research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(η2-ethyl­ene)(η5-penta­methyl­cyclo­penta­dien­yl)cobalt

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, NS, B3H 3C3, Canada
*Correspondence e-mail: kai.ylijoki@smu.ca

Edited by H. Ishida, Okayama University, Japan (Received 27 June 2016; accepted 9 August 2016; online 16 August 2016)

The title compound, [Co(C10H15)(C2H4)2], was prepared by Na/Hg reduction of [Co2(C10H15)2(μ-Cl)2] in THF under an ethyl­ene atmosphere and crystallized from pentane at 193 K. The Co—C(olefin) bonds have an average length of 2.022 (2) Å, while the Co—C(penta­dien­yl) bonds average 2.103 (19) Å. The olefin C=C bonds are 1.410 (1) Å. The dihedral angle between the planes defined by the cyclo­penta­dienyl ligand and the two olefin ligands is 0.25 (12)°. In the crystal, mol­ecules are linked into chains by C—H⋯π inter­actions.

1. Chemical context

The title compound, Cp*Co(CH2CH2)2 (Cp* = penta­methyl­cyclo­penta­dien­yl), was first reported in 1981 by Spencer and coworkers (Beevor et al., 1981[Beevor, R. G., Frith, S. A. & Spencer, J. L. (1981). J. Organomet. Chem. 221, C25-C27.]) in their quest to find a more thermally labile analogue of the related Cp*Co(dicarbon­yl) complex. Since this first report, it and other olefin complexes of cobalt with Cp* or Cp (Cp = cyclo­penta­dien­yl) have become important precursors for the generation of Cp′CoL (L = olefin, pyridine, etc) and Cp′Co fragments used as active species in C—H bond activation (Lenges et al., 1997[Lenges, C. P., Brookhart, M. & Grant, B. E. (1997). J. Organomet. Chem. 528, 199-203.], 1998[Lenges, C. P., White, P. S. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 6965-6979.], 2000[Lenges, C. P., White, P. S., Marshall, W. J. & Brookhart, M. (2000). Organometallics, 19, 1247-1254.]; Broere & Ruijter, 2012[Broere, D. L. J. & Ruijter, E. (2012). Synthesis, 44, 2639-2672.]), cyclo­trimerization of alkynes (Dosa et al., 2002[Dosa, P. I., Whitener, G. D., Vollhardt, K. P. C., Bond, A. D. & Teat, S. J. (2002). Org. Lett. 4, 2075-2078.]; Holmes et al., 2015[Holmes, D., Lee, S. Y., Lotz, S. D., Nguyen, S., Schaller, G. R., Schmidt-Radde, R. H. & Vollhardt, K. P. C. (2015). Synthesis, 47, 2038-2054.]) and C—S bond activation (Jones & Chin, 1994[Jones, W. D. & Chin, R. M. (1994). J. Organomet. Chem. 472, 311-316.]; Chan et al., 2015[Chan, N. H., Roache, J. H. & Jones, W. D. (2015). Inorg. Chim. Acta, 437, 36-40.]). The utility of the Cp*Co(CH2CH2)2 complex in organometallic synthesis has been explored extensively. Examples include the preparation of high-oxidation state CoV complexes (Brook­hart et al., 2000[Brookhart, M., Grant, B. E., Lenges, C. P., Prosenc, M. H. & White, P. S. (2000). Angew. Chem. Int. Ed. 39, 1676-1679.]) and the preparation of Cp*Co(η5-penta­dien­yl)+ complexes (Witherell et al., 2008[Witherell, R. D., Ylijoki, K. E. O. & Stryker, J. M. (2008). J. Am. Chem. Soc. 130, 2176-2177.]; Ylijoki et al., 2009[Ylijoki, K. E. O., Witherell, R. D., Kirk, A. D., Böcklein, S., Lofstrand, V. A., McDonald, R., Ferguson, M. J. & Stryker, J. M. (2009). Organometallics, 28, 6807-6822.], 2015[Ylijoki, K. E. O., Kirk, A. D., Böcklein, S., Witherell, R. D. & Stryker, J. M. (2015). Organometallics, 34, 3335-3357.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Although the cobalt atom is located on a general position, the mol­ecule is essentially C2v symmetric, which agrees with the symmetry of the 1H NMR data (Beevor et al., 1981[Beevor, R. G., Frith, S. A. & Spencer, J. L. (1981). J. Organomet. Chem. 221, C25-C27.]; Nicholls & Spencer, 1990[Nicholls, J. C. & Spencer, J. L. (1990). Inorg. Synth. 28, 278-280.]). The Co—C(olefin) bonds have an average length of 2.022 (2) Å, while the Co—C(Cp*) bonds average 2.103 (19) Å. The olefin C=C bonds are 1.410 (1) Å. All bond lengths are in agreement with those reported for the related Cp*Cobis(tri­methyl­vinyl­silane) complex (Lenges et al., 1998[Lenges, C. P., White, P. S. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 6965-6979.]). The C11—Co1—C14 and C12—Co1—C13 bond angles average 104.64 (1)°, indicating a parallel arrangement of the olefin ligands. The dihedral angle between the planes defined by the Cp* ligand (C1–C5) and the two olefin ligands (C11–C14) is 0.25 (12)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

3. Supra­molecular features

In the crystal, a weak C—H⋯π inter­action is observed between one of the methyl groups and the Cp* ring edge of the adjacent mol­ecule related by a 21 screw axis. The shortest contact occurs between the C6—H6C of the methyl group and the C1 atom of the Cp* ring [H6C⋯C1i 2.79, C6⋯C1i 3.734 (3) Å, C6—H6C⋯C1i 162°; symmetry code (i): −x, y − [{1\over 2}], −z + [{1\over 2}]] , while the H6C⋯Cp* ring centroid distance is 3.00 Å. The mol­ecules are linked through the C—H⋯π inter­actions, forming a helical chain parallel to the b axis (Fig. 2[link]).

[Figure 2]
Figure 2
Packing diagram of the title compound, viewed down the c axis, showing a chain formed by C—H⋯π inter­actions. Dotted lines show the shortest C—H⋯C contact involved in the inter­action. Ellipsoids are drawn at the 50% probability level. The 21 screw axes (green) are also shown.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains one additional example of a Cp*Cobis(olefin) complex: the Cp*Cobis(tri­methyl­vinyl­silane) complex (GIQHUJ) reported by Brookhart and co-workers (Lenges et al., 1998[Lenges, C. P., White, P. S. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 6965-6979.]). The title compound is isostructural with the Cp*Fe(CH2CH2)2 complex (VOGJAD; Fig. 3[link]) reported by Fürstner et al. (2008[Fürstner, A., Martin, R., Krause, H., Seidel, G., Goddard, R. & Lehmann, C. W. (2008). J. Am. Chem. Soc. 130, 8773-8787.]). The iron compound crystallizes in the monoclinic space group P21/c with unit-cell dimensions of a = 12.5561 (5), b = 7.3323 (3), c = 14.7157 (6) Å and β = 108.3520 (10)° at 100 K.

[Figure 3]
Figure 3
Comparison diagram of the isostructural Cp*Co(CH2CH2)2 (left) and Cp*Fe(CH2CH2)2 (right) unit cells, viewed down the b axis.

5. Synthesis and crystallization

The title compound was prepared by reduction of [Co2(C10H15)2(μ-Cl)2] (Koelle et al., 1986[Koelle, U., Fuss, B., Belting, M. & Raabe, E. (1986). Organometallics, 5, 980-987.]) under ethyl­ene. This procedure is an adaptation of that reported by Nicholls & Spencer (1990[Nicholls, J. C. & Spencer, J. L. (1990). Inorg. Synth. 28, 278-280.]). All solvents were degassed by purging with nitro­gen and dried by passing through activated Al2O3. A 1% Na amalgam was prepared by addition of Na (305 mg, 13.3 mmol) in small portions to mercury (30.5 g) in a Schlenk flask equipped with a stir bar and rubber septum under a nitro­gen atmosphere. The sodium was allowed to disperse completely between additions. Gentle heating with a heat gun may be required to initiate the process after the first addition. The Na amalgam was cooled to room temperature. THF (100 ml) was added to the Schlenk flask, followed by gently bubbling ethyl­ene through the system via a needle for 20 min to ensure saturation. Previously prepared [Co2(C10H15)(μ-Cl)2] (2.77 g, 6.0 mmol) was removed from the glovebox and rapidly added to the Schlenk flask under a nitro­gen purge. The ethyl­ene was bubbled through the THF for an additional 10 min, then the needle was moved to a position ca 1 cm above the solution surface to prevent clogging. The reaction was stirred under ethyl­ene for a total of 1.5 h. Over this timespan, the colour evolved from dark brown to a red/orange colour. At this point, the septum was replaced with a glass stopper and the solvent removed completely under vacuum. The evacuated flask was transferred to the glovebox where the product was taken up in pentane and filtered through Celite, taking care to separate the mercury. The solution was concentrated under vacuum in a Schlenk tube and then sealed with a greased glass stopper. The tube was removed from the glovebox and placed in a 193 K freezer overnight. The next day, the tube was removed from the freezer and immediately immersed in a dry ice/acetone bath and placed under inert atmosphere on the Schlenk line. The solvent was removed by canula transfer at low temperature to isolate the title compound (1.8 g, 60%) as dark-red rectangular crystals. The product was dried under vacuum and transferred to the glovebox where it was stored at 233 K. The NMR spectroscopic data is identical to that previously reported (Beevor et al., 1981[Beevor, R. G., Frith, S. A. & Spencer, J. L. (1981). J. Organomet. Chem. 221, C25-C27.]; Nicholls & Spencer, 1990[Nicholls, J. C. & Spencer, J. L. (1990). Inorg. Synth. 28, 278-280.]).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The H atoms of the methyl groups were included at geometrically idealized positions (C—H = 0.98 Å) and were treated as riding, with Uiso(H) = 1.5Ueq(C). The H atoms of the ethyl­ene groups were located in a difference-Fourier map and their positions were freely refined, while their Uiso(H) values were set to be equal to 1.2Ueq of the parent carbon atom.

Table 1
Experimental details

Crystal data
Chemical formula [Co(C10H15)(C2H4)2]
Mr 250.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 12.526 (2), 7.2647 (13), 14.712 (3)
β (°) 107.860 (2)
V3) 1274.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.31
Crystal size (mm) 0.23 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.524, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14405, 3165, 2684
Rint 0.084
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.06
No. of reflections 3165
No. of parameters 165
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Bis(η2-ethylene)(η5-pentamethylcyclopentadienyl)cobalt top
Crystal data top
[Co(C10H15)(C2H4)2]F(000) = 536
Mr = 250.25Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.526 (2) ÅCell parameters from 7968 reflections
b = 7.2647 (13) Åθ = 2.9–28.7°
c = 14.712 (3) ŵ = 1.31 mm1
β = 107.860 (2)°T = 125 K
V = 1274.3 (4) Å3Irregular, orange-brown
Z = 40.23 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3165 independent reflections
Radiation source: sealed tube2684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
φ and ω scansθmax = 28.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.524, Tmax = 0.746k = 99
14405 measured reflectionsl = 1918
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3165 reflectionsΔρmax = 0.41 e Å3
165 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25940 (2)0.31555 (3)0.35283 (2)0.01378 (11)
C10.11064 (16)0.4768 (2)0.31455 (13)0.0162 (4)
C20.15937 (16)0.4812 (2)0.23996 (13)0.0172 (4)
C30.27067 (17)0.5547 (3)0.27741 (15)0.0206 (4)
C40.29067 (17)0.5974 (3)0.37588 (15)0.0204 (4)
C50.19206 (17)0.5474 (3)0.39890 (14)0.0184 (4)
C60.00806 (17)0.4243 (3)0.30531 (16)0.0247 (4)
H6A0.05770.52900.28020.037*
H6B0.01350.38990.36810.037*
H6C0.03050.31970.26150.037*
C70.10181 (19)0.4326 (3)0.13701 (15)0.0276 (5)
H7A0.04360.34030.13340.041*
H7B0.15690.38260.10860.041*
H7C0.06750.54330.10200.041*
C80.3474 (2)0.5936 (3)0.2190 (2)0.0355 (6)
H8A0.32660.71120.18560.053*
H8B0.34080.49490.17220.053*
H8C0.42500.60030.26100.053*
C90.3941 (2)0.6847 (3)0.4412 (2)0.0350 (6)
H9A0.45970.64370.42370.052*
H9B0.40270.64870.50730.052*
H9C0.38770.81890.43540.052*
C100.1708 (2)0.5774 (3)0.49277 (15)0.0303 (5)
H10A0.12480.68800.48890.045*
H10B0.24240.59310.54320.045*
H10C0.13110.47070.50750.045*
C110.39512 (19)0.1994 (3)0.32878 (17)0.0231 (5)
H11A0.436 (2)0.292 (3)0.3065 (18)0.028*
H11B0.440 (2)0.120 (3)0.3815 (18)0.028*
C120.29566 (19)0.1242 (3)0.26683 (16)0.0241 (4)
H12A0.269 (2)0.156 (3)0.201 (2)0.029*
H12B0.273 (2)0.005 (4)0.2803 (18)0.029*
C130.30282 (19)0.1963 (3)0.48330 (16)0.0214 (4)
H13A0.370 (2)0.121 (3)0.4991 (17)0.026*
H13B0.309 (2)0.294 (3)0.5351 (19)0.026*
C140.20163 (19)0.1212 (3)0.42396 (16)0.0234 (4)
H14A0.132 (2)0.154 (3)0.4317 (19)0.028*
H14B0.205 (2)0.008 (4)0.4038 (18)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01325 (17)0.01235 (16)0.01530 (17)0.00046 (8)0.00374 (11)0.00026 (9)
C10.0174 (9)0.0125 (8)0.0188 (9)0.0025 (7)0.0059 (8)0.0006 (7)
C20.0205 (9)0.0151 (9)0.0163 (9)0.0042 (7)0.0060 (7)0.0018 (7)
C30.0200 (10)0.0164 (9)0.0272 (10)0.0046 (7)0.0100 (8)0.0071 (8)
C40.0178 (9)0.0124 (9)0.0275 (10)0.0001 (7)0.0021 (8)0.0011 (7)
C50.0215 (10)0.0147 (9)0.0176 (9)0.0042 (7)0.0041 (8)0.0002 (7)
C60.0180 (10)0.0222 (10)0.0337 (12)0.0002 (8)0.0075 (9)0.0006 (9)
C70.0335 (12)0.0297 (11)0.0173 (10)0.0106 (9)0.0043 (9)0.0017 (8)
C80.0339 (13)0.0332 (13)0.0490 (15)0.0080 (10)0.0268 (12)0.0185 (11)
C90.0254 (12)0.0168 (11)0.0490 (16)0.0011 (8)0.0088 (11)0.0036 (9)
C100.0424 (14)0.0288 (11)0.0194 (10)0.0120 (10)0.0092 (10)0.0029 (9)
C110.0208 (11)0.0213 (10)0.0304 (12)0.0051 (8)0.0128 (9)0.0003 (8)
C120.0282 (11)0.0195 (10)0.0242 (11)0.0059 (9)0.0073 (9)0.0038 (8)
C130.0237 (11)0.0191 (10)0.0201 (10)0.0024 (8)0.0047 (9)0.0053 (7)
C140.0223 (11)0.0200 (10)0.0279 (11)0.0027 (8)0.0078 (9)0.0060 (9)
Geometric parameters (Å, º) top
Co1—C142.019 (2)C7—H7A0.9800
Co1—C132.022 (2)C7—H7B0.9800
Co1—C122.023 (2)C7—H7C0.9800
Co1—C112.024 (2)C8—H8A0.9800
Co1—C52.0875 (19)C8—H8B0.9800
Co1—C32.0894 (19)C8—H8C0.9800
Co1—C42.093 (2)C9—H9A0.9800
Co1—C22.1214 (19)C9—H9B0.9800
Co1—C12.1256 (18)C9—H9C0.9800
C1—C21.410 (3)C10—H10A0.9800
C1—C51.438 (3)C10—H10B0.9800
C1—C61.500 (3)C10—H10C0.9800
C2—C31.436 (3)C11—C121.409 (3)
C2—C71.506 (3)C11—H11A0.97 (3)
C3—C41.427 (3)C11—H11B0.99 (3)
C3—C81.500 (3)C12—H12A0.95 (3)
C4—C51.425 (3)C12—H12B0.95 (3)
C4—C91.497 (3)C13—C141.410 (3)
C5—C101.501 (3)C13—H13A0.98 (3)
C6—H6A0.9800C13—H13B1.03 (2)
C6—H6B0.9800C14—H14A0.95 (3)
C6—H6C0.9800C14—H14B0.88 (3)
C14—Co1—C1340.83 (9)C4—C5—C1108.86 (17)
C14—Co1—C1291.64 (10)C4—C5—C10126.40 (19)
C13—Co1—C12104.64 (9)C1—C5—C10124.54 (19)
C14—Co1—C11104.65 (9)C4—C5—Co170.28 (11)
C13—Co1—C1189.51 (9)C1—C5—Co171.48 (10)
C12—Co1—C1140.74 (9)C10—C5—Co1128.29 (14)
C14—Co1—C598.68 (9)C1—C6—H6A109.5
C13—Co1—C593.17 (8)C1—C6—H6B109.5
C12—Co1—C5161.45 (9)H6A—C6—H6B109.5
C11—Co1—C5146.92 (8)C1—C6—H6C109.5
C14—Co1—C3161.80 (9)H6A—C6—H6C109.5
C13—Co1—C3144.88 (8)H6B—C6—H6C109.5
C12—Co1—C3100.05 (9)C2—C7—H7A109.5
C11—Co1—C393.25 (8)C2—C7—H7B109.5
C5—Co1—C366.51 (8)H7A—C7—H7B109.5
C14—Co1—C4132.78 (9)C2—C7—H7C109.5
C13—Co1—C4106.43 (8)H7A—C7—H7C109.5
C12—Co1—C4134.99 (9)H7B—C7—H7C109.5
C11—Co1—C4108.11 (8)C3—C8—H8A109.5
C5—Co1—C439.85 (8)C3—C8—H8B109.5
C3—Co1—C439.89 (8)H8A—C8—H8B109.5
C14—Co1—C2125.65 (9)C3—C8—H8C109.5
C13—Co1—C2155.27 (8)H8A—C8—H8C109.5
C12—Co1—C295.30 (8)H8B—C8—H8C109.5
C11—Co1—C2115.21 (8)C4—C9—H9A109.5
C5—Co1—C266.16 (7)C4—C9—H9B109.5
C3—Co1—C239.86 (8)H9A—C9—H9B109.5
C4—Co1—C266.92 (8)C4—C9—H9C109.5
C14—Co1—C195.63 (8)H9A—C9—H9C109.5
C13—Co1—C1116.50 (8)H9B—C9—H9C109.5
C12—Co1—C1124.04 (8)C5—C10—H10A109.5
C11—Co1—C1153.97 (8)C5—C10—H10B109.5
C5—Co1—C139.89 (7)H10A—C10—H10B109.5
C3—Co1—C166.27 (7)C5—C10—H10C109.5
C4—Co1—C166.98 (7)H10A—C10—H10C109.5
C2—Co1—C138.79 (7)H10B—C10—H10C109.5
C2—C1—C5107.56 (17)C12—C11—Co169.58 (12)
C2—C1—C6126.07 (18)C12—C11—H11A120.6 (16)
C5—C1—C6126.15 (17)Co1—C11—H11A109.4 (15)
C2—C1—Co170.45 (11)C12—C11—H11B117.1 (15)
C5—C1—Co168.63 (10)Co1—C11—H11B114.1 (14)
C6—C1—Co1130.39 (13)H11A—C11—H11B116 (2)
C1—C2—C3108.12 (17)C11—C12—Co169.67 (12)
C1—C2—C7126.10 (18)C11—C12—H12A122.1 (16)
C3—C2—C7125.60 (18)Co1—C12—H12A113.1 (15)
C1—C2—Co170.77 (11)C11—C12—H12B118.7 (15)
C3—C2—Co168.87 (11)Co1—C12—H12B110.9 (15)
C7—C2—Co1129.77 (13)H12A—C12—H12B113 (2)
C4—C3—C2108.54 (17)C14—C13—Co169.45 (12)
C4—C3—C8126.7 (2)C14—C13—H13A118.6 (15)
C2—C3—C8124.6 (2)Co1—C13—H13A115.4 (14)
C4—C3—Co170.19 (11)C14—C13—H13B124.8 (15)
C2—C3—Co171.27 (11)Co1—C13—H13B110.3 (13)
C8—C3—Co1128.37 (15)H13A—C13—H13B111 (2)
C5—C4—C3106.90 (17)C13—C14—Co169.72 (12)
C5—C4—C9126.8 (2)C13—C14—H14A121.0 (16)
C3—C4—C9126.3 (2)Co1—C14—H14A112.1 (15)
C5—C4—Co169.87 (11)C13—C14—H14B116.1 (16)
C3—C4—Co169.92 (11)Co1—C14—H14B114.5 (17)
C9—C4—Co1126.91 (14)H14A—C14—H14B115 (2)
C5—C1—C2—C30.1 (2)C8—C3—C4—C92.0 (3)
C6—C1—C2—C3174.76 (17)Co1—C3—C4—C9121.7 (2)
Co1—C1—C2—C358.94 (13)C2—C3—C4—Co161.26 (13)
C5—C1—C2—C7175.46 (17)C8—C3—C4—Co1123.7 (2)
C6—C1—C2—C70.5 (3)C3—C4—C5—C11.0 (2)
Co1—C1—C2—C7125.75 (19)C9—C4—C5—C1176.98 (18)
C5—C1—C2—Co158.80 (12)Co1—C4—C5—C161.39 (13)
C6—C1—C2—Co1126.29 (18)C3—C4—C5—C10175.97 (18)
C1—C2—C3—C40.4 (2)C9—C4—C5—C102.0 (3)
C7—C2—C3—C4174.89 (18)Co1—C4—C5—C10123.6 (2)
Co1—C2—C3—C460.58 (13)C3—C4—C5—Co160.42 (13)
C1—C2—C3—C8175.64 (18)C9—C4—C5—Co1121.6 (2)
C7—C2—C3—C80.3 (3)C2—C1—C5—C40.7 (2)
Co1—C2—C3—C8124.2 (2)C6—C1—C5—C4174.21 (18)
C1—C2—C3—Co160.13 (13)Co1—C1—C5—C460.64 (13)
C7—C2—C3—Co1124.53 (19)C2—C1—C5—C10175.81 (18)
C2—C3—C4—C50.9 (2)C6—C1—C5—C100.9 (3)
C8—C3—C4—C5175.94 (19)Co1—C1—C5—C10124.24 (19)
Co1—C3—C4—C560.39 (13)C2—C1—C5—Co159.94 (13)
C2—C3—C4—C9177.08 (18)C6—C1—C5—Co1125.15 (18)
 

Acknowledgements

Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary's University and ACEnet (ACEnet Summer Research Fellowship to CDR) is gratefully acknowledged.

References

First citationBeevor, R. G., Frith, S. A. & Spencer, J. L. (1981). J. Organomet. Chem. 221, C25–C27.  CrossRef CAS Web of Science Google Scholar
First citationBroere, D. L. J. & Ruijter, E. (2012). Synthesis, 44, 2639–2672.  CAS Google Scholar
First citationBrookhart, M., Grant, B. E., Lenges, C. P., Prosenc, M. H. & White, P. S. (2000). Angew. Chem. Int. Ed. 39, 1676–1679.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, N. H., Roache, J. H. & Jones, W. D. (2015). Inorg. Chim. Acta, 437, 36–40.  Web of Science CrossRef CAS Google Scholar
First citationDosa, P. I., Whitener, G. D., Vollhardt, K. P. C., Bond, A. D. & Teat, S. J. (2002). Org. Lett. 4, 2075–2078.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFürstner, A., Martin, R., Krause, H., Seidel, G., Goddard, R. & Lehmann, C. W. (2008). J. Am. Chem. Soc. 130, 8773–8787.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolmes, D., Lee, S. Y., Lotz, S. D., Nguyen, S., Schaller, G. R., Schmidt-Radde, R. H. & Vollhardt, K. P. C. (2015). Synthesis, 47, 2038–2054.  CAS Google Scholar
First citationJones, W. D. & Chin, R. M. (1994). J. Organomet. Chem. 472, 311–316.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoelle, U., Fuss, B., Belting, M. & Raabe, E. (1986). Organometallics, 5, 980–987.  CSD CrossRef CAS Web of Science Google Scholar
First citationLenges, C. P., Brookhart, M. & Grant, B. E. (1997). J. Organomet. Chem. 528, 199–203.  CrossRef CAS Web of Science Google Scholar
First citationLenges, C. P., White, P. S. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 6965–6979.  Web of Science CSD CrossRef CAS Google Scholar
First citationLenges, C. P., White, P. S., Marshall, W. J. & Brookhart, M. (2000). Organometallics, 19, 1247–1254.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNicholls, J. C. & Spencer, J. L. (1990). Inorg. Synth. 28, 278–280.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWitherell, R. D., Ylijoki, K. E. O. & Stryker, J. M. (2008). J. Am. Chem. Soc. 130, 2176–2177.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYlijoki, K. E. O., Kirk, A. D., Böcklein, S., Witherell, R. D. & Stryker, J. M. (2015). Organometallics, 34, 3335–3357.  Web of Science CSD CrossRef CAS Google Scholar
First citationYlijoki, K. E. O., Witherell, R. D., Kirk, A. D., Böcklein, S., Lofstrand, V. A., McDonald, R., Ferguson, M. J. & Stryker, J. M. (2009). Organometallics, 28, 6807–6822.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds