research communications
S,2S,2′R,3a′S,5R)-2′-[(5-bromo-1H-indol-3-yl)methyl]-2-isopropyl-5,5′-dimethyldihydro-2′H-spiro[cyclohexane-1,6′-imidazo[1,5-b]isoxazol]-4′(5′H)-one
of (1aUniversité de Monastir, Laboratoire de Synthése Hétérocyclique, Produits Naturels et Réactivités, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia, bLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, and cUniversité Lyon 1, Centre de Diffractométrie Henri Longchambon, Bâtiment 305, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
*Correspondence e-mail: jihedbrahmi85@live.fr
In the title compound, C24H32BrN3O2, the six-membered cyclohexane ring adopts a chair conformation and the isoxasolidine ring adopts a twisted conformation. The molecule has five chiral centres and the has been determined in this analysis. The molecular structure is stabilized by weak intramolecular C—H⋯O and C—H⋯N contacts. In the crystal, molecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming undulating sheets parallel to the bc plane.
Keywords: crystal structure; isoxazolidines; 1,3-dipolar cycloaddition; chiral nitrone; hydrogen bonding.
CCDC reference: 1490701
1. Chemical context
1,3-Dipolar cycloadditions of et al., 2006, 2007) through opening of the isoxazolidine ring, usually by reductive cleavage of the weak N—O bond. Consequently, isoxazolidines have been used as key intermediates for the synthesis of various natural products, antifungals (Kumar et al., 2003), anti-tuberculosis (Kumar et al., 2010) and antiviral agents (Loh et al., 2010). We present herein the synthesis, the molecular structure and the spectroscopic data of the title compound, C24H32BrN3O2, (I).
with nitrones produce substituted isoxazolidines. Nitrone cycloadducts offer a general route to natural and unnatural amino acids (Aouadi2. Structural commentary
In the title compound (I) (Fig. 1), the five-membered isoxazolidine ring has a twist conformation. The O1—N2 bond length in the isoxazolidine ring is 1.475 (6) Å which is close to the values in related compounds (Lee et al., 2010; Molander & Cavalcanti, 2013). The cyclohexane ring adopts a chair conformation. The dihedral angle between the mean planes of the isoxazolidine and imidazolidinone rings is 73.1 (3)° while the C8—C9—C10—O1 torsion angle is 74.7 (7)°. In the molecule there are some short C—H⋯O and C—H⋯N contacts present (Table 1). The of (I) has been confirmed as C10(R),C12(S),C14(S),C16(R),C19(S) for the five arbitrarily numbered chiral centres in the molecule.
3. Supramolecular features
In the crystal packing of (I), the molecules are linked through an intermolecular N1—HN1⋯N2i hydrogen bond (Table 1) and a weak N1—HN1⋯O1i interaction [3.053 (8) Å], forming undulating sheets parallel to the bc plane (Fig. 2). Within the chains, the molecules are stabilized by a weak intermolecular C3—H3⋯O2ii hydrogen bond (Table 1). Also present in the crystal are 39.3 Å3 solvent-accessible voids.
4. Synthesis and crystallization
To a solution of 3-allyl-5-bromo-1H-indole (1.40 mmol, 330 mg) in toluene (10 mL) was added 5(R),6(S),9(R)-6-isopropyl-1,9-dimethyl-1,4-diazoaspiro[4,5]-decan-1-ene-3-one-1-oxide (II) (1.19 mmol, 285 mg) and the mixture was stirred and heated at reflux at 383 K for 24 h under argon. TLC indicated the complete conversion of (II). The solution obtained was concentrated and the residue was purified by flash (petroleum ether–ethyl acetate 7:3) to afford the cycloadduct (I) as a white solid (507 mg, 90% yield) (Fig. 3). Colorless plate-shaped crystals of (I) were obtained by slow evaporation of a diethyl ether solution.
5. Spectroscopic investigations
NMR spectra were recorded on a Bruker Avance II 300 MHz spectrometer operating at 300 MHz for 1H and 75.46 MHz for 13C and were referenced to tetramethylsilane (δ = 0 p.p.m.). High-resolution (HR–ESI–QToF) mass spectra were recorded using a Bruker Micro ToF-Q II XL spectrometer.
The1H NMR spectrum of (I) shows the presence of an NH proton at 8.32 p.p.m. and the13C NMR spectrum confirms the existence of the C3 and C5 stereogenic centres at 66.4 p.p.m. and 78.0 p.p.m., respectively. The spectroscopic measurements are consistent with the of (I). High-resolution in the positive-ion mode exhibits an [M+H]+ fragment of 474.1759 m/z which is very close to the calculated value of 474.1756 m/z.
Rf = 0.33 (PE–EtOAc 7:3). NMR 1H (300 MHz, CDCl3) δ(p.p.m.): 0.62 (d, 3H, J = 6.6 Hz), 0.83 (d, 3H, J = 6.6 Hz), 0.85 (m, 1H), 0.86 (d, 3H, J = 6.3 Hz), 1.11 (t, 1H, J = 12.3 Hz), 1.21–1.43 (m, 2H), 1.57–1.67 (m, 1H), 1.70–1.83 (m, 3H), 1.90–2.02 (m, 1H), 2.26 (ddd, 1H, J = 8.7 Hz, 10.2 Hz and 12 Hz), 2.69 (s, 3H, NCH3), 2.67–2.72 (m, 1H), 2.93–2.97 (m, 2H), 3.88–3.97 (m, 1H), 4.01 (brd, 1H, J = 8.4 Hz), 7.02 (brd, 1H, J = 4.8 Hz), 7.21 (m, 2H), 7.74 (brd, 1H, J = 1.8 Hz), 8.32 (brs, 1H, NH). 13C NMR (CDCl3, 75.46 MHz) δ(p.p.m.): 18.3, 22.0, 22.2 (CH2), 24.1, 24.3, 26.0, 28.1, 29.6, 34.5 (CH2), 38.8 (CH2), 40.3 (CH2), 48.0, 66.4, 78.0, 90.0, 112.3, 112.4, 112.7, 121.6, 123.5, 124.7, 129.1, 134.6, 173.0 (C=O). [α] = + 43.7 (c = 1, CH2Cl2).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.96 Å (methyl) and 0.93 Å (aromatic), with Uiso(H) = 1.2Ueq(C)(methine, methylene, aromatic) or 1.5UeqC(methyl). The H atom on the nitrogen N1 of the indole ring was found in a difference-Fourier map but was subsequently refined with the coordinates and isotropic displacement parameter also riding with Uiso = 1.2 Ueq(N). The bond length N1—HN1 was restrained to ensure proper geometry using the DFIX instruction of SHELXL2014/7 (Sheldrick, 2015). The [−0.013 (13) for 1005 quotients (Parsons et al., 2013)] confirmed the configuration of the molecule as C10(R),C12(S),C14(S),C16(R),C19(S) for the five arbitrarily numbered chiral centres in the molecule.
details are summarized in Table 2Supporting information
CCDC reference: 1490701
https://doi.org/10.1107/S2056989016010872/zs2365sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010872/zs2365Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016010872/zs2365Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C24H32BrN3O2 | F(000) = 496 |
Mr = 474.43 | Dx = 1.328 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2640 (5) Å | Cell parameters from 8154 reflections |
b = 9.6480 (5) Å | θ = 1.0–27.9° |
c = 12.0480 (5) Å | µ = 1.76 mm−1 |
