research communications
N,N-dimethylpyridinium) bis(maleonitriledithiolato)nickelate(II)
of bis(1-hexyl-aDepartment of Environmental Science, Nanjing Xiaozhuang College, Nanjing 211171, People's Republic of China, and bHuabao Food Flavor & Fragrance (Shanghai) Co., Ltd, Shanghai, 201821, People's Republic of China
*Correspondence e-mail: yushanshan_2005@163.com
The 13H23N2)2[Ni(C4N2S2)2], consists of a 1-hexyl-N,N-dimethylpyridinium cation and one half of a [Ni(mnt)2]2− dianion (mnt2− = maleonitriledithiolate) in which the Ni2+ cation lies on a crystallographic inversion centre. The square-planar coordination about Ni2+ comprises four S atoms from two bidentate chelate mnt2− ligands [Ni—S = 2.1791 (9) and 2.1810 (8) Å, and S—Ni—S bite angle = 91.93 (3)°]. The hydrocarbon chains of cations show trans-planar conformations and lie approximately parallel to the long molecular axis of the [Ni(mnt)2]2− anions, giving stacks along the c axis. The anions and cations form layers lying parallel to the bc plane. Only weak C—H⋯Ni and C—H⋯π associations are present in the crystal packing.
of the title compound, (CCCDC reference: 1491765
1. Chemical context
Molecular solids based on transition metal dithiolene complexes have attracted much interest in recent years, not only regarding fundamental research of magnetic interactions and magneto-structural correlations but also in the development of new functional-molecule-based materials (Robertson & Cronin, 2002). Much work has been performed in molecular solids based on M[dithiolene]2 complexes because of their application as building blocks in molecular-based materials showing magnetic, superconducting and optical properties (Nishijo et al., 2000; Ni et al., 2004, Ren et al., 2004). In our previous studies, we have investigated the effect of the introduction of mobile organic cations into the rigid [Ni(mnt)2]2− spin system and created some multi-functional compounds (Yu et al., 2012, 2013; Duan et al., 2011). In order to further explore the correlation between the structural features of the counter-cations and the stacking patterns of the anions as well as their physical properties, we have designed and synthesized the soft 1-hexyl-N,N-dimethylpyridinium cation and combined it with the [Ni(mnt)2]2− dianion, giving the title compound, (C13H23N2)2[Ni(C4N2S2)2], (I), and the is reported herein.
2. Structural comment
In the structure of (I) (Fig. 1), the comprises a 1-hexyl-N,N-dimethylpyridinium cation and one half of an [Ni(mnt)2]2− dianion (mnt2− = maleonitriledithiolate). The Ni2+ ion lies on a crystallographic inversion centre (Fig. 1). The complex dianion possesses an approximately planar geometry with Ni—S bond lengths of the bidentate ligands of 2.1791 (9) and 2.1810 (8) Å and an1 S—Ni—S2 bite angle of 91.93 (3)°. These values are in good agreement with those found in various [Ni(mnt)2]2− compounds (Duan et al., 2014a).
The hydrocarbon chain of the cation is slightly disrupted close to the pyridyl ring in the completely trans-planar conformation, with a chain to pyridyl ring dihedral angle of 83.03 (19)°. The direction of the hydrocarbon chains is approximately parallel to the long molecular axis of the anions, with a dihedral angle between the molecular plane of the hydrocarbon chain and that of the anion (defined by S1,S2,S2i,S1i) of 10.76 (18)° [symmetry code: (i) −x + 1, −y, −z]. Between the cation and anion there is a novel Ni1⋯H—C17ii interaction (H⋯Ni = 2.72 Å) (Fig. 2) [symmetry code: (ii) −x + 1, −y + 1, −z].
3. Supramolecular features
In the crystal of (I), both the anions and cations form layers lying parallel to the bc plane (Figs. 2 and 3). In the anion layer, two neighboring [Ni(mnt)2]2− anions are associated via side-to-side stacking with typical interatomic separations of 8.713 (1) Å (Ni1⋯Ni1ii), and 6.218 (3) Å (S1⋯S2ii). The cations are arranged into bilayers, also lying parallel to the ab plane. In each layer, the cations exhibit an antiparallel arrangement. The cation and anion layers stack alternately, forming columns which extend along c (Fig. 4).
In the crystal there are no formal hydrogen-bonding interactions. However, there are two weak C17—H⋯π associations to the chelate ring of the [Ni(mnt)2]2− dianions (Cg1, defined by Ni1,S1,C2,C3,S2): to Cg1ii and Cg1iii (H⋯Cg = 2.77 Å) [symmetry code: (iii) x, y − 1, z].
4. Database survey
In the structures of [Ni(mnt)2]2− complex dianions, chair-shaped organic compounds have been chosen as counter-cations and a series of compounds with segregated anion and cation stacks have been obtained (Pei et al., 2012; Tian et al., 2009; Ren et al., 2006). In addition, with [Ni(mnt)2]2− anions, nine compounds with 1-alkyl-4-aminopyridinium analogs as counter-cations have been synthesized (Duan et al., 2014b). In these, the hydrocarbon chains of the counter-ions adopt trans-planar conformations and mixed stacking structures of anions and cations are also observed
5. Synthesis and crystallization
Disodium maleonitriledithiolate (2.0 mmol) and nickel(II) chloride hexahydrate (1.0 mmol) were mixed with stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-hexyl-N,N-dimethylpyridinium iodide (1.0 mmol) in methanol (10 mL) was added to the mixture and the red precipitate that was immediately formed was filtered off and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block-shaped crystals which were used in the X-ray analysis.
6. Refinement
Crystal data, data collection and . The H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(aromatic or methylene) or 1.5Ueq(methyl).
details are summarized in Table 1Supporting information
CCDC reference: 1491765
https://doi.org/10.1107/S2056989016011191/zs2364sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016011191/zs2364Isup2.hkl
Data collection: SMART (Bruker, 2000); cell
SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C13H23N2)2[Ni(C4N2S2)2] | F(000) = 796 |
Mr = 753.72 | Dx = 1.261 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 773 reflections |
a = 14.241 (2) Å | θ = 2.6–21.2° |
b = 8.7129 (14) Å | µ = 0.73 mm−1 |
c = 16.393 (3) Å | T = 296 K |
β = 102.560 (2)° | Prism, red |
V = 1985.4 (6) Å3 | 0.40 × 0.20 × 0.20 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 4553 independent reflections |
Radiation source: fine-focus sealed tube | 2772 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
phi and ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −18→17 |
Tmin = 0.811, Tmax = 0.903 | k = −11→11 |
16992 measured reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0734P)2] where P = (Fo2 + 2Fc2)/3 |
4553 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.0000 | 0.05898 (18) | |
S1 | 0.54081 (6) | 0.24019 (9) | 0.02097 (5) | 0.0763 (2) | |
S2 | 0.64932 (5) | −0.07007 (9) | 0.01137 (5) | 0.0720 (2) | |
N1 | 0.7570 (3) | 0.4849 (4) | 0.0913 (2) | 0.1208 (12) | |
N2 | 0.8973 (2) | 0.0748 (5) | 0.0871 (2) | 0.1362 (13) | |
N3 | 0.55955 (17) | 0.9719 (2) | 0.27888 (15) | 0.0658 (6) | |
N4 | 0.83752 (17) | 0.8050 (3) | 0.34593 (14) | 0.0743 (6) | |
C1 | 0.7170 (3) | 0.3720 (4) | 0.07145 (18) | 0.0856 (9) | |
C2 | 0.6657 (2) | 0.2325 (3) | 0.04658 (16) | 0.0705 (7) | |
C3 | 0.7121 (2) | 0.0976 (4) | 0.04262 (16) | 0.0689 (7) | |
C4 | 0.8156 (3) | 0.0868 (4) | 0.0665 (2) | 0.0921 (10) | |
C5 | 0.0487 (3) | 0.6987 (5) | 0.1394 (3) | 0.1196 (13) | |
H5A | 0.0644 | 0.6439 | 0.0933 | 0.179* | |
H5B | −0.0169 | 0.7329 | 0.1244 | 0.179* | |
H5C | 0.0568 | 0.6322 | 0.1871 | 0.179* | |
C6 | 0.1144 (2) | 0.8359 (4) | 0.1604 (2) | 0.0938 (10) | |
H6A | 0.1027 | 0.9054 | 0.1130 | 0.113* | |
H6B | 0.0982 | 0.8898 | 0.2072 | 0.113* | |
C7 | 0.2197 (2) | 0.7958 (4) | 0.1820 (2) | 0.0845 (9) | |
H7A | 0.2355 | 0.7409 | 0.1353 | 0.101* | |
H7B | 0.2312 | 0.7268 | 0.2296 | 0.101* | |
C8 | 0.2867 (2) | 0.9327 (3) | 0.20257 (19) | 0.0748 (8) | |
H8A | 0.2693 | 0.9910 | 0.2475 | 0.090* | |
H8B | 0.2785 | 0.9990 | 0.1540 | 0.090* | |
C9 | 0.39199 (19) | 0.8855 (3) | 0.22865 (18) | 0.0716 (7) | |
H9A | 0.3997 | 0.8152 | 0.2756 | 0.086* | |
H9B | 0.4103 | 0.8316 | 0.1827 | 0.086* | |
C10 | 0.4579 (2) | 1.0208 (3) | 0.2530 (2) | 0.0779 (8) | |
H10A | 0.4510 | 1.0907 | 0.2060 | 0.093* | |
H10B | 0.4395 | 1.0754 | 0.2987 | 0.093* | |
C11 | 0.6025 (2) | 0.9523 (3) | 0.36010 (17) | 0.0683 (7) | |
H11 | 0.5689 | 0.9780 | 0.4008 | 0.082* | |
C12 | 0.6928 (2) | 0.8963 (3) | 0.38405 (16) | 0.0677 (7) | |
H12 | 0.7193 | 0.8825 | 0.4406 | 0.081* | |
C13 | 0.7480 (2) | 0.8581 (3) | 0.32450 (16) | 0.0626 (7) | |
C14 | 0.8852 (2) | 0.7825 (5) | 0.4335 (2) | 0.1024 (11) | |
H14A | 0.8845 | 0.8770 | 0.4635 | 0.154* | |
H14B | 0.9505 | 0.7509 | 0.4370 | 0.154* | |
H14C | 0.8519 | 0.7048 | 0.4577 | 0.154* | |
C15 | 0.8934 (2) | 0.7713 (4) | 0.2824 (2) | 0.0950 (10) | |
H15A | 0.8617 | 0.6922 | 0.2457 | 0.143* | |
H15B | 0.9567 | 0.7374 | 0.3094 | 0.143* | |
H15C | 0.8983 | 0.8624 | 0.2506 | 0.143* | |
C16 | 0.7002 (2) | 0.8802 (3) | 0.23995 (16) | 0.0669 (7) | |
H16 | 0.7318 | 0.8563 | 0.1975 | 0.080* | |
C17 | 0.6098 (2) | 0.9351 (3) | 0.22026 (17) | 0.0706 (7) | |
H17 | 0.5806 | 0.9484 | 0.1642 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0627 (3) | 0.0692 (3) | 0.0450 (3) | 0.0056 (2) | 0.0115 (2) | −0.00043 (19) |
S1 | 0.0775 (5) | 0.0704 (4) | 0.0804 (5) | 0.0057 (4) | 0.0161 (4) | −0.0003 (4) |
S2 | 0.0666 (5) | 0.0811 (5) | 0.0697 (4) | 0.0073 (4) | 0.0176 (3) | −0.0089 (4) |
N1 | 0.154 (3) | 0.104 (2) | 0.096 (2) | −0.047 (2) | 0.011 (2) | −0.0003 (17) |
N2 | 0.068 (2) | 0.163 (3) | 0.170 (4) | 0.001 (2) | 0.008 (2) | −0.009 (3) |
N3 | 0.0689 (15) | 0.0638 (13) | 0.0647 (14) | 0.0041 (11) | 0.0145 (11) | 0.0064 (10) |
N4 | 0.0661 (15) | 0.0834 (16) | 0.0719 (15) | −0.0009 (12) | 0.0114 (12) | 0.0088 (12) |
C1 | 0.100 (2) | 0.095 (2) | 0.0589 (17) | −0.018 (2) | 0.0110 (16) | 0.0051 (16) |
C2 | 0.0776 (19) | 0.0844 (19) | 0.0497 (15) | −0.0099 (16) | 0.0145 (13) | 0.0027 (13) |
C3 | 0.0636 (17) | 0.094 (2) | 0.0504 (15) | −0.0048 (15) | 0.0156 (13) | 0.0020 (13) |
C4 | 0.075 (2) | 0.107 (3) | 0.093 (2) | −0.006 (2) | 0.0149 (18) | −0.0019 (19) |
C5 | 0.092 (3) | 0.121 (3) | 0.138 (3) | −0.001 (2) | 0.008 (2) | −0.024 (3) |
C6 | 0.080 (2) | 0.093 (2) | 0.105 (2) | 0.0158 (18) | 0.0139 (19) | −0.0008 (19) |
C7 | 0.078 (2) | 0.083 (2) | 0.090 (2) | 0.0143 (17) | 0.0131 (16) | −0.0048 (17) |
C8 | 0.0730 (19) | 0.0747 (17) | 0.0780 (19) | 0.0143 (15) | 0.0193 (15) | 0.0096 (15) |
C9 | 0.0698 (18) | 0.0703 (17) | 0.0746 (18) | 0.0099 (14) | 0.0154 (14) | 0.0063 (14) |
C10 | 0.073 (2) | 0.0718 (18) | 0.088 (2) | 0.0142 (15) | 0.0168 (17) | 0.0060 (15) |
C11 | 0.081 (2) | 0.0683 (16) | 0.0592 (17) | −0.0066 (14) | 0.0231 (15) | −0.0001 (13) |
C12 | 0.080 (2) | 0.0693 (16) | 0.0517 (15) | −0.0069 (14) | 0.0110 (13) | 0.0076 (12) |
C13 | 0.0690 (18) | 0.0560 (14) | 0.0618 (16) | −0.0084 (13) | 0.0117 (13) | 0.0048 (12) |
C14 | 0.083 (2) | 0.122 (3) | 0.090 (2) | 0.008 (2) | −0.0071 (18) | 0.019 (2) |
C15 | 0.074 (2) | 0.100 (2) | 0.113 (3) | 0.0033 (18) | 0.0271 (19) | 0.007 (2) |
C16 | 0.0720 (18) | 0.0781 (17) | 0.0531 (15) | 0.0012 (14) | 0.0196 (13) | 0.0047 (12) |
C17 | 0.078 (2) | 0.0781 (17) | 0.0551 (15) | 0.0001 (15) | 0.0140 (14) | 0.0096 (13) |
Ni1—S1 | 2.1791 (9) | C16—C17 | 1.345 (4) |
Ni1—S2 | 2.1810 (8) | C5—H5A | 0.9600 |
Ni1—S1i | 2.1791 (9) | C5—H5B | 0.9600 |
Ni1—S2i | 2.1810 (8) | C5—H5C | 0.9600 |
S1—C2 | 1.738 (3) | C6—H6A | 0.9700 |
S2—C3 | 1.731 (3) | C6—H6B | 0.9700 |
N1—C1 | 1.148 (5) | C7—H7A | 0.9700 |
N2—C4 | 1.144 (5) | C7—H7B | 0.9700 |
N3—C10 | 1.480 (4) | C8—H8A | 0.9700 |
N3—C11 | 1.350 (4) | C8—H8B | 0.9700 |
N3—C17 | 1.356 (4) | C9—H9A | 0.9700 |
N4—C14 | 1.462 (4) | C9—H9B | 0.9700 |
N4—C15 | 1.471 (4) | C10—H10A | 0.9700 |
N4—C13 | 1.330 (4) | C10—H10B | 0.9700 |
C1—C2 | 1.431 (5) | C11—H11 | 0.9300 |
C2—C3 | 1.357 (4) | C12—H12 | 0.9300 |
C3—C4 | 1.444 (5) | C14—H14A | 0.9600 |
C5—C6 | 1.511 (6) | C14—H14B | 0.9600 |
C6—C7 | 1.505 (4) | C14—H14C | 0.9600 |
C7—C8 | 1.519 (4) | C15—H15A | 0.9600 |
C8—C9 | 1.524 (4) | C15—H15B | 0.9600 |
C9—C10 | 1.506 (4) | C15—H15C | 0.9600 |
C11—C12 | 1.351 (4) | C16—H16 | 0.9300 |
C12—C13 | 1.420 (4) | C17—H17 | 0.9300 |
C13—C16 | 1.418 (4) | ||
Ni1—S1—C2 | 103.00 (9) | C7—C6—H6B | 109.00 |
Ni1—S2—C3 | 102.72 (11) | H6A—C6—H6B | 108.00 |
S1—Ni1—S2 | 91.93 (3) | C6—C7—H7A | 109.00 |
S1—Ni1—S1i | 180.00 | C6—C7—H7B | 109.00 |
S1—Ni1—S2i | 88.07 (3) | C8—C7—H7A | 109.00 |
S1i—Ni1—S2 | 88.07 (3) | C8—C7—H7B | 109.00 |
S2—Ni1—S2i | 180.00 | H7A—C7—H7B | 108.00 |
S1i—Ni1—S2i | 91.93 (3) | C7—C8—H8A | 109.00 |
C11—N3—C17 | 118.3 (2) | C7—C8—H8B | 109.00 |
C10—N3—C11 | 121.6 (2) | C9—C8—H8A | 109.00 |
C10—N3—C17 | 120.0 (2) | C9—C8—H8B | 109.00 |
C14—N4—C15 | 117.5 (2) | H8A—C8—H8B | 108.00 |
C13—N4—C14 | 121.3 (2) | C8—C9—H9A | 109.00 |
C13—N4—C15 | 121.2 (2) | C8—C9—H9B | 109.00 |
N1—C1—C2 | 179.1 (4) | C10—C9—H9A | 109.00 |
C1—C2—C3 | 121.7 (3) | C10—C9—H9B | 109.00 |
S1—C2—C1 | 117.9 (2) | H9A—C9—H9B | 108.00 |
S1—C2—C3 | 120.4 (2) | N3—C10—H10A | 109.00 |
C2—C3—C4 | 121.5 (3) | N3—C10—H10B | 109.00 |
S2—C3—C2 | 121.3 (2) | C9—C10—H10A | 109.00 |
S2—C3—C4 | 117.2 (3) | C9—C10—H10B | 109.00 |
N2—C4—C3 | 177.9 (4) | H10A—C10—H10B | 108.00 |
C5—C6—C7 | 114.0 (3) | N3—C11—H11 | 119.00 |
C6—C7—C8 | 114.6 (3) | C12—C11—H11 | 119.00 |
C7—C8—C9 | 112.5 (2) | C11—C12—H12 | 119.00 |
C8—C9—C10 | 112.4 (2) | C13—C12—H12 | 119.00 |
N3—C10—C9 | 111.4 (2) | N4—C14—H14A | 109.00 |
N3—C11—C12 | 122.1 (3) | N4—C14—H14B | 110.00 |
C11—C12—C13 | 121.3 (2) | N4—C14—H14C | 110.00 |
N4—C13—C12 | 122.8 (2) | H14A—C14—H14B | 109.00 |
N4—C13—C16 | 122.3 (2) | H14A—C14—H14C | 109.00 |
C12—C13—C16 | 114.9 (3) | H14B—C14—H14C | 109.00 |
C13—C16—C17 | 120.9 (3) | N4—C15—H15A | 109.00 |
N3—C17—C16 | 122.6 (3) | N4—C15—H15B | 109.00 |
C6—C5—H5A | 110.00 | N4—C15—H15C | 109.00 |
C6—C5—H5B | 109.00 | H15A—C15—H15B | 110.00 |
C6—C5—H5C | 109.00 | H15A—C15—H15C | 109.00 |
H5A—C5—H5B | 109.00 | H15B—C15—H15C | 109.00 |
H5A—C5—H5C | 109.00 | C13—C16—H16 | 120.00 |
H5B—C5—H5C | 110.00 | C17—C16—H16 | 120.00 |
C5—C6—H6A | 109.00 | N3—C17—H17 | 119.00 |
C5—C6—H6B | 109.00 | C16—C17—H17 | 119.00 |
C7—C6—H6A | 109.00 | ||
S2—Ni1—S1—C2 | −6.92 (10) | C14—N4—C13—C16 | −179.7 (3) |
S2i—Ni1—S1—C2 | 173.09 (10) | C15—N4—C13—C12 | −178.1 (3) |
S1—Ni1—S2—C3 | 7.10 (10) | S1—C2—C3—S2 | 0.5 (3) |
S1i—Ni1—S2—C3 | −172.90 (10) | S1—C2—C3—C4 | −177.7 (2) |
Ni1—S1—C2—C1 | −174.9 (2) | C1—C2—C3—S2 | −179.3 (2) |
Ni1—S1—C2—C3 | 5.3 (2) | C1—C2—C3—C4 | 2.5 (4) |
Ni1—S2—C3—C2 | −6.1 (2) | C5—C6—C7—C8 | 179.5 (3) |
Ni1—S2—C3—C4 | 172.2 (2) | C6—C7—C8—C9 | 176.8 (3) |
C17—N3—C11—C12 | −0.6 (4) | C7—C8—C9—C10 | −177.2 (3) |
C10—N3—C17—C16 | −175.5 (2) | C8—C9—C10—N3 | 179.4 (2) |
C11—N3—C17—C16 | 0.0 (4) | N3—C11—C12—C13 | 1.3 (4) |
C10—N3—C11—C12 | 174.8 (2) | C11—C12—C13—N4 | 178.9 (3) |
C11—N3—C10—C9 | −96.8 (3) | C11—C12—C13—C16 | −1.3 (4) |
C17—N3—C10—C9 | 78.5 (3) | N4—C13—C16—C17 | −179.6 (3) |
C14—N4—C13—C12 | 0.0 (4) | C12—C13—C16—C17 | 0.7 (4) |
C15—N4—C13—C16 | 2.2 (4) | C13—C16—C17—N3 | −0.1 (4) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
The authors thank the Natural Science Foundation of China for financial support (grant No. 21301093).
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duan, H. B., Ren, X. M. & Liu, J. L. (2014a). Soft Mater. 12, 166–178. CrossRef CAS Google Scholar
Duan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Meng, Q. J., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622–3630. Web of Science CSD CrossRef CAS PubMed Google Scholar
Duan, H. B., Zhang, X. M. & Zhou, H. (2014b). Synth. Met. 195, 294–298. CSD CrossRef CAS Google Scholar
Ni, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y., Ni, Z., Tian, Z., Wen, L. & Meng, Q. (2004). Chem. Phys. Lett. 396, 353–358. CSD CrossRef CAS Google Scholar
Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). Solid State Commun. 116, 661–664. Web of Science CSD CrossRef CAS Google Scholar
Pei, W. B., Wu, J. S., Ren, X. M., Tian, Z. F. & Xie, J. L. (2012). Dalton Trans. 41, 2667–2676. CSD CrossRef CAS PubMed Google Scholar
Ren, X. M., Nishihara, S., Akutagawa, T., Noro, S., Nakamura, T., Fujita, W. & Awaga, K. (2006). Chem. Phys. Lett. 418, 423–427. CSD CrossRef CAS Google Scholar
Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576. Web of Science CSD CrossRef PubMed CAS Google Scholar
Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, Z. F., Duan, H. B., Ren, X. M., Lu, C. S., Li, Y. Z., Song, Y., Zhu, H. & Meng, Q. J. (2009). J. Phys. Chem. B, 113, 8278–8283. CSD CrossRef PubMed CAS Google Scholar
Yu, S. S., Duan, H. B., Chen, X. R., Tian, Z. F. & Ren, X. M. (2013). Dalton Trans. 42, 3827–3834. CSD CrossRef CAS PubMed Google Scholar
Yu, S. S., Duan, H. B., Pei, W. B., Chen, X. R., Ren, X. M. & Tian, Z. F. (2012). Inorg. Chem. Commun. 20, 307–311. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.