research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [tris­­(4,4′-bi­pyridine)]­diium bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenide) trihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDepartment of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland, cBiohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, FI-02150 Espoo, Finland, dLaboratoire de Chimie Appliquée et Environnement, LCAE–URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, eFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, and fSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: fat_setifi@yahoo.fr, touzanir@yahoo.fr, cg@st-andrews.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 July 2016; accepted 26 July 2016; online 5 August 2016)

The title hydrated salt, C30H26N62+·2C9H5N4O·3H2O, was obtained as an unexpected product from the hydro­thermal reaction between potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide, 4,4′-bi­pyridine and iron(II) sulfate hepta­hydrate. The cation lies across a twofold rotation axis in the space group I2/a with the other components all in general positions. In the cation, the H atom linking the pyridine units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), i.e. as N—H⋯N and N⋯H—N. The water mol­ecules of crystallization are each disordered over two sets of atomic sites, having occupancies of 0.522 (6) and 0.478 (6) for one, and 0.34 (3) and 0.16 (3) for the other, and it was not possible to reliably locate the H atoms associated with these partial-occupancy sites. In the crystal, four independent C—H⋯N hydrogen bonds link the ionic components into a three-dimensional network.

1. Chemical context

In recent years, the use of polynitrile anions as coordinating ligands for the construction of polymeric architectures with inter­esting properties has been a burgeoning subject in materials and coordination chemistry (Thétiot et al., 2003[Thétiot, F., Triki, S. & Sala-Pala, J. (2003). Polyhedron, 22, 1837-1843.]; Benmansour et al., 2007[Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]). These anions are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the 3d transition metals (Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Setifi, Domasevitch et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]; Setifi, Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]; Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]). This versatility is based on two main properties of these ligands: (i) the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and (ii) the possibility of functionalization with different potentially coordinating groups that leads to a high variety of coordination modes. To take advantage of this behaviour we have been using these organic anions in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics of the resulting complexes, particularly with reference to mol­ecular materials exhibiting inter­esting magnetic exchange coupling behaviour. During the course of attempts to prepare such complexes with 4,4′-bi­pyridine, we isolated the title compound (I)[link] (Fig. 1[link] and Scheme 1), whose structure is reported here.

[Figure 1]
Figure 1
The independent components of the structure of compound (I)[link], showing the atom-labelling scheme, the complete central 4,4′-bipy unit and the hydrogen bond (shown as a dashed line) between the cation and anion within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and the atoms marked with `a' are at the symmetry position (−x + [{1\over 2}], y, −z + 1). The partially occupied water sites have refined occupancies as follows: O5A 0.522 (6), O5B 0.478 (6), O6A 0.34 (3) and O6B 0.16 (3).

2. Structural commentary

The structure of compound (I)[link] consists of a [tris­(4,4′-bi­pyridine)]diium dication, [(4,4′-bipy)-H-(4,4′-bipy)-H-(4,4′-bipy)]2+, two 1,1,3,3-tetra­cyano-2-eth­oxy­propenide anions, [(NC)2CC(OEt)C(CN)2], and three water mol­ecules. The cation lies across a twofold rotation axis, selected for the reference cation as that along (0.25, y, 0.5), while the other components all lie in general positions. Within the cation, the H atom linking the 4,4′-bipy units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), and the two independent water mol­ecules are also disordered, both over two atomic sites, with one having occupancies of 0.522 (6) and 0.478 (6) and the other having occupancies of 0.34 (3) and 0.16 (3).

[Scheme 1]

In the cation, the dihedral angle between the two symmetry-related rings of the central unit is 37.60 (4)°, the dihedral angle between the rings containing atoms N11 and N21 is 85.96 (5)° and that between the rings containing atoms N21 and N31 is 29.33 (3)° (cf. Fig. 1[link]). In the anion, the corresponding pairs of bond distances and bond angles associated with the two C—C(CN)2 units containing the atoms C41 and C43 are very similar. In addition, the C—C distances in the C(CN)2 fragments are all short for their type [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) 1.431 Å, lower quartile value 1.425 Å], while the C—N distances are all long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations indicate that there is considerable delocalization of the negative charge within the anion, not just over the central propenide fragment, resonance forms (a) and (b) (see Scheme 2), but also onto the N atoms of the four cyano substituents, forms (c)–(f). Despite this, the core skeleton of the anion is not planar, as the two C(CN)2 units are rotated in conrotatory fashion out of the plane of the propenide unit; this central C3 fragment makes dihedral angles of 10.39 (13) and 16.71 (18)°, respectively, with the C(CN)2 units containing atoms C41 and C43.

[Scheme 2]

3. Supra­molecular inter­actions

The two independent 4,4′-bipy units are linked by disordered N—H⋯N hydrogen bonds, both of which are almost linear (Table 1[link]). In addition, there are four C—H⋯N hydrogen bonds in the structure: two of these have donor atoms, C13 and C15, which are part of the 4,4′-bipy unit containing N11 and acceptors in the anion, one has an acceptor in the 4,4′-bipy unit containing N21 and N31, and the fourth involves only the anion. Of these four inter­actions, the first two can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]) and it is inter­esting to note that the eth­oxy O atom in the anion plays no role in the supra­molecular assembly.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.98 (4) 1.69 (4) 2.6655 (18) 175 (3)
N21—H21⋯N11 0.90 (7) 1.78 (7) 2.6655 (18) 172 (5)
C12—H12⋯N31i 0.95 2.57 3.4248 (19) 150
C13—H13⋯N411ii 0.95 2.56 3.434 (2) 154
C15—H15⋯N411 0.95 2.38 3.249 (2) 152
C25—H25⋯O5B 0.95 2.56 3.355 (4) 141
C35—H35⋯O6A 0.95 2.53 3.474 (13) 176
C35—H35⋯O6B 0.95 2.54 3.484 (16) 170
C421—H41A⋯N431iii 0.99 2.61 3.589 (2) 172
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+1, -z+1]; (iii) -x, -y-1, -z+1.

These six hydrogen bonds link the cations and anions into a three-dimensional network whose formation is readily analysed in terms of substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]) in zero, one and two dimensions. It is convenient to consider firstly the hydrogen bonds between cations and anions. The anions and the central 4,4′-bipy units containing atom N11 which are related by translation along the [010] direction are linked to form the one-dimensional substructure in the form of a ribbon of edge-fused R42(14) loops (Fig. 2[link]). Ribbons of this type, which are related by translation along [1[\overline{1}]1], are linked by the 4,4′-bipy units containing atoms N21 and N31 to form the two-dimensional substructure, a sheet lying parallel to (10[\overline{1}]) (Fig. 3[link]). Adjacent sheets are linked by the zero-dimensional substructure which involves inversion-related pairs of anions forming a centrosymmetric motif characterized by an R22(14) ring (Fig. 4[link]).

[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded ribbon of edge-fused R42(14) rings along the [010] direction. For the sake of clarity, the 4,4′-bipy units containing atoms N21 and N31, the partial-occupancy water mol­ecules, and the H atoms not involved in the motif shown have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded sheet lying parallel to (10[\overline{1}]). For the sake of clarity, the partial-occupancy water mol­ecules, and the H atoms not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing the formation by pairs of anions of a hydrogen-bonded R22(14) ring. The atoms marked with an asterisk (*) are at the symmetry position (−x, −y + 1, −z + 1). For the sake of clarity, the unit-cell outline, the 4,4′-bipy units and the partial-occupancy water mol­ecules have all been omitted.

Three of the partially occupied water sites are linked by C—H⋯O hydrogen bonds (Table 1[link]) within the selected asymmetric unit to one of the 4,4′-bipy components, while the fourth, O5A, lies 2.54 (3) Å from atom O6A at (−x + 1, y + [{1\over 2}], −z + [{3\over 2}]), i.e. within the reference (10[\overline{1}]) sheet and comfortably within O—H⋯O hydrogen-bonding range.

4. Database survey

The 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit, here conveniently denoted as X, has been reported in a number of structures. These include salts of organic cations, including [(2,2′-bipy)H]+·X, (II) (Setifi, Valkonen et al., 2015[Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509-515.]), [(4,4′-bipy)H2]2+·2X, (III) (Setifi, Geiger et al., 2015[Setifi, F., Geiger, D. K., Abdul Razak, I. & Setifi, Z. (2015). Acta Cryst. C71, 658-663.]), and [(4,4′-bipy)Et2]2+·2X, (IV) (Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]); salts of mononuclear metal complexes in which the 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit is not ccordinated to the metal centre, including [(2,2′-bi-1H-imidazole)2Cu]2+·2X, (V) (Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]), [(1,10-phen)3Fe]2−·2X·0.5H2O, (VI) (Setifi, Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]), [(1,10-phen)3Fe]2−·2X·H2O, and (VII) (Setifi, Domasevitch et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]); and compounds where the 1,1,3,3-tetra­cyano-2-eth­oxy­propenide unit acts as a ligand including a binuclear Cu complex in which it acts both as a bridging ligand between two CuII centres and as a monodentate terminal ligand, thus [(2,2′-bipy)XCu]2(μ-X)2, (VIII) (Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]), and a two-dimensional coordination polymer [X(1,10-phen)ClCu]n, (IX) (Setifi, Setifi et al., 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]).

Of these examples, compounds (II), (III) and (IV) are most closely related to compound (I)[link] reported here. In the structure of compound (II), a combination of N—H⋯N and C—H⋯N hydrogen bonds links the ions into ribbons containing alternating R44(18) and R44(26) rings; in (IV), where there are no N—H⋯N hydrogen bonds, the ions are linked into sheets by C—H⋯N hydrogen bonds, and in (III), an extensive series of N—H⋯N and C—H⋯N hydrogen bonds generates a three-dimensional network, so that the supra­molecular aggregation is one-, two- and three-dimensional in compounds (II), (IV) and (III), respectively.

5. Synthesis and crystallization

The salt K(tcnoet) was prepared according to a published method (Middleton et al., 1958[Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795-2806.]). The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of iron(II) sulfate hepta­hydrate (56 mg, 0.2 mmol), 4,4′-bi­pyridine (32 mg, 0.2 mmol) and K(tcnoet) (90 mg, 0.4 mmol) in water–methanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 (yield 25%). Pale-yellow blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms bonded to C or N atoms were all located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealised positions, with C—H = 0.95 (pyrid­yl), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. The unique H atom bonded to N was disordered over two atomic sites, labeled H11 and H21, adjacent to atoms N11 and N21, respectively, and having unequal occupancies; for these two sites, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), leading to the N—H distances shown in Table 1[link] and to refined site occupancies of 0.66 (4) and 0.36 (4) for H11 and H21, respectively. No H-atom sites associated with water atoms O5 and O6 could be located. Each of these water O atoms is disordered over two atomic sites: O5 is disordered over two sites, labelled O5A and O5B, which are separated by 0.963 (4) Å, while O6 is disordered over two sites, labelled O6A and O6B, which are separated by 0.627 (9) Å. Free refinement of the site occupancies of O5A and O5B gave values of 0.579 (7) and 0.512 (7), respectively; these values are not physically possible and both are over-estimates because of the lack of H atoms in the modelling of the water sites. Accordingly, the occupancies of O5A and O5B were constrained to sum to unity, giving values of 0.522 (6) and 0.478 (6). Free refinement of the site occupancies for O6A and O6B gave values of 0.36 (3) and 0.16 (3), and these values were subsequently restrained to sum to 0.500 (2), giving final values of 0.34 (3) and 0.16 (3). The final analysis of variance showed a large value, 4.522, of K = [mean(Fo2)]/[mean(Fc2)] for the group of 541 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.014.

Table 2
Experimental details

Crystal data
Chemical formula C30H26N62+·2C9H5N4O·3H2O
Mr 894.95
Crystal system, space group Monoclinic, I2/a
Temperature (K) 123
a, b, c (Å) 18.1861 (2), 7.1187 (1), 35.7070 (4)
β (°) 100.448 (1)
V3) 4546.03 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.45 × 0.38 × 0.31
 
Data collection
Diffractometer Bruker–Nonius Kappa CCD with APEXII detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.907, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 35680, 5197, 4559
Rint 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.09
No. of reflections 5197
No. of parameters 335
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Computer programs: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

[Tris(4,4-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate top
Crystal data top
C30H26N62+·2C9H5N4O·3H2OF(000) = 1872
Mr = 894.95Dx = 1.299 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 18.1861 (2) ÅCell parameters from 5197 reflections
b = 7.1187 (1) Åθ = 2.3–27.5°
c = 35.7070 (4) ŵ = 0.09 mm1
β = 100.448 (1)°T = 123 K
V = 4546.03 (10) Å3Block, pale yellow
Z = 40.45 × 0.38 × 0.31 mm
Data collection top
Bruker–Nonius Kappa CCD with APEXII detector
diffractometer
5197 independent reflections
Radiation source: fine focus sealed tube4559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.907, Tmax = 0.973k = 89
35680 measured reflectionsl = 4246
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0362P)2 + 5.2868P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5197 reflectionsΔρmax = 0.32 e Å3
335 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.34943 (7)0.62579 (18)0.59359 (3)0.0268 (3)
H110.3778 (17)0.621 (4)0.6196 (11)0.032*0.66 (4)
C120.34888 (8)0.7810 (2)0.57234 (4)0.0260 (3)
H120.37530.88930.58300.031*
C130.31054 (7)0.7862 (2)0.53523 (4)0.0234 (3)
H130.31090.89670.52040.028*
C140.27134 (7)0.62756 (19)0.51984 (3)0.0192 (3)
C150.27272 (8)0.4676 (2)0.54248 (4)0.0244 (3)
H150.24660.35740.53270.029*
C160.31261 (8)0.4715 (2)0.57924 (4)0.0276 (3)
H160.31400.36250.59470.033*
N210.42091 (7)0.62202 (17)0.66569 (4)0.0269 (3)
H210.400 (3)0.616 (8)0.641 (2)0.032*0.34 (4)
C220.49341 (8)0.5785 (2)0.67630 (4)0.0276 (3)
H220.52170.54880.65720.033*
C230.52856 (8)0.5754 (2)0.71399 (4)0.0256 (3)
H230.58020.54550.72060.031*
C240.48726 (8)0.61675 (19)0.74231 (4)0.0219 (3)
C250.41210 (8)0.6605 (2)0.73098 (4)0.0258 (3)
H250.38210.68870.74940.031*
C260.38118 (8)0.6626 (2)0.69263 (4)0.0277 (3)
H260.32980.69400.68520.033*
N310.58874 (8)0.61811 (19)0.86102 (3)0.0331 (3)
C320.51622 (9)0.5772 (2)0.84948 (4)0.0327 (3)
H320.48720.54880.86830.039*
C330.48101 (9)0.5739 (2)0.81152 (4)0.0281 (3)
H330.42940.54380.80490.034*
C340.52250 (8)0.61556 (19)0.78334 (4)0.0227 (3)
C350.59782 (8)0.6576 (2)0.79502 (4)0.0270 (3)
H350.62830.68670.77680.032*
C360.62787 (9)0.6565 (2)0.83360 (4)0.0313 (3)
H360.67950.68480.84100.038*
C410.15157 (8)0.1715 (2)0.58797 (4)0.0272 (3)
C420.11579 (7)0.3411 (2)0.57565 (4)0.0234 (3)
C430.11642 (8)0.5041 (2)0.59765 (4)0.0249 (3)
C4110.16626 (8)0.0335 (2)0.56164 (4)0.0297 (3)
N4110.17940 (8)0.0773 (2)0.54035 (4)0.0382 (3)
C4120.17576 (9)0.1283 (2)0.62709 (5)0.0347 (4)
N4120.19482 (10)0.0875 (3)0.65855 (5)0.0528 (4)
C4310.06545 (8)0.6532 (2)0.58565 (4)0.0262 (3)
N4310.02403 (7)0.77540 (19)0.57765 (4)0.0333 (3)
C4320.16949 (9)0.5343 (2)0.63136 (4)0.0321 (3)
N4320.21320 (9)0.5619 (3)0.65832 (4)0.0496 (4)
O4210.08005 (6)0.35955 (15)0.53932 (3)0.0283 (2)
C4210.02174 (9)0.2228 (2)0.52443 (4)0.0330 (3)
H41A0.01430.22000.49630.040*
H41B0.03720.09590.53410.040*
C4220.04964 (9)0.2764 (3)0.53674 (5)0.0427 (4)
H42A0.08860.18500.52680.064*
H42B0.06500.40160.52690.064*
H42C0.04210.27780.56460.064*
O5A0.2512 (2)0.9317 (7)0.73743 (12)0.0915 (17)0.522 (6)
O5B0.28182 (16)0.9204 (5)0.76234 (11)0.0533 (13)0.478 (6)
O6A0.7139 (8)0.743 (4)0.7296 (2)0.055 (4)0.34 (3)
O6B0.7007 (9)0.824 (4)0.7286 (3)0.031 (4)0.16 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0253 (6)0.0364 (7)0.0166 (5)0.0030 (5)0.0018 (5)0.0009 (5)
C120.0241 (7)0.0309 (8)0.0210 (6)0.0013 (6)0.0013 (5)0.0028 (6)
C130.0248 (6)0.0246 (7)0.0199 (6)0.0014 (5)0.0015 (5)0.0007 (5)
C140.0165 (6)0.0233 (7)0.0169 (6)0.0020 (5)0.0011 (5)0.0004 (5)
C150.0244 (6)0.0254 (7)0.0224 (7)0.0016 (6)0.0013 (5)0.0016 (5)
C160.0295 (7)0.0306 (8)0.0217 (7)0.0026 (6)0.0020 (5)0.0063 (6)
N210.0325 (6)0.0262 (6)0.0188 (6)0.0020 (5)0.0036 (5)0.0016 (5)
C220.0322 (7)0.0283 (7)0.0216 (7)0.0004 (6)0.0034 (6)0.0011 (6)
C230.0259 (7)0.0255 (7)0.0235 (7)0.0015 (6)0.0002 (5)0.0007 (5)
C240.0269 (7)0.0174 (6)0.0197 (6)0.0014 (5)0.0001 (5)0.0006 (5)
C250.0270 (7)0.0265 (7)0.0228 (7)0.0006 (6)0.0016 (5)0.0024 (5)
C260.0260 (7)0.0280 (8)0.0259 (7)0.0003 (6)0.0035 (5)0.0002 (6)
N310.0437 (8)0.0285 (7)0.0227 (6)0.0020 (6)0.0053 (5)0.0004 (5)
C320.0466 (9)0.0287 (8)0.0216 (7)0.0022 (7)0.0029 (6)0.0032 (6)
C330.0332 (7)0.0253 (7)0.0239 (7)0.0026 (6)0.0003 (6)0.0014 (6)
C340.0295 (7)0.0174 (6)0.0193 (6)0.0035 (5)0.0010 (5)0.0005 (5)
C350.0292 (7)0.0249 (7)0.0250 (7)0.0031 (6)0.0001 (6)0.0028 (5)
C360.0324 (8)0.0294 (8)0.0280 (7)0.0037 (6)0.0054 (6)0.0041 (6)
C410.0283 (7)0.0256 (7)0.0286 (7)0.0013 (6)0.0074 (6)0.0023 (6)
C420.0226 (6)0.0266 (7)0.0217 (6)0.0015 (5)0.0060 (5)0.0009 (5)
C430.0246 (7)0.0266 (7)0.0233 (7)0.0006 (6)0.0038 (5)0.0012 (5)
C4110.0284 (7)0.0245 (7)0.0379 (8)0.0001 (6)0.0108 (6)0.0039 (6)
N4110.0419 (8)0.0267 (7)0.0495 (8)0.0033 (6)0.0181 (7)0.0013 (6)
C4120.0343 (8)0.0332 (9)0.0375 (9)0.0080 (7)0.0084 (7)0.0069 (7)
N4120.0583 (10)0.0593 (11)0.0399 (9)0.0190 (8)0.0065 (7)0.0157 (8)
C4310.0278 (7)0.0265 (7)0.0250 (7)0.0036 (6)0.0068 (5)0.0037 (6)
N4310.0345 (7)0.0284 (7)0.0366 (7)0.0030 (6)0.0053 (6)0.0006 (6)
C4320.0305 (8)0.0326 (8)0.0325 (8)0.0031 (6)0.0036 (6)0.0064 (6)
N4320.0429 (8)0.0560 (10)0.0432 (9)0.0030 (7)0.0096 (7)0.0147 (7)
O4210.0348 (5)0.0277 (5)0.0211 (5)0.0027 (4)0.0019 (4)0.0006 (4)
C4210.0368 (8)0.0334 (8)0.0263 (7)0.0047 (7)0.0011 (6)0.0061 (6)
C4220.0353 (9)0.0423 (10)0.0489 (10)0.0042 (8)0.0031 (7)0.0003 (8)
O5A0.059 (2)0.166 (4)0.054 (3)0.015 (2)0.021 (2)0.037 (2)
O5B0.0324 (15)0.082 (2)0.043 (2)0.0148 (14)0.0002 (14)0.0208 (16)
O6A0.058 (4)0.072 (11)0.038 (2)0.021 (6)0.015 (2)0.009 (4)
O6B0.047 (5)0.023 (9)0.027 (4)0.002 (5)0.016 (3)0.000 (4)
Geometric parameters (Å, º) top
N11—C161.339 (2)C33—C341.395 (2)
N11—C121.3393 (19)C33—H330.9500
N11—H110.98 (4)C34—C351.390 (2)
C12—C131.3813 (19)C35—C361.387 (2)
C12—H120.9500C35—H350.9500
C13—C141.3938 (19)C36—H360.9500
C13—H130.9500C41—C421.404 (2)
C14—C151.3943 (19)C41—C4111.418 (2)
C14—C14i1.487 (2)C41—C4121.420 (2)
C15—C161.3802 (19)C42—O4211.3480 (16)
C15—H150.9500C411—N4111.151 (2)
C16—H160.9500C412—N4121.151 (2)
N21—C261.335 (2)C42—C431.400 (2)
N21—C221.3405 (19)C43—C4311.423 (2)
N21—H210.90 (8)C43—C4321.416 (2)
C22—C231.3813 (19)C431—N4311.152 (2)
C22—H220.9500C432—N4321.149 (2)
C23—C241.396 (2)O421—C4211.4662 (18)
C23—H230.9500C421—C4221.493 (2)
C24—C251.3887 (19)C421—H41A0.9900
C24—C341.4885 (18)C421—H41B0.9900
C25—C261.3826 (19)C422—H42A0.9800
C25—H250.9500C422—H42B0.9800
C26—H260.9500C422—H42C0.9800
N31—C361.339 (2)O5A—O5B0.963 (4)
N31—C321.340 (2)O6A—O6B0.627 (9)
C32—C331.390 (2)O6A—O6Aii1.78 (2)
C32—H320.9500
C16—N11—C12120.54 (12)C32—C33—C34119.08 (14)
C16—N11—H11118.5 (16)C32—C33—H33120.5
C12—N11—H11121.0 (17)C34—C33—H33120.5
N11—C12—C13121.05 (14)C35—C34—C33117.49 (13)
N11—C12—H12119.5C35—C34—C24121.27 (13)
C13—C12—H12119.5C33—C34—C24121.24 (13)
C12—C13—C14119.33 (13)C36—C35—C34119.10 (14)
C12—C13—H13120.3C36—C35—H35120.5
C14—C13—H13120.3C34—C35—H35120.5
C13—C14—C15118.63 (11)N31—C36—C35124.16 (14)
C13—C14—C14i121.13 (8)N31—C36—H36117.9
C15—C14—C14i120.25 (9)C35—C36—H36117.9
C16—C15—C14119.06 (13)C42—C41—C411121.34 (13)
C16—C15—H15120.5C42—C41—C412122.53 (14)
C14—C15—H15120.5C411—C41—C412116.12 (14)
N11—C16—C15121.39 (13)O421—C42—C43114.36 (12)
N11—C16—H16119.3O421—C42—C41120.05 (13)
C15—C16—H16119.3C41—C42—C43125.51 (13)
C26—N21—C22118.63 (12)C42—C43—C431120.70 (13)
C26—N21—H21123 (3)C42—C43—C432122.51 (13)
C22—N21—H21119 (3)C431—C43—C432116.70 (13)
N21—C22—C23122.47 (14)N411—C411—C41178.83 (16)
N21—C22—H22118.8N412—C412—C41177.9 (2)
C23—C22—H22118.8N431—C431—C43176.87 (15)
C22—C23—C24119.19 (13)N432—C432—C43178.5 (2)
C22—C23—H23120.4C42—O421—C421118.36 (11)
C24—C23—H23120.4O421—C421—C422109.51 (13)
C25—C24—C23117.80 (12)O421—C421—H41A109.8
C25—C24—C34120.90 (12)C422—C421—H41A109.8
C23—C24—C34121.30 (12)O421—C421—H41B109.8
C26—C25—C24119.55 (13)C422—C421—H41B109.8
C26—C25—H25120.2H41A—C421—H41B108.2
C24—C25—H25120.2C421—C422—H42A109.5
N21—C26—C25122.35 (13)C421—C422—H42B109.5
N21—C26—H26118.8H42A—C422—H42B109.5
C25—C26—H26118.8C421—C422—H42C109.5
C36—N31—C32116.31 (13)H42A—C422—H42C109.5
N31—C32—C33123.86 (15)H42B—C422—H42C109.5
N31—C32—H32118.1O6B—O6A—O6Aii102 (2)
C33—C32—H32118.1
C16—N11—C12—C130.0 (2)C25—C24—C34—C35150.27 (14)
N11—C12—C13—C140.5 (2)C23—C24—C34—C3529.3 (2)
C12—C13—C14—C150.6 (2)C25—C24—C34—C3329.1 (2)
C12—C13—C14—C14i179.35 (14)C23—C24—C34—C33151.33 (14)
C13—C14—C15—C160.1 (2)C33—C34—C35—C360.1 (2)
C14i—C14—C15—C16179.83 (14)C24—C34—C35—C36179.35 (13)
C12—N11—C16—C150.5 (2)C32—N31—C36—C350.6 (2)
C14—C15—C16—N110.4 (2)C34—C35—C36—N310.4 (2)
C26—N21—C22—C230.4 (2)C411—C41—C42—O42114.7 (2)
N21—C22—C23—C240.8 (2)C412—C41—C42—O421165.94 (14)
C22—C23—C24—C250.3 (2)C411—C41—C42—C43161.79 (14)
C22—C23—C24—C34179.91 (13)C412—C41—C42—C4317.6 (2)
C23—C24—C25—C260.3 (2)O421—C42—C43—C432158.96 (13)
C34—C24—C25—C26179.24 (13)C41—C42—C43—C43217.7 (2)
C22—N21—C26—C250.3 (2)O421—C42—C43—C43117.47 (19)
C24—C25—C26—N210.7 (2)C41—C42—C43—C431165.87 (14)
C36—N31—C32—C330.3 (2)C43—C42—O421—C421127.63 (14)
N31—C32—C33—C340.1 (2)C41—C42—O421—C42155.52 (18)
C32—C33—C34—C350.3 (2)C42—O421—C421—C42281.41 (17)
C32—C33—C34—C24179.10 (13)
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+3/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N210.98 (4)1.69 (4)2.6655 (18)175 (3)
N21—H21···N110.90 (7)1.78 (7)2.6655 (18)172 (5)
C12—H12···N31iii0.952.573.4248 (19)150
C13—H13···N411iv0.952.563.434 (2)154
C15—H15···N4110.952.383.249 (2)152
C25—H25···O5B0.952.563.355 (4)141
C35—H35···O6A0.952.533.474 (13)176
C35—H35···O6B0.952.543.484 (16)170
C421—H41A···N431v0.992.613.589 (2)172
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x+1/2, y+1, z+1; (v) x, y1, z+1.
 

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAddala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiddleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Geiger, D. K., Abdul Razak, I. & Setifi, Z. (2015). Acta Cryst. C71, 658–663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThétiot, F., Triki, S. & Sala-Pala, J. (2003). Polyhedron, 22, 1837–1843.  Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds