research communications
of [tris(4,4′-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDepartment of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland, cBiohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, FI-02150 Espoo, Finland, dLaboratoire de Chimie Appliquée et Environnement, LCAE–URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, eFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, and fSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: fat_setifi@yahoo.fr, touzanir@yahoo.fr, cg@st-andrews.ac.uk
The title hydrated salt, C30H26N62+·2C9H5N4O−·3H2O, was obtained as an unexpected product from the hydrothermal reaction between potassium 1,1,3,3-tetracyano-2-ethoxypropenide, 4,4′-bipyridine and iron(II) sulfate heptahydrate. The cation lies across a twofold rotation axis in the I2/a with the other components all in general positions. In the cation, the H atom linking the pyridine units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), i.e. as N—H⋯N and N⋯H—N. The water molecules of crystallization are each disordered over two sets of atomic sites, having occupancies of 0.522 (6) and 0.478 (6) for one, and 0.34 (3) and 0.16 (3) for the other, and it was not possible to reliably locate the H atoms associated with these partial-occupancy sites. In the crystal, four independent C—H⋯N hydrogen bonds link the ionic components into a three-dimensional network.
Keywords: crystal structure; hydrothermal synthesis; polynitrile anions; molecular structure; hydrogen bonding.
CCDC reference: 1496221
1. Chemical context
In recent years, the use of polynitrile anions as coordinating ligands for the construction of polymeric architectures with interesting properties has been a burgeoning subject in materials and coordination chemistry (Thétiot et al., 2003; Benmansour et al., 2007; Atmani et al., 2008). These anions are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the 3d transition metals (Benmansour et al., 2008, 2010, 2012; Yuste et al., 2009; Setifi, Domasevitch et al., 2013; Setifi, Setifi et al., 2013; Setifi, Lehchili et al., 2014). This versatility is based on two main properties of these ligands: (i) the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and (ii) the possibility of functionalization with different potentially coordinating groups that leads to a high variety of coordination modes. To take advantage of this behaviour we have been using these organic anions in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics of the resulting complexes, particularly with reference to molecular materials exhibiting interesting magnetic exchange coupling behaviour. During the course of attempts to prepare such complexes with 4,4′-bipyridine, we isolated the title compound (I) (Fig. 1 and Scheme 1), whose structure is reported here.
2. Structural commentary
The structure of compound (I) consists of a [tris(4,4′-bipyridine)]diium dication, [(4,4′-bipy)-H-(4,4′-bipy)-H-(4,4′-bipy)]2+, two 1,1,3,3-tetracyano-2-ethoxypropenide anions, [(NC)2CC(OEt)C(CN)2]−, and three water molecules. The cation lies across a twofold rotation axis, selected for the reference cation as that along (0.25, y, 0.5), while the other components all lie in general positions. Within the cation, the H atom linking the 4,4′-bipy units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), and the two independent water molecules are also disordered, both over two atomic sites, with one having occupancies of 0.522 (6) and 0.478 (6) and the other having occupancies of 0.34 (3) and 0.16 (3).
In the cation, the dihedral angle between the two symmetry-related rings of the central unit is 37.60 (4)°, the dihedral angle between the rings containing atoms N11 and N21 is 85.96 (5)° and that between the rings containing atoms N21 and N31 is 29.33 (3)° (cf. Fig. 1). In the anion, the corresponding pairs of bond distances and bond angles associated with the two C—C(CN)2 units containing the atoms C41 and C43 are very similar. In addition, the C—C distances in the C(CN)2 fragments are all short for their type [mean value (Allen et al., 1987) 1.431 Å, lower quartile value 1.425 Å], while the C—N distances are all long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations indicate that there is considerable delocalization of the negative charge within the anion, not just over the central propenide fragment, resonance forms (a) and (b) (see Scheme 2), but also onto the N atoms of the four cyano substituents, forms (c)–(f). Despite this, the core skeleton of the anion is not planar, as the two C(CN)2 units are rotated in conrotatory fashion out of the plane of the propenide unit; this central C3 fragment makes dihedral angles of 10.39 (13) and 16.71 (18)°, respectively, with the C(CN)2 units containing atoms C41 and C43.
3. Supramolecular interactions
The two independent 4,4′-bipy units are linked by disordered N—H⋯N hydrogen bonds, both of which are almost linear (Table 1). In addition, there are four C—H⋯N hydrogen bonds in the structure: two of these have donor atoms, C13 and C15, which are part of the 4,4′-bipy unit containing N11 and acceptors in the anion, one has an acceptor in the 4,4′-bipy unit containing N21 and N31, and the fourth involves only the anion. Of these four interactions, the first two can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994) and it is interesting to note that the ethoxy O atom in the anion plays no role in the supramolecular assembly.
These six hydrogen bonds link the cations and anions into a three-dimensional network whose formation is readily analysed in terms of substructures (Ferguson et al., 1998a,b; Gregson et al., 2000) in zero, one and two dimensions. It is convenient to consider firstly the hydrogen bonds between cations and anions. The anions and the central 4,4′-bipy units containing atom N11 which are related by translation along the [010] direction are linked to form the one-dimensional in the form of a ribbon of edge-fused R42(14) loops (Fig. 2). Ribbons of this type, which are related by translation along [11], are linked by the 4,4′-bipy units containing atoms N21 and N31 to form the two-dimensional a sheet lying parallel to (10) (Fig. 3). Adjacent sheets are linked by the zero-dimensional which involves inversion-related pairs of anions forming a centrosymmetric motif characterized by an R22(14) ring (Fig. 4).
Three of the partially occupied water sites are linked by C—H⋯O hydrogen bonds (Table 1) within the selected to one of the 4,4′-bipy components, while the fourth, O5A, lies 2.54 (3) Å from atom O6A at (−x + 1, y + , −z + ), i.e. within the reference (10) sheet and comfortably within O—H⋯O hydrogen-bonding range.
4. Database survey
The 1,1,3,3-tetracyano-2-ethoxypropenide unit, here conveniently denoted as X−, has been reported in a number of structures. These include salts of organic cations, including [(2,2′-bipy)H]+·X−, (II) (Setifi, Valkonen et al., 2015), [(4,4′-bipy)H2]2+·2X−, (III) (Setifi, Geiger et al., 2015), and [(4,4′-bipy)Et2]2+·2X−, (IV) (Setifi, Lehchili et al., 2014); salts of mononuclear metal complexes in which the 1,1,3,3-tetracyano-2-ethoxypropenide unit is not ccordinated to the metal centre, including [(2,2′-bi-1H-imidazole)2Cu]2+·2X−, (V) (Gaamoune et al., 2010), [(1,10-phen)3Fe]2−·2X−·0.5H2O, (VI) (Setifi, Setifi et al., 2013), [(1,10-phen)3Fe]2−·2X−·H2O, and (VII) (Setifi, Domasevitch et al., 2013); and compounds where the 1,1,3,3-tetracyano-2-ethoxypropenide unit acts as a ligand including a binuclear Cu complex in which it acts both as a bridging ligand between two CuII centres and as a monodentate terminal ligand, thus [(2,2′-bipy)XCu]2(μ-X)2, (VIII) (Addala et al., 2015), and a two-dimensional coordination polymer [X(1,10-phen)ClCu]n, (IX) (Setifi, Setifi et al., 2014).
Of these examples, compounds (II), (III) and (IV) are most closely related to compound (I) reported here. In the structure of compound (II), a combination of N—H⋯N and C—H⋯N hydrogen bonds links the ions into ribbons containing alternating R44(18) and R44(26) rings; in (IV), where there are no N—H⋯N hydrogen bonds, the ions are linked into sheets by C—H⋯N hydrogen bonds, and in (III), an extensive series of N—H⋯N and C—H⋯N hydrogen bonds generates a three-dimensional network, so that the supramolecular aggregation is one-, two- and three-dimensional in compounds (II), (IV) and (III), respectively.
5. Synthesis and crystallization
The salt K(tcnoet) was prepared according to a published method (Middleton et al., 1958). The title compound was synthesized hydrothermally under autogenous pressure from a mixture of iron(II) sulfate heptahydrate (56 mg, 0.2 mmol), 4,4′-bipyridine (32 mg, 0.2 mmol) and K(tcnoet) (90 mg, 0.4 mmol) in water–methanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 (yield 25%). Pale-yellow blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.
6. Refinement
Crystal data, data collection and structure . The H atoms bonded to C or N atoms were all located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealised positions, with C—H = 0.95 (pyridyl), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. The unique H atom bonded to N was disordered over two atomic sites, labeled H11 and H21, adjacent to atoms N11 and N21, respectively, and having unequal occupancies; for these two sites, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), leading to the N—H distances shown in Table 1 and to refined site occupancies of 0.66 (4) and 0.36 (4) for H11 and H21, respectively. No H-atom sites associated with water atoms O5 and O6 could be located. Each of these water O atoms is disordered over two atomic sites: O5 is disordered over two sites, labelled O5A and O5B, which are separated by 0.963 (4) Å, while O6 is disordered over two sites, labelled O6A and O6B, which are separated by 0.627 (9) Å. Free of the site occupancies of O5A and O5B gave values of 0.579 (7) and 0.512 (7), respectively; these values are not physically possible and both are over-estimates because of the lack of H atoms in the modelling of the water sites. Accordingly, the occupancies of O5A and O5B were constrained to sum to unity, giving values of 0.522 (6) and 0.478 (6). Free of the site occupancies for O6A and O6B gave values of 0.36 (3) and 0.16 (3), and these values were subsequently restrained to sum to 0.500 (2), giving final values of 0.34 (3) and 0.16 (3). The final analysis of variance showed a large value, 4.522, of K = [mean(Fo2)]/[mean(Fc2)] for the group of 541 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.014.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1496221
https://doi.org/10.1107/S2056989016012160/hb7603sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012160/hb7603Isup2.hkl
Data collection: COLLECT (Bruker, 2008); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C30H26N62+·2C9H5N4O−·3H2O | F(000) = 1872 |
Mr = 894.95 | Dx = 1.299 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 18.1861 (2) Å | Cell parameters from 5197 reflections |
b = 7.1187 (1) Å | θ = 2.3–27.5° |
c = 35.7070 (4) Å | µ = 0.09 mm−1 |
β = 100.448 (1)° | T = 123 K |
V = 4546.03 (10) Å3 | Block, pale yellow |
Z = 4 | 0.45 × 0.38 × 0.31 mm |
Bruker–Nonius Kappa CCD with APEXII detector diffractometer | 5197 independent reflections |
Radiation source: fine focus sealed tube | 4559 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −23→23 |
Tmin = 0.907, Tmax = 0.973 | k = −8→9 |
35680 measured reflections | l = −42→46 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0362P)2 + 5.2868P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
5197 reflections | Δρmax = 0.32 e Å−3 |
335 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N11 | 0.34943 (7) | 0.62579 (18) | 0.59359 (3) | 0.0268 (3) | |
H11 | 0.3778 (17) | 0.621 (4) | 0.6196 (11) | 0.032* | 0.66 (4) |
C12 | 0.34888 (8) | 0.7810 (2) | 0.57234 (4) | 0.0260 (3) | |
H12 | 0.3753 | 0.8893 | 0.5830 | 0.031* | |
C13 | 0.31054 (7) | 0.7862 (2) | 0.53523 (4) | 0.0234 (3) | |
H13 | 0.3109 | 0.8967 | 0.5204 | 0.028* | |
C14 | 0.27134 (7) | 0.62756 (19) | 0.51984 (3) | 0.0192 (3) | |
C15 | 0.27272 (8) | 0.4676 (2) | 0.54248 (4) | 0.0244 (3) | |
H15 | 0.2466 | 0.3574 | 0.5327 | 0.029* | |
C16 | 0.31261 (8) | 0.4715 (2) | 0.57924 (4) | 0.0276 (3) | |
H16 | 0.3140 | 0.3625 | 0.5947 | 0.033* | |
N21 | 0.42091 (7) | 0.62202 (17) | 0.66569 (4) | 0.0269 (3) | |
H21 | 0.400 (3) | 0.616 (8) | 0.641 (2) | 0.032* | 0.34 (4) |
C22 | 0.49341 (8) | 0.5785 (2) | 0.67630 (4) | 0.0276 (3) | |
H22 | 0.5217 | 0.5488 | 0.6572 | 0.033* | |
C23 | 0.52856 (8) | 0.5754 (2) | 0.71399 (4) | 0.0256 (3) | |
H23 | 0.5802 | 0.5455 | 0.7206 | 0.031* | |
C24 | 0.48726 (8) | 0.61675 (19) | 0.74231 (4) | 0.0219 (3) | |
C25 | 0.41210 (8) | 0.6605 (2) | 0.73098 (4) | 0.0258 (3) | |
H25 | 0.3821 | 0.6887 | 0.7494 | 0.031* | |
C26 | 0.38118 (8) | 0.6626 (2) | 0.69263 (4) | 0.0277 (3) | |
H26 | 0.3298 | 0.6940 | 0.6852 | 0.033* | |
N31 | 0.58874 (8) | 0.61811 (19) | 0.86102 (3) | 0.0331 (3) | |
C32 | 0.51622 (9) | 0.5772 (2) | 0.84948 (4) | 0.0327 (3) | |
H32 | 0.4872 | 0.5488 | 0.8683 | 0.039* | |
C33 | 0.48101 (9) | 0.5739 (2) | 0.81152 (4) | 0.0281 (3) | |
H33 | 0.4294 | 0.5438 | 0.8049 | 0.034* | |
C34 | 0.52250 (8) | 0.61556 (19) | 0.78334 (4) | 0.0227 (3) | |
C35 | 0.59782 (8) | 0.6576 (2) | 0.79502 (4) | 0.0270 (3) | |
H35 | 0.6283 | 0.6867 | 0.7768 | 0.032* | |
C36 | 0.62787 (9) | 0.6565 (2) | 0.83360 (4) | 0.0313 (3) | |
H36 | 0.6795 | 0.6848 | 0.8410 | 0.038* | |
C41 | 0.15157 (8) | −0.1715 (2) | 0.58797 (4) | 0.0272 (3) | |
C42 | 0.11579 (7) | −0.3411 (2) | 0.57565 (4) | 0.0234 (3) | |
C43 | 0.11642 (8) | −0.5041 (2) | 0.59765 (4) | 0.0249 (3) | |
C411 | 0.16626 (8) | −0.0335 (2) | 0.56164 (4) | 0.0297 (3) | |
N411 | 0.17940 (8) | 0.0773 (2) | 0.54035 (4) | 0.0382 (3) | |
C412 | 0.17576 (9) | −0.1283 (2) | 0.62709 (5) | 0.0347 (4) | |
N412 | 0.19482 (10) | −0.0875 (3) | 0.65855 (5) | 0.0528 (4) | |
C431 | 0.06545 (8) | −0.6532 (2) | 0.58565 (4) | 0.0262 (3) | |
N431 | 0.02403 (7) | −0.77540 (19) | 0.57765 (4) | 0.0333 (3) | |
C432 | 0.16949 (9) | −0.5343 (2) | 0.63136 (4) | 0.0321 (3) | |
N432 | 0.21320 (9) | −0.5619 (3) | 0.65832 (4) | 0.0496 (4) | |
O421 | 0.08005 (6) | −0.35955 (15) | 0.53932 (3) | 0.0283 (2) | |
C421 | 0.02174 (9) | −0.2228 (2) | 0.52443 (4) | 0.0330 (3) | |
H41A | 0.0143 | −0.2200 | 0.4963 | 0.040* | |
H41B | 0.0372 | −0.0959 | 0.5341 | 0.040* | |
C422 | −0.04964 (9) | −0.2764 (3) | 0.53674 (5) | 0.0427 (4) | |
H42A | −0.0886 | −0.1850 | 0.5268 | 0.064* | |
H42B | −0.0650 | −0.4016 | 0.5269 | 0.064* | |
H42C | −0.0421 | −0.2778 | 0.5646 | 0.064* | |
O5A | 0.2512 (2) | 0.9317 (7) | 0.73743 (12) | 0.0915 (17) | 0.522 (6) |
O5B | 0.28182 (16) | 0.9204 (5) | 0.76234 (11) | 0.0533 (13) | 0.478 (6) |
O6A | 0.7139 (8) | 0.743 (4) | 0.7296 (2) | 0.055 (4) | 0.34 (3) |
O6B | 0.7007 (9) | 0.824 (4) | 0.7286 (3) | 0.031 (4) | 0.16 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0253 (6) | 0.0364 (7) | 0.0166 (5) | 0.0030 (5) | −0.0018 (5) | 0.0009 (5) |
C12 | 0.0241 (7) | 0.0309 (8) | 0.0210 (6) | −0.0013 (6) | −0.0013 (5) | −0.0028 (6) |
C13 | 0.0248 (6) | 0.0246 (7) | 0.0199 (6) | −0.0014 (5) | 0.0015 (5) | 0.0007 (5) |
C14 | 0.0165 (6) | 0.0233 (7) | 0.0169 (6) | 0.0020 (5) | 0.0011 (5) | 0.0004 (5) |
C15 | 0.0244 (6) | 0.0254 (7) | 0.0224 (7) | −0.0016 (6) | 0.0013 (5) | 0.0016 (5) |
C16 | 0.0295 (7) | 0.0306 (8) | 0.0217 (7) | 0.0026 (6) | 0.0020 (5) | 0.0063 (6) |
N21 | 0.0325 (6) | 0.0262 (6) | 0.0188 (6) | −0.0020 (5) | −0.0036 (5) | 0.0016 (5) |
C22 | 0.0322 (7) | 0.0283 (7) | 0.0216 (7) | −0.0004 (6) | 0.0034 (6) | 0.0011 (6) |
C23 | 0.0259 (7) | 0.0255 (7) | 0.0235 (7) | 0.0015 (6) | −0.0002 (5) | 0.0007 (5) |
C24 | 0.0269 (7) | 0.0174 (6) | 0.0197 (6) | −0.0014 (5) | 0.0001 (5) | 0.0006 (5) |
C25 | 0.0270 (7) | 0.0265 (7) | 0.0228 (7) | −0.0006 (6) | 0.0016 (5) | −0.0024 (5) |
C26 | 0.0260 (7) | 0.0280 (8) | 0.0259 (7) | −0.0003 (6) | −0.0035 (5) | −0.0002 (6) |
N31 | 0.0437 (8) | 0.0285 (7) | 0.0227 (6) | 0.0020 (6) | −0.0053 (5) | 0.0004 (5) |
C32 | 0.0466 (9) | 0.0287 (8) | 0.0216 (7) | −0.0022 (7) | 0.0029 (6) | 0.0032 (6) |
C33 | 0.0332 (7) | 0.0253 (7) | 0.0239 (7) | −0.0026 (6) | 0.0003 (6) | 0.0014 (6) |
C34 | 0.0295 (7) | 0.0174 (6) | 0.0193 (6) | 0.0035 (5) | −0.0010 (5) | −0.0005 (5) |
C35 | 0.0292 (7) | 0.0249 (7) | 0.0250 (7) | 0.0031 (6) | 0.0001 (6) | −0.0028 (5) |
C36 | 0.0324 (8) | 0.0294 (8) | 0.0280 (7) | 0.0037 (6) | −0.0054 (6) | −0.0041 (6) |
C41 | 0.0283 (7) | 0.0256 (7) | 0.0286 (7) | −0.0013 (6) | 0.0074 (6) | −0.0023 (6) |
C42 | 0.0226 (6) | 0.0266 (7) | 0.0217 (6) | 0.0015 (5) | 0.0060 (5) | −0.0009 (5) |
C43 | 0.0246 (7) | 0.0266 (7) | 0.0233 (7) | −0.0006 (6) | 0.0038 (5) | 0.0012 (5) |
C411 | 0.0284 (7) | 0.0245 (7) | 0.0379 (8) | −0.0001 (6) | 0.0108 (6) | −0.0039 (6) |
N411 | 0.0419 (8) | 0.0267 (7) | 0.0495 (8) | −0.0033 (6) | 0.0181 (7) | 0.0013 (6) |
C412 | 0.0343 (8) | 0.0332 (9) | 0.0375 (9) | −0.0080 (7) | 0.0084 (7) | −0.0069 (7) |
N412 | 0.0583 (10) | 0.0593 (11) | 0.0399 (9) | −0.0190 (8) | 0.0065 (7) | −0.0157 (8) |
C431 | 0.0278 (7) | 0.0265 (7) | 0.0250 (7) | 0.0036 (6) | 0.0068 (5) | 0.0037 (6) |
N431 | 0.0345 (7) | 0.0284 (7) | 0.0366 (7) | −0.0030 (6) | 0.0053 (6) | 0.0006 (6) |
C432 | 0.0305 (8) | 0.0326 (8) | 0.0325 (8) | −0.0031 (6) | 0.0036 (6) | 0.0064 (6) |
N432 | 0.0429 (8) | 0.0560 (10) | 0.0432 (9) | −0.0030 (7) | −0.0096 (7) | 0.0147 (7) |
O421 | 0.0348 (5) | 0.0277 (5) | 0.0211 (5) | 0.0027 (4) | 0.0019 (4) | −0.0006 (4) |
C421 | 0.0368 (8) | 0.0334 (8) | 0.0263 (7) | 0.0047 (7) | −0.0011 (6) | 0.0061 (6) |
C422 | 0.0353 (9) | 0.0423 (10) | 0.0489 (10) | 0.0042 (8) | 0.0031 (7) | −0.0003 (8) |
O5A | 0.059 (2) | 0.166 (4) | 0.054 (3) | 0.015 (2) | 0.021 (2) | 0.037 (2) |
O5B | 0.0324 (15) | 0.082 (2) | 0.043 (2) | 0.0148 (14) | 0.0002 (14) | −0.0208 (16) |
O6A | 0.058 (4) | 0.072 (11) | 0.038 (2) | −0.021 (6) | 0.015 (2) | −0.009 (4) |
O6B | 0.047 (5) | 0.023 (9) | 0.027 (4) | 0.002 (5) | 0.016 (3) | 0.000 (4) |
N11—C16 | 1.339 (2) | C33—C34 | 1.395 (2) |
N11—C12 | 1.3393 (19) | C33—H33 | 0.9500 |
N11—H11 | 0.98 (4) | C34—C35 | 1.390 (2) |
C12—C13 | 1.3813 (19) | C35—C36 | 1.387 (2) |
C12—H12 | 0.9500 | C35—H35 | 0.9500 |
C13—C14 | 1.3938 (19) | C36—H36 | 0.9500 |
C13—H13 | 0.9500 | C41—C42 | 1.404 (2) |
C14—C15 | 1.3943 (19) | C41—C411 | 1.418 (2) |
C14—C14i | 1.487 (2) | C41—C412 | 1.420 (2) |
C15—C16 | 1.3802 (19) | C42—O421 | 1.3480 (16) |
C15—H15 | 0.9500 | C411—N411 | 1.151 (2) |
C16—H16 | 0.9500 | C412—N412 | 1.151 (2) |
N21—C26 | 1.335 (2) | C42—C43 | 1.400 (2) |
N21—C22 | 1.3405 (19) | C43—C431 | 1.423 (2) |
N21—H21 | 0.90 (8) | C43—C432 | 1.416 (2) |
C22—C23 | 1.3813 (19) | C431—N431 | 1.152 (2) |
C22—H22 | 0.9500 | C432—N432 | 1.149 (2) |
C23—C24 | 1.396 (2) | O421—C421 | 1.4662 (18) |
C23—H23 | 0.9500 | C421—C422 | 1.493 (2) |
C24—C25 | 1.3887 (19) | C421—H41A | 0.9900 |
C24—C34 | 1.4885 (18) | C421—H41B | 0.9900 |
C25—C26 | 1.3826 (19) | C422—H42A | 0.9800 |
C25—H25 | 0.9500 | C422—H42B | 0.9800 |
C26—H26 | 0.9500 | C422—H42C | 0.9800 |
N31—C36 | 1.339 (2) | O5A—O5B | 0.963 (4) |
N31—C32 | 1.340 (2) | O6A—O6B | 0.627 (9) |
C32—C33 | 1.390 (2) | O6A—O6Aii | 1.78 (2) |
C32—H32 | 0.9500 | ||
C16—N11—C12 | 120.54 (12) | C32—C33—C34 | 119.08 (14) |
C16—N11—H11 | 118.5 (16) | C32—C33—H33 | 120.5 |
C12—N11—H11 | 121.0 (17) | C34—C33—H33 | 120.5 |
N11—C12—C13 | 121.05 (14) | C35—C34—C33 | 117.49 (13) |
N11—C12—H12 | 119.5 | C35—C34—C24 | 121.27 (13) |
C13—C12—H12 | 119.5 | C33—C34—C24 | 121.24 (13) |
C12—C13—C14 | 119.33 (13) | C36—C35—C34 | 119.10 (14) |
C12—C13—H13 | 120.3 | C36—C35—H35 | 120.5 |
C14—C13—H13 | 120.3 | C34—C35—H35 | 120.5 |
C13—C14—C15 | 118.63 (11) | N31—C36—C35 | 124.16 (14) |
C13—C14—C14i | 121.13 (8) | N31—C36—H36 | 117.9 |
C15—C14—C14i | 120.25 (9) | C35—C36—H36 | 117.9 |
C16—C15—C14 | 119.06 (13) | C42—C41—C411 | 121.34 (13) |
C16—C15—H15 | 120.5 | C42—C41—C412 | 122.53 (14) |
C14—C15—H15 | 120.5 | C411—C41—C412 | 116.12 (14) |
N11—C16—C15 | 121.39 (13) | O421—C42—C43 | 114.36 (12) |
N11—C16—H16 | 119.3 | O421—C42—C41 | 120.05 (13) |
C15—C16—H16 | 119.3 | C41—C42—C43 | 125.51 (13) |
C26—N21—C22 | 118.63 (12) | C42—C43—C431 | 120.70 (13) |
C26—N21—H21 | 123 (3) | C42—C43—C432 | 122.51 (13) |
C22—N21—H21 | 119 (3) | C431—C43—C432 | 116.70 (13) |
N21—C22—C23 | 122.47 (14) | N411—C411—C41 | 178.83 (16) |
N21—C22—H22 | 118.8 | N412—C412—C41 | 177.9 (2) |
C23—C22—H22 | 118.8 | N431—C431—C43 | 176.87 (15) |
C22—C23—C24 | 119.19 (13) | N432—C432—C43 | 178.5 (2) |
C22—C23—H23 | 120.4 | C42—O421—C421 | 118.36 (11) |
C24—C23—H23 | 120.4 | O421—C421—C422 | 109.51 (13) |
C25—C24—C23 | 117.80 (12) | O421—C421—H41A | 109.8 |
C25—C24—C34 | 120.90 (12) | C422—C421—H41A | 109.8 |
C23—C24—C34 | 121.30 (12) | O421—C421—H41B | 109.8 |
C26—C25—C24 | 119.55 (13) | C422—C421—H41B | 109.8 |
C26—C25—H25 | 120.2 | H41A—C421—H41B | 108.2 |
C24—C25—H25 | 120.2 | C421—C422—H42A | 109.5 |
N21—C26—C25 | 122.35 (13) | C421—C422—H42B | 109.5 |
N21—C26—H26 | 118.8 | H42A—C422—H42B | 109.5 |
C25—C26—H26 | 118.8 | C421—C422—H42C | 109.5 |
C36—N31—C32 | 116.31 (13) | H42A—C422—H42C | 109.5 |
N31—C32—C33 | 123.86 (15) | H42B—C422—H42C | 109.5 |
N31—C32—H32 | 118.1 | O6B—O6A—O6Aii | 102 (2) |
C33—C32—H32 | 118.1 | ||
C16—N11—C12—C13 | 0.0 (2) | C25—C24—C34—C35 | −150.27 (14) |
N11—C12—C13—C14 | 0.5 (2) | C23—C24—C34—C35 | 29.3 (2) |
C12—C13—C14—C15 | −0.6 (2) | C25—C24—C34—C33 | 29.1 (2) |
C12—C13—C14—C14i | 179.35 (14) | C23—C24—C34—C33 | −151.33 (14) |
C13—C14—C15—C16 | 0.1 (2) | C33—C34—C35—C36 | −0.1 (2) |
C14i—C14—C15—C16 | −179.83 (14) | C24—C34—C35—C36 | 179.35 (13) |
C12—N11—C16—C15 | −0.5 (2) | C32—N31—C36—C35 | 0.6 (2) |
C14—C15—C16—N11 | 0.4 (2) | C34—C35—C36—N31 | −0.4 (2) |
C26—N21—C22—C23 | −0.4 (2) | C411—C41—C42—O421 | −14.7 (2) |
N21—C22—C23—C24 | 0.8 (2) | C412—C41—C42—O421 | 165.94 (14) |
C22—C23—C24—C25 | −0.3 (2) | C411—C41—C42—C43 | 161.79 (14) |
C22—C23—C24—C34 | −179.91 (13) | C412—C41—C42—C43 | −17.6 (2) |
C23—C24—C25—C26 | −0.3 (2) | O421—C42—C43—C432 | 158.96 (13) |
C34—C24—C25—C26 | 179.24 (13) | C41—C42—C43—C432 | −17.7 (2) |
C22—N21—C26—C25 | −0.3 (2) | O421—C42—C43—C431 | −17.47 (19) |
C24—C25—C26—N21 | 0.7 (2) | C41—C42—C43—C431 | 165.87 (14) |
C36—N31—C32—C33 | −0.3 (2) | C43—C42—O421—C421 | 127.63 (14) |
N31—C32—C33—C34 | −0.1 (2) | C41—C42—O421—C421 | −55.52 (18) |
C32—C33—C34—C35 | 0.3 (2) | C42—O421—C421—C422 | −81.41 (17) |
C32—C33—C34—C24 | −179.10 (13) |
Symmetry codes: (i) −x+1/2, y, −z+1; (ii) −x+3/2, −y+3/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···N21 | 0.98 (4) | 1.69 (4) | 2.6655 (18) | 175 (3) |
N21—H21···N11 | 0.90 (7) | 1.78 (7) | 2.6655 (18) | 172 (5) |
C12—H12···N31iii | 0.95 | 2.57 | 3.4248 (19) | 150 |
C13—H13···N411iv | 0.95 | 2.56 | 3.434 (2) | 154 |
C15—H15···N411 | 0.95 | 2.38 | 3.249 (2) | 152 |
C25—H25···O5B | 0.95 | 2.56 | 3.355 (4) | 141 |
C35—H35···O6A | 0.95 | 2.53 | 3.474 (13) | 176 |
C35—H35···O6B | 0.95 | 2.54 | 3.484 (16) | 170 |
C421—H41A···N431v | 0.99 | 2.61 | 3.589 (2) | 172 |
Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1/2, y+1, −z+1; (v) −x, −y−1, −z+1. |
Acknowledgements
The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.
References
Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194. Web of Science CSD CrossRef Google Scholar
Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915. CrossRef CAS Web of Science Google Scholar
Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806. CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, F., Geiger, D. K., Abdul Razak, I. & Setifi, Z. (2015). Acta Cryst. C71, 658–663. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thétiot, F., Triki, S. & Sala-Pala, J. (2003). Polyhedron, 22, 1837–1843. Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.