β = 96.204 (5)° | T = 293 K |
V = 1186.09 (10) Å3 | Plate, colorless |
Z = 2 | 0.46 × 0.39 × 0.11 mm |
Oxford Diffraction Xcalibur Atlas Gemini Ultra CCD diffractometer | 4337 independent reflections |
Radiation source: Enhance (Mo) X-ray source) | 2924 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.104 |
ω/2θ scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 1997) | h = −12→12 |
Tmin = 0.455, Tmax = 0.802 | k = −11→11 |
10653 measured reflections | l = −13→14 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0631P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.135 | (Δ/σ)max < 0.001 |
S = 0.97 | Δρmax = 0.31 e Å−3 |
4337 reflections | Δρmin = −0.51 e Å−3 |
272 parameters | Absolute structure: Flack x determined using 1005 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.013 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br | 0.17985 (7) | 0.23216 (8) | 0.27079 (6) | 0.0716 (3) | |
O1 | 0.4307 (4) | 0.4046 (5) | 0.6482 (4) | 0.0455 (11) | |
N3 | 0.3297 (6) | 0.6276 (6) | 0.8208 (5) | 0.0559 (16) | |
O2 | 0.5063 (6) | 0.6393 (6) | 0.9554 (4) | 0.0728 (16) | |
N2 | 0.3578 (5) | 0.4065 (6) | 0.7471 (4) | 0.0419 (12) | |
N1 | 0.6516 (6) | 0.6022 (6) | 0.3324 (5) | 0.0521 (15) | |
C14 | 0.2644 (7) | 0.5267 (7) | 0.7427 (5) | 0.0447 (15) | |
C6 | 0.4147 (7) | 0.3475 (8) | 0.3841 (6) | 0.0472 (16) | |
H6 | 0.4007 | 0.2871 | 0.4418 | 0.057* | |
C9 | 0.6468 (6) | 0.4016 (8) | 0.5952 (5) | 0.0478 (16) | |
H9A | 0.7375 | 0.4153 | 0.6248 | 0.057* | |
H9B | 0.6317 | 0.3025 | 0.5885 | 0.057* | |
C1 | 0.3301 (7) | 0.3486 (8) | 0.2869 (6) | 0.0523 (18) | |
C11 | 0.5918 (7) | 0.4126 (9) | 0.7977 (6) | 0.0513 (18) | |
H11A | 0.6196 | 0.3164 | 0.8013 | 0.062* | |
H11B | 0.6594 | 0.4698 | 0.8372 | 0.062* | |
C10 | 0.5591 (6) | 0.4605 (7) | 0.6774 (5) | 0.0426 (15) | |
H10 | 0.5572 | 0.5619 | 0.6734 | 0.051* | |
C8 | 0.6248 (6) | 0.4659 (7) | 0.4806 (5) | 0.0439 (15) | |
C13 | 0.4388 (7) | 0.5769 (8) | 0.8831 (6) | 0.0523 (18) | |
C19 | 0.1319 (7) | 0.4750 (8) | 0.7834 (5) | 0.0485 (17) | |
H19 | 0.0774 | 0.5582 | 0.7854 | 0.058* | |
C5 | 0.5213 (6) | 0.4378 (7) | 0.3948 (5) | 0.0428 (15) | |
C12 | 0.4609 (6) | 0.4315 (8) | 0.8439 (5) | 0.0471 (16) | |
H12 | 0.4518 | 0.3648 | 0.9039 | 0.057* | |
C16 | 0.1585 (6) | 0.4977 (7) | 0.5389 (5) | 0.0472 (16) | |
H16 | 0.2112 | 0.4153 | 0.5275 | 0.057* | |
C15 | 0.2358 (7) | 0.5914 (7) | 0.6262 (6) | 0.0500 (17) | |
H15A | 0.3184 | 0.6159 | 0.5992 | 0.060* | |
H15B | 0.1867 | 0.6764 | 0.6328 | 0.060* | |
C7 | 0.6991 (6) | 0.5668 (8) | 0.4386 (6) | 0.0503 (17) | |
H7 | 0.7730 | 0.6064 | 0.4776 | 0.060* | |
C4 | 0.5407 (7) | 0.5268 (7) | 0.3039 (6) | 0.0459 (16) | |
C18 | 0.0585 (7) | 0.3816 (8) | 0.6964 (6) | 0.0544 (18) | |
H18A | −0.0241 | 0.3541 | 0.7220 | 0.065* | |
H18B | 0.1096 | 0.2983 | 0.6884 | 0.065* | |
C3 | 0.4561 (8) | 0.5248 (8) | 0.2046 (6) | 0.056 (2) | |
H3 | 0.4705 | 0.5828 | 0.1455 | 0.068* | |
C17 | 0.0316 (6) | 0.4521 (9) | 0.5829 (6) | 0.0574 (19) | |
H17A | −0.0146 | 0.3883 | 0.5302 | 0.069* | |
H17B | −0.0241 | 0.5322 | 0.5896 | 0.069* | |
C21 | 0.1702 (8) | 0.2603 (9) | 0.9120 (6) | 0.071 (2) | |
H21A | 0.2474 | 0.2388 | 0.8770 | 0.107* | |
H21B | 0.1833 | 0.2340 | 0.9892 | 0.107* | |
H21C | 0.0968 | 0.2105 | 0.8754 | 0.107* | |
C2 | 0.3522 (8) | 0.4357 (8) | 0.1965 (6) | 0.061 (2) | |
H2 | 0.2954 | 0.4324 | 0.1309 | 0.073* | |
C20 | 0.1432 (7) | 0.4168 (9) | 0.9030 (6) | 0.0554 (18) | |
H20 | 0.2168 | 0.4641 | 0.9457 | 0.066* | |
C23 | 0.1317 (8) | 0.5741 (9) | 0.4278 (6) | 0.068 (2) | |
H23A | 0.2133 | 0.6015 | 0.4022 | 0.102* | |
H23B | 0.0854 | 0.5139 | 0.3736 | 0.102* | |
H23C | 0.0796 | 0.6549 | 0.4376 | 0.102* | |
C22 | 0.0205 (10) | 0.4502 (13) | 0.9589 (8) | 0.097 (3) | |
H22A | 0.0032 | 0.5479 | 0.9535 | 0.145* | |
H22B | −0.0527 | 0.4001 | 0.9222 | 0.145* | |
H22C | 0.0338 | 0.4236 | 1.0361 | 0.145* | |
C24 | 0.2777 (9) | 0.7638 (8) | 0.8427 (8) | 0.081 (3) | |
H24A | 0.2015 | 0.7815 | 0.7912 | 0.121* | |
H24B | 0.2542 | 0.7668 | 0.9177 | 0.121* | |
H24C | 0.3431 | 0.8329 | 0.8338 | 0.121* | |
HN1 | 0.6758 | 0.6699 | 0.2885 | 0.07 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0695 (5) | 0.0753 (5) | 0.0667 (5) | −0.0179 (5) | −0.0081 (3) | 0.0009 (5) |
O1 | 0.042 (3) | 0.058 (3) | 0.036 (3) | −0.003 (2) | 0.0033 (19) | 0.000 (2) |
N3 | 0.066 (4) | 0.049 (4) | 0.052 (4) | −0.006 (3) | 0.004 (3) | −0.008 (3) |
O2 | 0.078 (4) | 0.092 (4) | 0.047 (3) | −0.029 (3) | −0.001 (3) | −0.015 (3) |
N2 | 0.042 (3) | 0.053 (3) | 0.031 (3) | −0.002 (3) | 0.002 (2) | 0.001 (2) |
N1 | 0.059 (4) | 0.049 (4) | 0.049 (4) | −0.007 (3) | 0.012 (3) | 0.004 (3) |
C14 | 0.051 (4) | 0.046 (4) | 0.037 (4) | 0.000 (3) | 0.002 (3) | −0.003 (3) |
C6 | 0.058 (4) | 0.048 (4) | 0.037 (4) | −0.004 (3) | 0.009 (3) | 0.005 (3) |
C9 | 0.043 (4) | 0.056 (4) | 0.045 (4) | 0.012 (3) | 0.006 (3) | 0.011 (3) |
C1 | 0.067 (5) | 0.047 (4) | 0.042 (4) | −0.001 (4) | −0.001 (3) | −0.007 (3) |
C11 | 0.045 (4) | 0.070 (5) | 0.037 (4) | 0.003 (4) | −0.002 (3) | 0.007 (4) |
C10 | 0.040 (3) | 0.049 (4) | 0.038 (4) | −0.006 (3) | 0.003 (3) | 0.000 (3) |
C8 | 0.042 (3) | 0.049 (4) | 0.041 (4) | 0.000 (3) | 0.009 (3) | −0.001 (3) |
C13 | 0.058 (4) | 0.062 (5) | 0.038 (4) | −0.013 (4) | 0.008 (3) | −0.001 (3) |
C19 | 0.048 (4) | 0.052 (4) | 0.046 (4) | 0.009 (3) | 0.006 (3) | 0.002 (3) |
C5 | 0.048 (4) | 0.043 (4) | 0.038 (4) | 0.004 (3) | 0.008 (3) | −0.003 (3) |
C12 | 0.046 (4) | 0.060 (5) | 0.034 (3) | −0.009 (3) | 0.003 (3) | 0.003 (3) |
C16 | 0.051 (4) | 0.044 (4) | 0.045 (4) | 0.006 (3) | −0.003 (3) | 0.004 (3) |
C15 | 0.058 (4) | 0.037 (4) | 0.054 (5) | 0.008 (3) | 0.003 (3) | 0.008 (3) |
C7 | 0.047 (4) | 0.054 (4) | 0.051 (4) | −0.005 (4) | 0.009 (3) | −0.004 (3) |
C4 | 0.057 (4) | 0.038 (4) | 0.043 (4) | 0.001 (3) | 0.011 (3) | −0.003 (3) |
C18 | 0.044 (4) | 0.067 (5) | 0.050 (4) | −0.002 (3) | 0.000 (3) | −0.003 (4) |
C3 | 0.075 (5) | 0.055 (5) | 0.039 (4) | 0.003 (4) | 0.009 (4) | 0.003 (3) |
C17 | 0.048 (4) | 0.069 (5) | 0.052 (4) | 0.003 (4) | −0.007 (3) | −0.001 (4) |
C21 | 0.073 (5) | 0.085 (7) | 0.057 (5) | −0.006 (5) | 0.015 (4) | 0.015 (4) |
C2 | 0.082 (5) | 0.061 (5) | 0.036 (4) | −0.007 (4) | −0.008 (3) | 0.000 (4) |
C20 | 0.051 (4) | 0.072 (5) | 0.045 (4) | 0.002 (4) | 0.012 (3) | −0.002 (4) |
C23 | 0.090 (6) | 0.065 (5) | 0.045 (4) | 0.011 (5) | −0.011 (4) | 0.006 (4) |
C22 | 0.087 (6) | 0.139 (9) | 0.071 (6) | 0.021 (7) | 0.037 (5) | 0.009 (6) |
C24 | 0.104 (6) | 0.063 (7) | 0.075 (6) | 0.002 (5) | 0.009 (5) | −0.021 (5) |
Br—C1 | 1.901 (7) | C5—C4 | 1.423 (9) |
O1—C10 | 1.432 (7) | C12—H12 | 0.9800 |
O1—N2 | 1.475 (6) | C16—C17 | 1.523 (10) |
N3—C13 | 1.369 (10) | C16—C23 | 1.526 (10) |
N3—C24 | 1.453 (10) | C16—C15 | 1.540 (10) |
N3—C14 | 1.465 (9) | C16—H16 | 0.9800 |
O2—C13 | 1.212 (9) | C15—H15A | 0.9700 |
N2—C14 | 1.502 (9) | C15—H15B | 0.9700 |
N2—C12 | 1.507 (8) | C7—H7 | 0.9300 |
N1—C7 | 1.362 (9) | C4—C3 | 1.401 (11) |
N1—C4 | 1.362 (9) | C18—C17 | 1.526 (10) |
N1—HN1 | 0.8929 | C18—H18A | 0.9700 |
C14—C15 | 1.535 (9) | C18—H18B | 0.9700 |
C14—C19 | 1.576 (10) | C3—C2 | 1.365 (11) |
C6—C1 | 1.381 (10) | C3—H3 | 0.9300 |
C6—C5 | 1.394 (10) | C17—H17A | 0.9700 |
C6—H6 | 0.9300 | C17—H17B | 0.9700 |
C9—C8 | 1.508 (9) | C21—C20 | 1.537 (12) |
C9—C10 | 1.519 (9) | C21—H21A | 0.9600 |
C9—H9A | 0.9700 | C21—H21B | 0.9600 |
C9—H9B | 0.9700 | C21—H21C | 0.9600 |
C1—C2 | 1.413 (11) | C2—H2 | 0.9300 |
C11—C12 | 1.519 (9) | C20—C22 | 1.525 (10) |
C11—C10 | 1.524 (9) | C20—H20 | 0.9800 |
C11—H11A | 0.9700 | C23—H23A | 0.9600 |
C11—H11B | 0.9700 | C23—H23B | 0.9600 |
C10—H10 | 0.9800 | C23—H23C | 0.9600 |
C8—C7 | 1.368 (9) | C22—H22A | 0.9600 |
C8—C5 | 1.426 (9) | C22—H22B | 0.9600 |
C13—C12 | 1.506 (11) | C22—H22C | 0.9600 |
C19—C18 | 1.519 (10) | C24—H24A | 0.9600 |
C19—C20 | 1.540 (10) | C24—H24B | 0.9600 |
C19—H19 | 0.9800 | C24—H24C | 0.9600 |
C10—O1—N2 | 109.3 (4) | C17—C16—H16 | 108.6 |
C13—N3—C24 | 121.2 (7) | C23—C16—H16 | 108.6 |
C13—N3—C14 | 113.9 (6) | C15—C16—H16 | 108.6 |
C24—N3—C14 | 124.5 (7) | C14—C15—C16 | 114.8 (5) |
O1—N2—C14 | 111.0 (5) | C14—C15—H15A | 108.6 |
O1—N2—C12 | 104.6 (4) | C16—C15—H15A | 108.6 |
C14—N2—C12 | 107.2 (5) | C14—C15—H15B | 108.6 |
C7—N1—C4 | 107.9 (6) | C16—C15—H15B | 108.6 |
C7—N1—HN1 | 130.2 | H15A—C15—H15B | 107.5 |
C4—N1—HN1 | 121.3 | N1—C7—C8 | 111.6 (6) |
N3—C14—N2 | 104.1 (5) | N1—C7—H7 | 124.2 |
N3—C14—C15 | 110.2 (5) | C8—C7—H7 | 124.2 |
N2—C14—C15 | 113.9 (5) | N1—C4—C3 | 130.3 (7) |
N3—C14—C19 | 111.1 (5) | N1—C4—C5 | 108.1 (6) |
N2—C14—C19 | 108.3 (5) | C3—C4—C5 | 121.6 (7) |
C15—C14—C19 | 109.1 (5) | C19—C18—C17 | 112.5 (6) |
C1—C6—C5 | 119.2 (6) | C19—C18—H18A | 109.1 |
C1—C6—H6 | 120.4 | C17—C18—H18A | 109.1 |
C5—C6—H6 | 120.4 | C19—C18—H18B | 109.1 |
C8—C9—C10 | 113.7 (5) | C17—C18—H18B | 109.1 |
C8—C9—H9A | 108.8 | H18A—C18—H18B | 107.8 |
C10—C9—H9A | 108.8 | C2—C3—C4 | 118.5 (7) |
C8—C9—H9B | 108.8 | C2—C3—H3 | 120.7 |
C10—C9—H9B | 108.8 | C4—C3—H3 | 120.7 |
H9A—C9—H9B | 107.7 | C16—C17—C18 | 111.2 (5) |
C6—C1—C2 | 121.4 (7) | C16—C17—H17A | 109.4 |
C6—C1—Br | 120.7 (6) | C18—C17—H17A | 109.4 |
C2—C1—Br | 117.9 (6) | C16—C17—H17B | 109.4 |
C12—C11—C10 | 101.5 (5) | C18—C17—H17B | 109.4 |
C12—C11—H11A | 111.5 | H17A—C17—H17B | 108.0 |
C10—C11—H11A | 111.5 | C20—C21—H21A | 109.5 |
C12—C11—H11B | 111.5 | C20—C21—H21B | 109.5 |
C10—C11—H11B | 111.5 | H21A—C21—H21B | 109.5 |
H11A—C11—H11B | 109.3 | C20—C21—H21C | 109.5 |
O1—C10—C9 | 107.0 (5) | H21A—C21—H21C | 109.5 |
O1—C10—C11 | 102.8 (5) | H21B—C21—H21C | 109.5 |
C9—C10—C11 | 114.9 (5) | C3—C2—C1 | 120.5 (7) |
O1—C10—H10 | 110.6 | C3—C2—H2 | 119.7 |
C9—C10—H10 | 110.6 | C1—C2—H2 | 119.7 |
C11—C10—H10 | 110.6 | C22—C20—C21 | 109.1 (8) |
C7—C8—C5 | 105.6 (6) | C22—C20—C19 | 110.7 (7) |
C7—C8—C9 | 126.7 (6) | C21—C20—C19 | 114.7 (6) |
C5—C8—C9 | 127.7 (6) | C22—C20—H20 | 107.3 |
O2—C13—N3 | 125.9 (8) | C21—C20—H20 | 107.3 |
O2—C13—C12 | 126.4 (7) | C19—C20—H20 | 107.3 |
N3—C13—C12 | 107.6 (6) | C16—C23—H23A | 109.5 |
C18—C19—C20 | 114.3 (6) | C16—C23—H23B | 109.5 |
C18—C19—C14 | 110.7 (6) | H23A—C23—H23B | 109.5 |
C20—C19—C14 | 115.3 (6) | C16—C23—H23C | 109.5 |
C18—C19—H19 | 105.2 | H23A—C23—H23C | 109.5 |
C20—C19—H19 | 105.2 | H23B—C23—H23C | 109.5 |
C14—C19—H19 | 105.2 | C20—C22—H22A | 109.5 |
C6—C5—C4 | 118.7 (6) | C20—C22—H22B | 109.5 |
C6—C5—C8 | 134.6 (6) | H22A—C22—H22B | 109.5 |
C4—C5—C8 | 106.7 (6) | C20—C22—H22C | 109.5 |
C13—C12—N2 | 105.9 (6) | H22A—C22—H22C | 109.5 |
C13—C12—C11 | 113.3 (6) | H22B—C22—H22C | 109.5 |
N2—C12—C11 | 105.8 (5) | N3—C24—H24A | 109.5 |
C13—C12—H12 | 110.5 | N3—C24—H24B | 109.5 |
N2—C12—H12 | 110.5 | H24A—C24—H24B | 109.5 |
C11—C12—H12 | 110.5 | N3—C24—H24C | 109.5 |
C17—C16—C23 | 111.4 (6) | H24A—C24—H24C | 109.5 |
C17—C16—C15 | 109.2 (6) | H24B—C24—H24C | 109.5 |
C23—C16—C15 | 110.3 (6) | ||
C10—O1—N2—C12 | −14.5 (6) | C8—C5—C6—C1 | 179.1 (7) |
C10—O1—N2—C14 | 100.9 (5) | C4—C5—C8—C7 | −0.1 (7) |
N2—O1—C10—C9 | 155.8 (5) | C4—C5—C8—C9 | 178.3 (6) |
N2—O1—C10—C11 | 34.4 (6) | C6—C5—C8—C7 | 179.7 (8) |
C7—N1—C4—C3 | −179.9 (8) | C6—C5—C8—C9 | −1.9 (13) |
C7—N1—C4—C5 | −2.0 (8) | N1—C7—C8—C5 | −1.2 (8) |
C4—N1—C7—C8 | 2.0 (8) | N1—C7—C8—C9 | −179.6 (6) |
O1—N2—C12—C11 | −11.6 (7) | C5—C8—C9—C10 | −78.1 (9) |
O1—N2—C12—C13 | 109.0 (5) | C7—C8—C9—C10 | 100.1 (8) |
C14—N2—C12—C11 | −129.6 (6) | C8—C9—C10—O1 | 74.7 (7) |
C14—N2—C12—C13 | −9.0 (6) | C8—C9—C10—C11 | −171.8 (6) |
O1—N2—C14—N3 | −103.0 (5) | O1—C10—C11—C12 | −39.7 (7) |
O1—N2—C14—C15 | 17.2 (7) | C9—C10—C11—C12 | −155.6 (6) |
O1—N2—C14—C19 | 138.7 (5) | C10—C11—C12—N2 | 31.3 (7) |
C12—N2—C14—N3 | 10.8 (6) | C10—C11—C12—C13 | −84.4 (7) |
C12—N2—C14—C15 | 130.9 (6) | N2—C12—C13—O2 | −175.3 (7) |
C12—N2—C14—C19 | −107.6 (5) | N2—C12—C13—N3 | 3.5 (7) |
C14—N3—C13—O2 | −177.5 (7) | C11—C12—C13—O2 | −59.8 (10) |
C14—N3—C13—C12 | 3.6 (8) | C11—C12—C13—N3 | 119.1 (6) |
C24—N3—C13—O2 | −4.7 (12) | N2—C14—C15—C16 | 67.4 (8) |
C24—N3—C13—C12 | 176.5 (6) | N3—C14—C15—C16 | −176.0 (6) |
C13—N3—C14—N2 | −9.2 (7) | C19—C14—C15—C16 | −53.7 (7) |
C13—N3—C14—C15 | −131.7 (6) | N2—C14—C19—C18 | −71.8 (7) |
C13—N3—C14—C19 | 107.2 (7) | N2—C14—C19—C20 | 59.8 (7) |
C24—N3—C14—N2 | 178.3 (6) | N3—C14—C19—C18 | 174.4 (6) |
C24—N3—C14—C15 | 55.8 (9) | N3—C14—C19—C20 | −54.0 (8) |
C24—N3—C14—C19 | −65.3 (8) | C15—C14—C19—C18 | 52.6 (7) |
Br—C1—C2—C3 | 177.9 (6) | C15—C14—C19—C20 | −175.8 (6) |
C6—C1—C2—C3 | −2.2 (12) | C14—C15—C16—C17 | 55.4 (8) |
Br—C1—C6—C5 | −177.7 (5) | C14—C15—C16—C23 | 178.1 (6) |
C2—C1—C6—C5 | 2.4 (11) | C15—C16—C17—C18 | −55.5 (8) |
C1—C2—C3—C4 | 0.6 (12) | C23—C16—C17—C18 | −177.4 (6) |
C2—C3—C4—N1 | 178.3 (7) | C16—C17—C18—C19 | 58.6 (8) |
C2—C3—C4—C5 | 0.7 (11) | C17—C18—C19—C14 | −56.6 (8) |
N1—C4—C5—C6 | −178.5 (6) | C17—C18—C19—C20 | 171.3 (6) |
N1—C4—C5—C8 | 1.3 (8) | C14—C19—C20—C21 | −89.9 (8) |
C3—C4—C5—C6 | −0.4 (10) | C14—C19—C20—C22 | 146.0 (7) |
C3—C4—C5—C8 | 179.4 (7) | C18—C19—C20—C21 | 40.0 (9) |
C4—C5—C6—C1 | −1.1 (10) | C18—C19—C20—C22 | −84.1 (9) |
Cg3 is the centroid of the N2/C12/C13/N3/C14 five-membered imidazolidinone ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···N2i | 0.89 | 2.34 | 3.087 (8) | 141 |
C3—H3···O2ii | 0.93 | 2.42 | 3.292 (9) | 156 |
C16—H16···O1 | 0.98 | 2.55 | 3.091 (8) | 115 |
C20—H20···N3 | 0.98 | 2.54 | 3.032 (10) | 111 |
C21—H21A···N2 | 0.96 | 2.60 | 3.236 (9) | 124 |
N1—HN1···O1i | 0.89 | 2.66 | 3.053 (8) | 108 |
C20—H20···Cg3 | 0.98 | 2.41 | 2.866 (8) | 104 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x, y, z−1. |
Acknowledgements
The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Oxfordshire, England. Google Scholar
Aouadi, K., Jeanneau, E., Msaddek, M. & Praly, J.-P. (2007). Synthesis, pp. 3399–3405. Google Scholar
Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, pp. 3299–3303. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 159–164. Web of Science CrossRef CAS Google Scholar
Kumar, R. S., Perumal, S., Shetty, K. A., Yogeeswari, P. & Sriram, D. (2010). Eur. J. Med. Chem. 45, 124–133. Web of Science CrossRef PubMed CAS Google Scholar
Lee, C.-W., Park, J.-Y., Kim, H.-U. & Chi, K.-W. (2010). Bull. Korean Chem. Soc. 31, 1172–1176. Web of Science CSD CrossRef CAS Google Scholar
Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461–474. Web of Science CrossRef CAS PubMed Google Scholar
Molander, G. A. & Cavalcanti, L. N. (2013). Org. Lett. 15, 3166–3169. Web of Science CSD CrossRef CAS PubMed Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A. edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.