Duan et al., 2014a[Duan, H. B., Ren, X. M. & Liu, J. L. (2014a). Soft Mater. 12, 166-178.]).

[Scheme 1]
[Figure 1]
Figure 1
The atom-numbering scheme in the mol­ecular structure of (I)[link], showing the cation and the centrosymmetric dianion, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) −x + 1, −y, −z.]

The hydro­carbon chain of the cation is slightly disrupted close to the pyridyl ring in the completely trans-planar conformation, with a chain to pyridyl ring dihedral angle of 83.03 (19)°. The direction of the hydro­carbon chains is approximately parallel to the long mol­ecular axis of the anions, with a dihedral angle between the mol­ecular plane of the hydro­carbon chain and that of the anion (defined by S1,S2,S2i,S1i) of 10.76 (18)° [symmetry code: (i) −x + 1, −y, −z]. Between the cation and anion there is a novel Ni1⋯H—C17ii inter­action (H⋯Ni = 2.72 Å) (Fig. 2[link]) [symmetry code: (ii) −x + 1, −y + 1, −z].

[Figure 2]
Figure 2
The Ni⋯H—C contact between the layered cation and anion species in (I)[link]. [Symmetry code: (ii) −x + 1, −y + 1, −z.]

3. Supra­molecular features

In the crystal of (I)[link], both the anions and cations form layers lying parallel to the bc plane (Figs. 2[link] and 3[link]). In the anion layer, two neighboring [Ni(mnt)2]2− anions are associated via side-to-side stacking with typical inter­atomic separations of 8.713 (1) Å (Ni1⋯Ni1ii), and 6.218 (3) Å (S1⋯S2ii). The cations are arranged into bilayers, also lying parallel to the ab plane. In each layer, the cations exhibit an anti­parallel arrangement. The cation and anion layers stack alternately, forming columns which extend along c (Fig. 4[link]).

[Figure 3]
Figure 3
Alternating anion and cation layers, which lie parallel to the crystallographic ab plane.
[Figure 4]
Figure 4
The packing diagram, viewed along b, of the crystals of (I)[link].

In the crystal there are no formal hydrogen-bonding inter­actions. However, there are two weak C17—H⋯π associations to the chelate ring of the [Ni(mnt)2]2− dianions (Cg1, defined by Ni1,S1,C2,C3,S2): to Cg1ii and Cg1iii (H⋯Cg = 2.77 Å) [symmetry code: (iii) x, y − 1, z].

4. Database survey

In the structures of [Ni(mnt)2]2− complex dianions, chair-shaped organic compounds have been chosen as counter-cations and a series of compounds with segregated anion and cation stacks have been obtained (Pei et al., 2012[Pei, W. B., Wu, J. S., Ren, X. M., Tian, Z. F. & Xie, J. L. (2012). Dalton Trans. 41, 2667-2676.]; Tian et al., 2009[Tian, Z. F., Duan, H. B., Ren, X. M., Lu, C. S., Li, Y. Z., Song, Y., Zhu, H. & Meng, Q. J. (2009). J. Phys. Chem. B, 113, 8278-8283.]; Ren et al., 2006[Ren, X. M., Nishihara, S., Akutagawa, T., Noro, S., Nakamura, T., Fujita, W. & Awaga, K. (2006). Chem. Phys. Lett. 418, 423-427.]). In addition, with [Ni(mnt)2]2− anions, nine compounds with 1-alkyl-4-amino­pyridinium analogs as counter-cations have been synthesized (Duan et al., 2014b[Duan, H. B., Zhang, X. M. & Zhou, H. (2014b). Synth. Met. 195, 294-298.]). In these, the hydro­carbon chains of the counter-ions adopt trans-planar conformations and mixed stacking structures of anions and cations are also observed

5. Synthesis and crystallization

Disodium maleo­nitrile­dithiol­ate (2.0 mmol) and nickel(II) chloride hexa­hydrate (1.0 mmol) were mixed with stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-hexyl-N,N-di­methyl­pyridinium iodide (1.0 mmol) in methanol (10 mL) was added to the mixture and the red precipitate that was immediately formed was filtered off and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block-shaped crystals which were used in the X-ray analysis.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 1[link]. The H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(aromatic or methyl­ene) or 1.5Ueq(meth­yl).

Table 1
Experimental details

Crystal data
Chemical formula (C13H23N2)2[Ni(C4N2S2)2]
Mr 753.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.241 (2), 8.7129 (14), 16.393 (3)
β (°) 102.560 (2)
V3) 1985.4 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.40 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 0.903
No. of measured, independent and observed [I > 2σ(I)] reflections 16992, 4553, 2772
Rint 0.065
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.00
No. of reflections 4553
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.47
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) top
Crystal data top
(C13H23N2)2[Ni(C4N2S2)2]F(000) = 796
Mr = 753.72Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 773 reflections
a = 14.241 (2) Åθ = 2.6–21.2°
b = 8.7129 (14) ŵ = 0.73 mm1
c = 16.393 (3) ÅT = 296 K
β = 102.560 (2)°Prism, red
V = 1985.4 (6) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4553 independent reflections
Radiation source: fine-focus sealed tube2772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
phi and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1817
Tmin = 0.811, Tmax = 0.903k = 1111
16992 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
4553 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.05898 (18)
S10.54081 (6)0.24019 (9)0.02097 (5)0.0763 (2)
S20.64932 (5)0.07007 (9)0.01137 (5)0.0720 (2)
N10.7570 (3)0.4849 (4)0.0913 (2)0.1208 (12)
N20.8973 (2)0.0748 (5)0.0871 (2)0.1362 (13)
N30.55955 (17)0.9719 (2)0.27888 (15)0.0658 (6)
N40.83752 (17)0.8050 (3)0.34593 (14)0.0743 (6)
C10.7170 (3)0.3720 (4)0.07145 (18)0.0856 (9)
C20.6657 (2)0.2325 (3)0.04658 (16)0.0705 (7)
C30.7121 (2)0.0976 (4)0.04262 (16)0.0689 (7)
C40.8156 (3)0.0868 (4)0.0665 (2)0.0921 (10)
C50.0487 (3)0.6987 (5)0.1394 (3)0.1196 (13)
H5A0.06440.64390.09330.179*
H5B0.01690.73290.12440.179*
H5C0.05680.63220.18710.179*
C60.1144 (2)0.8359 (4)0.1604 (2)0.0938 (10)
H6A0.10270.90540.11300.113*
H6B0.09820.88980.20720.113*
C70.2197 (2)0.7958 (4)0.1820 (2)0.0845 (9)
H7A0.23550.74090.13530.101*
H7B0.23120.72680.22960.101*
C80.2867 (2)0.9327 (3)0.20257 (19)0.0748 (8)
H8A0.26930.99100.24750.090*
H8B0.27850.99900.15400.090*
C90.39199 (19)0.8855 (3)0.22865 (18)0.0716 (7)
H9A0.39970.81520.27560.086*
H9B0.41030.83160.18270.086*
C100.4579 (2)1.0208 (3)0.2530 (2)0.0779 (8)
H10A0.45101.09070.20600.093*
H10B0.43951.07540.29870.093*
C110.6025 (2)0.9523 (3)0.36010 (17)0.0683 (7)
H110.56890.97800.40080.082*
C120.6928 (2)0.8963 (3)0.38405 (16)0.0677 (7)
H120.71930.88250.44060.081*
C130.7480 (2)0.8581 (3)0.32450 (16)0.0626 (7)
C140.8852 (2)0.7825 (5)0.4335 (2)0.1024 (11)
H14A0.88450.87700.46350.154*
H14B0.95050.75090.43700.154*
H14C0.85190.70480.45770.154*
C150.8934 (2)0.7713 (4)0.2824 (2)0.0950 (10)
H15A0.86170.69220.24570.143*
H15B0.95670.73740.30940.143*
H15C0.89830.86240.25060.143*
C160.7002 (2)0.8802 (3)0.23995 (16)0.0669 (7)
H160.73180.85630.19750.080*
C170.6098 (2)0.9351 (3)0.22026 (17)0.0706 (7)
H170.58060.94840.16420.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0627 (3)0.0692 (3)0.0450 (3)0.0056 (2)0.0115 (2)0.00043 (19)
S10.0775 (5)0.0704 (4)0.0804 (5)0.0057 (4)0.0161 (4)0.0003 (4)
S20.0666 (5)0.0811 (5)0.0697 (4)0.0073 (4)0.0176 (3)0.0089 (4)
N10.154 (3)0.104 (2)0.096 (2)0.047 (2)0.011 (2)0.0003 (17)
N20.068 (2)0.163 (3)0.170 (4)0.001 (2)0.008 (2)0.009 (3)
N30.0689 (15)0.0638 (13)0.0647 (14)0.0041 (11)0.0145 (11)0.0064 (10)
N40.0661 (15)0.0834 (16)0.0719 (15)0.0009 (12)0.0114 (12)0.0088 (12)
C10.100 (2)0.095 (2)0.0589 (17)0.018 (2)0.0110 (16)0.0051 (16)
C20.0776 (19)0.0844 (19)0.0497 (15)0.0099 (16)0.0145 (13)0.0027 (13)
C30.0636 (17)0.094 (2)0.0504 (15)0.0048 (15)0.0156 (13)0.0020 (13)
C40.075 (2)0.107 (3)0.093 (2)0.006 (2)0.0149 (18)0.0019 (19)
C50.092 (3)0.121 (3)0.138 (3)0.001 (2)0.008 (2)0.024 (3)
C60.080 (2)0.093 (2)0.105 (2)0.0158 (18)0.0139 (19)0.0008 (19)
C70.078 (2)0.083 (2)0.090 (2)0.0143 (17)0.0131 (16)0.0048 (17)
C80.0730 (19)0.0747 (17)0.0780 (19)0.0143 (15)0.0193 (15)0.0096 (15)
C90.0698 (18)0.0703 (17)0.0746 (18)0.0099 (14)0.0154 (14)0.0063 (14)
C100.073 (2)0.0718 (18)0.088 (2)0.0142 (15)0.0168 (17)0.0060 (15)
C110.081 (2)0.0683 (16)0.0592 (17)0.0066 (14)0.0231 (15)0.0001 (13)
C120.080 (2)0.0693 (16)0.0517 (15)0.0069 (14)0.0110 (13)0.0076 (12)
C130.0690 (18)0.0560 (14)0.0618 (16)0.0084 (13)0.0117 (13)0.0048 (12)
C140.083 (2)0.122 (3)0.090 (2)0.008 (2)0.0071 (18)0.019 (2)
C150.074 (2)0.100 (2)0.113 (3)0.0033 (18)0.0271 (19)0.007 (2)
C160.0720 (18)0.0781 (17)0.0531 (15)0.0012 (14)0.0196 (13)0.0047 (12)
C170.078 (2)0.0781 (17)0.0551 (15)0.0001 (15)0.0140 (14)0.0096 (13)
Geometric parameters (Å, º) top
Ni1—S12.1791 (9)C16—C171.345 (4)
Ni1—S22.1810 (8)C5—H5A0.9600
Ni1—S1i2.1791 (9)C5—H5B0.9600
Ni1—S2i2.1810 (8)C5—H5C0.9600
S1—C21.738 (3)C6—H6A0.9700
S2—C31.731 (3)C6—H6B0.9700
N1—C11.148 (5)C7—H7A0.9700
N2—C41.144 (5)C7—H7B0.9700
N3—C101.480 (4)C8—H8A0.9700
N3—C111.350 (4)C8—H8B0.9700
N3—C171.356 (4)C9—H9A0.9700
N4—C141.462 (4)C9—H9B0.9700
N4—C151.471 (4)C10—H10A0.9700
N4—C131.330 (4)C10—H10B0.9700
C1—C21.431 (5)C11—H110.9300
C2—C31.357 (4)C12—H120.9300
C3—C41.444 (5)C14—H14A0.9600
C5—C61.511 (6)C14—H14B0.9600
C6—C71.505 (4)C14—H14C0.9600
C7—C81.519 (4)C15—H15A0.9600
C8—C91.524 (4)C15—H15B0.9600
C9—C101.506 (4)C15—H15C0.9600
C11—C121.351 (4)C16—H160.9300
C12—C131.420 (4)C17—H170.9300
C13—C161.418 (4)
Ni1—S1—C2103.00 (9)C7—C6—H6B109.00
Ni1—S2—C3102.72 (11)H6A—C6—H6B108.00
S1—Ni1—S291.93 (3)C6—C7—H7A109.00
S1—Ni1—S1i180.00C6—C7—H7B109.00
S1—Ni1—S2i88.07 (3)C8—C7—H7A109.00
S1i—Ni1—S288.07 (3)C8—C7—H7B109.00
S2—Ni1—S2i180.00H7A—C7—H7B108.00
S1i—Ni1—S2i91.93 (3)C7—C8—H8A109.00
C11—N3—C17118.3 (2)C7—C8—H8B109.00
C10—N3—C11121.6 (2)C9—C8—H8A109.00
C10—N3—C17120.0 (2)C9—C8—H8B109.00
C14—N4—C15117.5 (2)H8A—C8—H8B108.00
C13—N4—C14121.3 (2)C8—C9—H9A109.00
C13—N4—C15121.2 (2)C8—C9—H9B109.00
N1—C1—C2179.1 (4)C10—C9—H9A109.00
C1—C2—C3121.7 (3)C10—C9—H9B109.00
S1—C2—C1117.9 (2)H9A—C9—H9B108.00
S1—C2—C3120.4 (2)N3—C10—H10A109.00
C2—C3—C4121.5 (3)N3—C10—H10B109.00
S2—C3—C2121.3 (2)C9—C10—H10A109.00
S2—C3—C4117.2 (3)C9—C10—H10B109.00
N2—C4—C3177.9 (4)H10A—C10—H10B108.00
C5—C6—C7114.0 (3)N3—C11—H11119.00
C6—C7—C8114.6 (3)C12—C11—H11119.00
C7—C8—C9112.5 (2)C11—C12—H12119.00
C8—C9—C10112.4 (2)C13—C12—H12119.00
N3—C10—C9111.4 (2)N4—C14—H14A109.00
N3—C11—C12122.1 (3)N4—C14—H14B110.00
C11—C12—C13121.3 (2)N4—C14—H14C110.00
N4—C13—C12122.8 (2)H14A—C14—H14B109.00
N4—C13—C16122.3 (2)H14A—C14—H14C109.00
C12—C13—C16114.9 (3)H14B—C14—H14C109.00
C13—C16—C17120.9 (3)N4—C15—H15A109.00
N3—C17—C16122.6 (3)N4—C15—H15B109.00
C6—C5—H5A110.00N4—C15—H15C109.00
C6—C5—H5B109.00H15A—C15—H15B110.00
C6—C5—H5C109.00H15A—C15—H15C109.00
H5A—C5—H5B109.00H15B—C15—H15C109.00
H5A—C5—H5C109.00C13—C16—H16120.00
H5B—C5—H5C110.00C17—C16—H16120.00
C5—C6—H6A109.00N3—C17—H17119.00
C5—C6—H6B109.00C16—C17—H17119.00
C7—C6—H6A109.00
S2—Ni1—S1—C26.92 (10)C14—N4—C13—C16179.7 (3)
S2i—Ni1—S1—C2173.09 (10)C15—N4—C13—C12178.1 (3)
S1—Ni1—S2—C37.10 (10)S1—C2—C3—S20.5 (3)
S1i—Ni1—S2—C3172.90 (10)S1—C2—C3—C4177.7 (2)
Ni1—S1—C2—C1174.9 (2)C1—C2—C3—S2179.3 (2)
Ni1—S1—C2—C35.3 (2)C1—C2—C3—C42.5 (4)
Ni1—S2—C3—C26.1 (2)C5—C6—C7—C8179.5 (3)
Ni1—S2—C3—C4172.2 (2)C6—C7—C8—C9176.8 (3)
C17—N3—C11—C120.6 (4)C7—C8—C9—C10177.2 (3)
C10—N3—C17—C16175.5 (2)C8—C9—C10—N3179.4 (2)
C11—N3—C17—C160.0 (4)N3—C11—C12—C131.3 (4)
C10—N3—C11—C12174.8 (2)C11—C12—C13—N4178.9 (3)
C11—N3—C10—C996.8 (3)C11—C12—C13—C161.3 (4)
C17—N3—C10—C978.5 (3)N4—C13—C16—C17179.6 (3)
C14—N4—C13—C120.0 (4)C12—C13—C16—C170.7 (4)
C15—N4—C13—C162.2 (4)C13—C16—C17—N30.1 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of China for financial support (grant No. 21301093).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, H. B., Ren, X. M. & Liu, J. L. (2014a). Soft Mater. 12, 166–178.  CrossRef CAS Google Scholar
First citationDuan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Meng, Q. J., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622–3630.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDuan, H. B., Zhang, X. M. & Zhou, H. (2014b). Synth. Met. 195, 294–298.  CSD CrossRef CAS Google Scholar
First citationNi, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y., Ni, Z., Tian, Z., Wen, L. & Meng, Q. (2004). Chem. Phys. Lett. 396, 353–358.  CSD CrossRef CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationPei, W. B., Wu, J. S., Ren, X. M., Tian, Z. F. & Xie, J. L. (2012). Dalton Trans. 41, 2667–2676.  CSD CrossRef CAS PubMed Google Scholar
First citationRen, X. M., Nishihara, S., Akutagawa, T., Noro, S., Nakamura, T., Fujita, W. & Awaga, K. (2006). Chem. Phys. Lett. 418, 423–427.  CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. F., Duan, H. B., Ren, X. M., Lu, C. S., Li, Y. Z., Song, Y., Zhu, H. & Meng, Q. J. (2009). J. Phys. Chem. B, 113, 8278–8283.  CSD CrossRef PubMed CAS Google Scholar
First citationYu, S. S., Duan, H. B., Chen, X. R., Tian, Z. F. & Ren, X. M. (2013). Dalton Trans. 42, 3827–3834.  CSD CrossRef CAS PubMed Google Scholar
First citationYu, S. S., Duan, H. B., Pei, W. B., Chen, X. R., Ren, X. M. & Tian, Z. F. (2012). Inorg. Chem. Commun. 20, 307–311.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds