research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6-(p-tol­yl)benzo[b]naphtho[2,3-d]thio­phene and of an ortho­rhom­bic polymorph of 7-phenyl­anthra[2,3-b]benzo[d]thio­phene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, bUniversity of Neuchâtel, Institute of Physics, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by A. J. Lough, University of Toronto, Canada (Received 20 July 2016; accepted 10 August 2016; online 16 August 2016)

The title compounds, C23H16S, (I), and C26H16S, (II), are benzo­thio­phene derivatives in which the benzo­thio­phene moiety is fused with a naphthalene ring system in (I), and with an anthracene ring system in (II). In (I), the mean plane of the benzo­thio­phene ring system makes a dihedral angle of 2.28 (6)° with the naphthalene ring system, and a dihedral angle of 1.28 (6)° with the anthracene ring system in (II), showing that the fused units are essentially planar. In (I), the 4-methyl­benzene ring substituent makes a dihedral angle of 71.40 (9)° with the naphthalene ring system, while the phenyl ring substituent in (II) makes a dihedral angle of 67.08 (12)° with the anthracene ring system. In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions, leading to the formation of slabs parallel to (001) in (I) and to zigzag chains along [001] in (II). There are also offset ππ inter­actions present within the slabs in (I). In the crystal of (II), they link the chains, forming sheets parallel to (010). The triclinic polymorph of compound (II) has been reported [Sivasakthikumaran et al., (2012[Sivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053-9071.]). J. Org. Chem. 77, 9053–9071].

1. Chemical context

The thio­phene nucleus has been shown to be an important heterocyclic unit in compounds possessing promising pharmacological characteristics, such as anti-HIV PR inhibitors (Bonini et al., 2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6589.]) and anti-breast cancer (Brault et al., 2005[Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]) activities. Benzo­thio­phenes are important biologically active mol­ecules. One of the most important drugs based on the benzo­thio­phene system is Raloxifine, used for the prevention and treatment of osteoporosis in postmenopausal women (Jordan, 2003[Jordan, V. C. (2003). J. Med. Chem. 46, 1081-1111.]). Benzo­thio­phenes are also present in lumin­escent components used in organic materials (Russell & Press, 1996[Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679-729. Oxford: Pergamon Press.]).

Naphtho­[2,3-b]thio­phene derivatives have been found to exhibit anti­proliferative activity related to the inhibition of tublin polymerization (Zuse et al., 2007[Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2007). J. Med. Chem. 50, 6059-6066.], 2006[Zuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2006). J. Med. Chem. 49, 7816-7825.]). As a result of their outstanding electronic testability and considerable chemical and environmental stability, thio­phene derivatives have been widely used in solar cells (Justin Thomas et al., 2008[Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830-1840.]; Hänsel et al., 2003[Hänsel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056-2060.]), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003[Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060-2063.]), organic field-effect transistors (OFETs) (Zhan et al., 2007[Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246-7247.]) and as NLO devices (Bedworth et al., 1996[Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242-2246.]; Raposo et al., 2011[Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62-73.]).Against this background, we describe herein the syntheses and crystal structures of the title benzo­thio­phene derivatives.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. In both compounds, the benzo­thio­phene ring systems are almost planar with the dihedral angles between the benzene and thio­phene rings being 1.85 (11)° in (I)[link] and 0.56 (18)° in (II)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In compound (I)[link], the naphthalene ring system (atoms C1–C3/C10–C16) (r.m.s. deviation = 0.006 Å) makes a a dihedral angle of 2.28 (6)° with the benzo­thio­phene (C3–C10/S1) ring system (r.m.s. deviation = 0.023 Å). The 4-methyl­benzene ring substituent (C17–C22) makes a dihedral angle of 71.40 (9)° with the naphthalene ring system

In compound (II)[link], the anthracene ring system (C1–C3/C10–C20) is almost planar (r.m.s. deviation = 0.075 Å) and makes a a dihedral angle of 7.31 (9)° with the benzo­thio­phene (C3–C10/S1) ring system (r.m.s. deviation = 0.012 Å). Here, the phenyl ring substituent (C21–C26) in (II)[link] makes a dihedral angle of 67.08 (12)° with the anthracene ring system, and the anthracene ring is (−)anti­periplanar with respect to the benzo­thio­phene moiety, as indicated by the S1—C3—C10—C11 torsion angle of −176.4 (2)°.

In the triclinic polymorph of compound (II)[link] (Sivasakthikumaran et al., 2012[Sivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053-9071.]), the major component of the disordered phenyl ring substituent makes a dihedral angle of 79.39 (12)° with the anthracene ring system.

3. Supra­molecular features

In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions (see Tables 1[link] and 2[link]), leading to the formation of slabs parallel to (001) in (I)[link], and to zigzag chains along [001] in (II)[link]; as illustrated in Figs. 3[link], 4[link] and 5[link]. There are also offset ππ inter­actions present within the slabs in (I)[link] [Cg1⋯Cg3i = 3.629 (1) Å, inter­planar distance = 3.602 (1) Å, slippage = 0.49 Å; Cg2⋯Cg4ii = 3.983 (1), inter­planar distance = 3.473 (1), slippage 1.79 Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of rings S1/C3/C4/C9/C10, C1–C3/C10–C12, C1/C12–C16 and C4–C9, respectively; symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z]. In the crystal of (II)[link], offset ππ inter­actions link the chains, forming sheets parallel to (010) [Cg2⋯Cg4iii = 3.711 (2) Å, inter­planar distance = 3.479 (1) Å, slippage = 1.21 Å; Cg3⋯Cg4iii = 3.741 (2) Å, inter­planar distance = 3.443 (1) Å, slippage = 1.22 Å; Cg2, Cg3 and Cg4 are the centroids of rings C1–C3/C10–C12, C1/C12–C16 and C4–C9, respectively; symmetry code: (iii) −x + 1, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3, Cg4 and Cg5 are the centroids of rings (C1/C12–C16), (C4–C6) and (C17–C22), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg5i 0.93 2.94 3.763 (3) 148
C19—H19⋯Cg4ii 0.93 2.94 3.753 (3) 147
C21—H21⋯Cg3iii 0.93 2.91 3.721 (3) 146
Symmetry codes: (i) -x-1, -y, -z; (ii) -x, -y+1, -z; (iii) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 and Cg3 are the centroids of rings (C1–C3/C10–C12) and (C1/C12–C14/C19/C20), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg2i 0.93 2.97 3.885 (4) 168
C15—H15⋯Cg3i 0.93 2.57 3.479 (4) 166
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal packing of compound (I)[link]. The C—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details). H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
The crystal packing of compound (II)[link], viewed along the b axis. The C—H⋯π inter­actions are shown as dashed lines (see Table 2[link] for details) and the centroids as brown balls. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 5]
Figure 5
The crystal packing of compound (I)[link], viewed along the c axis, showing the C—H⋯π inter­actions (represented as turquoise lines) leading to the formation of slabs parallel to (001).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the naphtho­benzo­thio­phene skeleton gave 32 hits. Among these there are five naphtho­benzo­thio­phene derivatives that resemble compound (I)[link], viz. 6-(phen­yl)benzo[b]naphtho­[2,3-d]thio­phene (NEQMAZ; Silambarasan et al., 2013[Silambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohana­krishnan, A. K. & Velmurugan, D. (2013). Acta Cryst. E69, o36.]), 6-(4-meth­oxy­phen­yl)benzo[b]naphtho­[2,3-d]thio­phene (PECQEV; Silambarasan et al., 2012[Silambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohanakrishnan, A. K. & Velmurugan, D. (2012). Acta Cryst. E68, o3408-o3409.]), 6-(2-thien­yl)benzo[b]naphtho­[2,3-d]thiophene (XIMZUQ; Sivasakthikumaran et al., 2012[Sivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053-9071.]), 6-(1-benzo­thio­phen-3-yl)benzo[b]naphtho­[2,3-d]thio­phene (HIXQUB; Li et al., 2007[Li, G., Zhou, S., Su, G., Liu, Y. & Wang, P. G. (2007). J. Org. Chem. 72, 9830-9833.]) and 1,3-di­methyl­benzo[b]naphtho­[2,3-d]thio­phene (ROMPUF/ROMPUF01; Umarani et al., 2009/Dhayalan et al., 2009[Dhayalan, V., Clement, J. A., Jagan, R. & Mohanakrishnan, A. K. (2009). Eur. J. Org. Chem. pp. 531-546.]). There are also two anthracene analogues, viz. anthra[2,3-b]benzo[d]thio­phene itself (JOHSOP; Du et al., 2008[Du, C., Guo, Y., Liu, Y., Qiu, W., Zhang, H., Gao, X., Liu, Y., Qi, T., Lu, K. & Yu, G. (2008). Chem. Mater. 20, 4188-4190.]), and 7-(1-benzo­thio­phen-2-yl)anthra[2,3-b]benzo[d]thio­phene (FOLGEU; Rafiq et al., 2014[Rafiq, S. M., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2014). Org. Lett. 16, 2720-2723.]); as well as the triclinic polymorph of compound (II)[link] (XIMZOK; Sivasakthikumaran et al., 2012[Sivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053-9071.]).

5. Synthesis and crystallization

Compound (I)

The reduction of the diketone (benzo­thio­phen-3-yl)[2-(4-methyl­benzo­yl)phen­yl]methanone (0.85 g, 2.38 mmol) using sodium borohydride (0.49 g, 12.89 mmol) followed by work-up gave the diol. Dipivaloylation of the diol (0.77 g, 2.31 mmol) using pivaloyl chloride (1.39 g, 11.52 mmol) and tri­ethyl­amine (4.69 g, 45.20 mmol) in the presence of a catalytic amount of DMAP (10 mg) in dry DCM (20 ml) led to the isolation of dipivalate (benzo[b]thio­phen-3-yl){2-[pivalo­yloxy(p-tol­yl) meth­yl]phen­yl}methyl pivalate as a viscous liquid. Dipivalate (benzo[b]thio­phen-3-yl){2-[pivalo­yloxy(p-to­yl) meth­yl]phen­yl}methyl pivalate (0.98 g, 1.96 mmol) upon inter­action with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 99:1) gave 6-(p-tol­yl)benzo[b]naphtho­[2,3-d]thiophene as a pale-green solid (yield 0.53 g, 78%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (I)[link] in ethyl acetate at room temperature (m.p. 391–393 K).

Compound (II)

The reduction of the diketone (2-benzoyl­phen­yl)(dibenzo[b,d]thio­phen-2-yl)methanone (1.11 g, 2.38 mmol) using sodium borohydride (0.53 g, 13.94 mmol) followed by work-up gave the diol. Dipivaloylation of the diol (1.12 g, 2.82 mmol) using pivaloyl chloride (1.70 g, 14.14 mmol) and tri­ethyl­amine (5.72 g, 56.56 mmol) in the presence of a catalytic amount of DMAP (10 mg) in dry DCM (20 ml) led to the isolation of dipivalate (dibenzo[b,d]thio­phen-2-yl){2-[phen­yl(pivalo­yloxy)meth­yl]phen­yl}methyl pivalate as a thick liquid. Dipivalate (dibenzo[b,d]thio­phen-2-yl){2-[phen­yl(pivalo­yloxy)meth­yl]phen­yl}methyl pivalate (1.28 g, 2.26 mmol) upon inter­action with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 99:1) gave a new ortho­rhom­bic polymorph of 7-phenyl­anthra[2,3-b]benzo[d]thio­phene (yield 0.83 g, 72%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the compound (II)[link] in ethyl acetate at room temperature (m.p. 463–465 K).

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link] and (II)[link] are summarized in Table 3[link]. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H16S C26H16S
Mr 324.42 360.45
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pccn
Temperature (K) 296 296
a, b, c (Å) 6.2404 (3), 11.1725 (6), 12.9987 (7) 12.2159 (8), 33.1138 (4), 8.8993 (5)
α, β, γ (°) 109.284 (2), 100.233 (4), 93.925 (2) 90, 90, 90
V3) 833.90 (8) 3599.9 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.19
Crystal size (mm) 0.30 × 0.25 × 0.20 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.962 0.946, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 15861, 2944, 2407 43542, 3171, 2540
Rint 0.024 0.036
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.07 0.059, 0.182, 1.04
No. of reflections 2944 3171
No. of parameters 218 244
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.21 1.06, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) 6-(p-Tolyl)benzo[b]naphtho[2,3-d]thiophene top
Crystal data top
C23H16SZ = 2
Mr = 324.42F(000) = 340
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2404 (3) ÅCell parameters from 2944 reflections
b = 11.1725 (6) Åθ = 2.1–25.0°
c = 12.9987 (7) ŵ = 0.19 mm1
α = 109.284 (2)°T = 296 K
β = 100.233 (4)°Block, colourless
γ = 93.925 (2)°0.30 × 0.25 × 0.20 mm
V = 833.90 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2944 independent reflections
Radiation source: fine-focus sealed tube2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω & φ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.944, Tmax = 0.962k = 1313
15861 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.4189P]
where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1614 (3)0.24648 (18)0.15929 (16)0.0358 (4)
C20.0247 (3)0.27515 (17)0.09112 (15)0.0344 (4)
C30.1606 (3)0.36306 (18)0.14305 (15)0.0355 (4)
C40.5130 (3)0.51269 (19)0.20179 (16)0.0401 (5)
C50.7116 (3)0.5852 (2)0.21532 (19)0.0504 (5)
H50.77180.58220.15410.060*
C60.8178 (4)0.6618 (2)0.3211 (2)0.0566 (6)
H60.95180.71080.33160.068*
C70.7283 (4)0.6671 (2)0.4127 (2)0.0551 (6)
H70.80120.72090.48350.066*
C80.5328 (4)0.5937 (2)0.39951 (18)0.0474 (5)
H80.47430.59700.46120.057*
C90.4228 (3)0.51430 (18)0.29316 (16)0.0380 (4)
C100.2200 (3)0.42696 (18)0.26060 (15)0.0360 (4)
C110.0889 (3)0.39891 (19)0.32582 (16)0.0403 (5)
H110.12640.43990.40280.048*
C120.1012 (3)0.30925 (19)0.27797 (16)0.0390 (4)
C130.2388 (4)0.2784 (2)0.34417 (18)0.0485 (5)
H130.20090.31780.42130.058*
C140.4235 (4)0.1932 (2)0.2978 (2)0.0544 (6)
H140.51160.17520.34300.065*
C150.4829 (4)0.1316 (2)0.1815 (2)0.0513 (5)
H150.61020.07290.15000.062*
C160.3550 (3)0.1575 (2)0.11515 (18)0.0437 (5)
H160.39630.11540.03840.052*
C170.0765 (3)0.21177 (18)0.03270 (15)0.0359 (4)
C180.2468 (4)0.2399 (2)0.10000 (18)0.0514 (6)
H180.33610.29830.06760.062*
C190.2881 (4)0.1835 (2)0.21439 (18)0.0560 (6)
H190.40420.20490.25760.067*
C200.1618 (4)0.0964 (2)0.26596 (17)0.0467 (5)
C210.0061 (4)0.0673 (2)0.19921 (19)0.0565 (6)
H210.09350.00790.23190.068*
C220.0493 (4)0.1237 (2)0.08442 (18)0.0514 (6)
H220.16520.10190.04150.062*
C230.2067 (5)0.0357 (3)0.3913 (2)0.0739 (8)
H23A0.07790.00230.41360.111*
H23B0.24430.09870.42430.111*
H23C0.32670.03270.41580.111*
S10.35084 (8)0.41019 (5)0.07515 (4)0.04430 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (10)0.0343 (10)0.0370 (10)0.0107 (8)0.0085 (8)0.0139 (8)
C20.0387 (10)0.0344 (10)0.0318 (10)0.0126 (8)0.0081 (8)0.0119 (8)
C30.0390 (10)0.0391 (11)0.0328 (10)0.0127 (8)0.0120 (8)0.0146 (8)
C40.0435 (11)0.0410 (11)0.0404 (11)0.0097 (9)0.0095 (9)0.0192 (9)
C50.0487 (12)0.0581 (14)0.0534 (13)0.0031 (10)0.0127 (10)0.0311 (11)
C60.0513 (13)0.0559 (14)0.0643 (16)0.0075 (11)0.0046 (11)0.0300 (12)
C70.0601 (14)0.0463 (13)0.0496 (13)0.0078 (11)0.0010 (11)0.0143 (11)
C80.0559 (13)0.0450 (12)0.0399 (11)0.0026 (10)0.0093 (10)0.0142 (9)
C90.0420 (10)0.0360 (10)0.0385 (11)0.0083 (8)0.0094 (8)0.0153 (9)
C100.0407 (10)0.0347 (10)0.0338 (10)0.0101 (8)0.0086 (8)0.0120 (8)
C110.0456 (11)0.0430 (11)0.0311 (10)0.0065 (9)0.0098 (8)0.0103 (9)
C120.0417 (10)0.0397 (11)0.0388 (11)0.0102 (9)0.0131 (9)0.0147 (9)
C130.0532 (12)0.0554 (13)0.0408 (12)0.0066 (10)0.0190 (10)0.0172 (10)
C140.0510 (13)0.0619 (15)0.0585 (14)0.0030 (11)0.0239 (11)0.0263 (12)
C150.0446 (12)0.0515 (13)0.0598 (14)0.0018 (10)0.0106 (10)0.0233 (11)
C160.0433 (11)0.0431 (12)0.0429 (11)0.0047 (9)0.0054 (9)0.0149 (9)
C170.0370 (10)0.0360 (10)0.0350 (10)0.0056 (8)0.0092 (8)0.0118 (8)
C180.0581 (13)0.0569 (14)0.0416 (12)0.0271 (11)0.0119 (10)0.0157 (10)
C190.0624 (14)0.0656 (15)0.0406 (12)0.0183 (12)0.0021 (11)0.0218 (11)
C200.0572 (13)0.0432 (12)0.0350 (11)0.0068 (10)0.0102 (10)0.0100 (9)
C210.0612 (14)0.0553 (14)0.0470 (13)0.0184 (11)0.0196 (11)0.0039 (11)
C220.0496 (12)0.0575 (14)0.0426 (12)0.0214 (11)0.0069 (10)0.0103 (10)
C230.100 (2)0.0677 (17)0.0405 (13)0.0129 (15)0.0131 (13)0.0077 (12)
S10.0469 (3)0.0525 (3)0.0360 (3)0.0051 (2)0.0137 (2)0.0165 (2)
Geometric parameters (Å, º) top
C1—C161.411 (3)C12—C131.420 (3)
C1—C21.426 (3)C13—C141.349 (3)
C1—C121.434 (3)C13—H130.9300
C2—C31.373 (3)C14—C151.405 (3)
C2—C171.492 (3)C14—H140.9300
C3—C101.423 (3)C15—C161.358 (3)
C3—S11.7492 (19)C15—H150.9300
C4—C51.384 (3)C16—H160.9300
C4—C91.397 (3)C17—C181.375 (3)
C4—S11.746 (2)C17—C221.376 (3)
C5—C61.372 (3)C18—C191.377 (3)
C5—H50.9300C18—H180.9300
C6—C71.388 (3)C19—C201.370 (3)
C6—H60.9300C19—H190.9300
C7—C81.373 (3)C20—C211.366 (3)
C7—H70.9300C20—C231.508 (3)
C8—C91.393 (3)C21—C221.382 (3)
C8—H80.9300C21—H210.9300
C9—C101.449 (3)C22—H220.9300
C10—C111.369 (3)C23—H23A0.9600
C11—C121.400 (3)C23—H23B0.9600
C11—H110.9300C23—H23C0.9600
C16—C1—C2122.80 (18)C14—C13—H13119.2
C16—C1—C12117.81 (17)C12—C13—H13119.2
C2—C1—C12119.39 (17)C13—C14—C15120.2 (2)
C3—C2—C1117.87 (17)C13—C14—H14119.9
C3—C2—C17120.13 (17)C15—C14—H14119.9
C1—C2—C17121.99 (17)C16—C15—C14120.2 (2)
C2—C3—C10123.09 (17)C16—C15—H15119.9
C2—C3—S1125.07 (15)C14—C15—H15119.9
C10—C3—S1111.84 (14)C15—C16—C1121.9 (2)
C5—C4—C9121.40 (19)C15—C16—H16119.1
C5—C4—S1125.91 (16)C1—C16—H16119.1
C9—C4—S1112.68 (15)C18—C17—C22117.15 (19)
C6—C5—C4118.5 (2)C18—C17—C2122.18 (17)
C6—C5—H5120.8C22—C17—C2120.65 (17)
C4—C5—H5120.8C17—C18—C19121.4 (2)
C5—C6—C7121.0 (2)C17—C18—H18119.3
C5—C6—H6119.5C19—C18—H18119.3
C7—C6—H6119.5C20—C19—C18121.4 (2)
C8—C7—C6120.6 (2)C20—C19—H19119.3
C8—C7—H7119.7C18—C19—H19119.3
C6—C7—H7119.7C21—C20—C19117.3 (2)
C7—C8—C9119.6 (2)C21—C20—C23121.5 (2)
C7—C8—H8120.2C19—C20—C23121.2 (2)
C9—C8—H8120.2C20—C21—C22121.7 (2)
C8—C9—C4118.95 (19)C20—C21—H21119.1
C8—C9—C10128.82 (18)C22—C21—H21119.1
C4—C9—C10112.23 (17)C17—C22—C21121.0 (2)
C11—C10—C3118.90 (18)C17—C22—H22119.5
C11—C10—C9129.40 (18)C21—C22—H22119.5
C3—C10—C9111.69 (17)C20—C23—H23A109.5
C10—C11—C12120.75 (18)C20—C23—H23B109.5
C10—C11—H11119.6H23A—C23—H23B109.5
C12—C11—H11119.6C20—C23—H23C109.5
C11—C12—C13121.63 (19)H23A—C23—H23C109.5
C11—C12—C1120.00 (17)H23B—C23—H23C109.5
C13—C12—C1118.37 (18)C4—S1—C391.52 (9)
C14—C13—C12121.6 (2)
C16—C1—C2—C3179.76 (17)C10—C11—C12—C10.5 (3)
C12—C1—C2—C30.2 (3)C16—C1—C12—C11179.63 (17)
C16—C1—C2—C170.5 (3)C2—C1—C12—C110.8 (3)
C12—C1—C2—C17179.12 (16)C16—C1—C12—C130.1 (3)
C1—C2—C3—C100.6 (3)C2—C1—C12—C13179.48 (18)
C17—C2—C3—C10179.96 (16)C11—C12—C13—C14179.1 (2)
C1—C2—C3—S1179.27 (13)C1—C12—C13—C140.6 (3)
C17—C2—C3—S10.1 (3)C12—C13—C14—C150.6 (4)
C9—C4—C5—C61.3 (3)C13—C14—C15—C160.1 (3)
S1—C4—C5—C6179.61 (17)C14—C15—C16—C10.4 (3)
C4—C5—C6—C70.3 (3)C2—C1—C16—C15179.98 (18)
C5—C6—C7—C81.3 (4)C12—C1—C16—C150.4 (3)
C6—C7—C8—C90.7 (3)C3—C2—C17—C18108.5 (2)
C7—C8—C9—C40.9 (3)C1—C2—C17—C1872.2 (3)
C7—C8—C9—C10178.1 (2)C3—C2—C17—C2270.1 (3)
C5—C4—C9—C81.9 (3)C1—C2—C17—C22109.1 (2)
S1—C4—C9—C8178.87 (15)C22—C17—C18—C190.7 (3)
C5—C4—C9—C10177.24 (18)C2—C17—C18—C19177.9 (2)
S1—C4—C9—C102.0 (2)C17—C18—C19—C200.3 (4)
C2—C3—C10—C110.9 (3)C18—C19—C20—C210.4 (4)
S1—C3—C10—C11179.04 (15)C18—C19—C20—C23179.5 (2)
C2—C3—C10—C9179.87 (17)C19—C20—C21—C220.6 (4)
S1—C3—C10—C90.0 (2)C23—C20—C21—C22179.3 (2)
C8—C9—C10—C111.4 (3)C18—C17—C22—C210.5 (3)
C4—C9—C10—C11177.64 (19)C2—C17—C22—C21178.2 (2)
C8—C9—C10—C3179.71 (19)C20—C21—C22—C170.2 (4)
C4—C9—C10—C31.2 (2)C5—C4—S1—C3177.47 (19)
C3—C10—C11—C120.3 (3)C9—C4—S1—C31.69 (15)
C9—C10—C11—C12179.05 (18)C2—C3—S1—C4178.95 (17)
C10—C11—C12—C13179.71 (18)C10—C3—S1—C40.96 (14)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids of rings (C1/C12–C16), (C4–C6) and (C17–C22), respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg5i0.932.943.763 (3)148
C19—H19···Cg4ii0.932.943.753 (3)147
C21—H21···Cg3iii0.932.913.721 (3)146
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y, z.
(II) 7-Phenylanthra[2,3-b]benzo[d]thiophene top
Crystal data top
C26H16SF(000) = 1504
Mr = 360.45Dx = 1.330 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3171 reflections
a = 12.2159 (8) Åθ = 2.5–25.0°
b = 33.1138 (4) ŵ = 0.19 mm1
c = 8.8993 (5) ÅT = 296 K
V = 3599.9 (3) Å3Block, colourless
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3171 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω & φ scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.946, Tmax = 0.955k = 3939
43542 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0831P)2 + 5.3659P]
where P = (Fo2 + 2Fc2)/3
3171 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4387 (2)0.40078 (9)0.4515 (3)0.0366 (7)
C20.4905 (3)0.42302 (9)0.3361 (3)0.0412 (7)
H20.54230.41070.27490.049*
C30.4643 (3)0.46257 (9)0.3144 (3)0.0422 (7)
C40.4365 (3)0.53427 (10)0.2336 (4)0.0494 (8)
C50.4359 (3)0.57228 (11)0.1701 (4)0.0581 (9)
H50.48360.57880.09230.070*
C60.3634 (4)0.60010 (11)0.2244 (5)0.0667 (11)
H60.36140.62570.18190.080*
C70.2930 (3)0.59091 (11)0.3413 (5)0.0626 (11)
H70.24420.61030.37620.075*
C80.2948 (3)0.55284 (10)0.4065 (4)0.0532 (9)
H80.24790.54660.48550.064*
C90.3679 (3)0.52414 (9)0.3515 (4)0.0454 (8)
C100.3829 (3)0.48249 (9)0.4034 (4)0.0416 (7)
C110.3348 (3)0.46241 (9)0.5176 (4)0.0442 (8)
H110.28270.47540.57640.053*
C120.3627 (2)0.42151 (9)0.5490 (4)0.0400 (7)
C130.3191 (3)0.40108 (10)0.6711 (4)0.0432 (7)
H130.27070.41450.73440.052*
C140.3452 (2)0.36119 (9)0.7016 (3)0.0402 (7)
C150.3034 (3)0.34053 (11)0.8295 (4)0.0492 (8)
H150.26120.35470.89860.059*
C160.3231 (3)0.30128 (11)0.8533 (4)0.0548 (9)
H160.29450.28860.93790.066*
C170.3869 (3)0.27908 (11)0.7506 (4)0.0557 (9)
H170.39870.25170.76660.067*
C180.4313 (3)0.29732 (10)0.6286 (4)0.0464 (8)
H180.47370.28220.56260.056*
C190.4146 (2)0.33940 (9)0.5989 (3)0.0379 (7)
C200.4605 (2)0.35934 (9)0.4753 (3)0.0359 (7)
C210.5279 (2)0.33716 (8)0.3628 (3)0.0362 (7)
C220.6302 (3)0.32209 (9)0.3981 (4)0.0466 (8)
H220.65880.32610.49380.056*
C230.6905 (3)0.30109 (10)0.2926 (4)0.0538 (9)
H230.75930.29120.31800.065*
C240.6502 (3)0.29467 (10)0.1514 (4)0.0530 (9)
H240.69040.27990.08170.064*
C250.5496 (3)0.31020 (11)0.1135 (4)0.0534 (9)
H250.52240.30640.01690.064*
C260.4887 (3)0.33134 (10)0.2176 (4)0.0478 (8)
H260.42080.34180.19050.057*
S10.52265 (8)0.49395 (3)0.18065 (10)0.0547 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (15)0.0381 (15)0.0371 (15)0.0019 (12)0.0045 (13)0.0064 (13)
C20.0445 (17)0.0402 (16)0.0391 (17)0.0081 (13)0.0050 (14)0.0058 (13)
C30.0466 (18)0.0413 (17)0.0388 (17)0.0005 (14)0.0070 (14)0.0041 (13)
C40.0527 (19)0.0462 (18)0.0492 (19)0.0015 (15)0.0137 (17)0.0067 (15)
C50.063 (2)0.055 (2)0.056 (2)0.0056 (18)0.0142 (18)0.0020 (17)
C60.079 (3)0.0383 (19)0.083 (3)0.0056 (18)0.031 (2)0.0072 (19)
C70.057 (2)0.0421 (19)0.089 (3)0.0117 (16)0.016 (2)0.0154 (19)
C80.0470 (19)0.0497 (19)0.063 (2)0.0002 (15)0.0075 (16)0.0095 (17)
C90.0474 (18)0.0382 (16)0.0506 (19)0.0015 (14)0.0136 (15)0.0088 (14)
C100.0424 (16)0.0400 (16)0.0425 (17)0.0043 (13)0.0097 (14)0.0108 (14)
C110.0428 (17)0.0422 (16)0.0477 (19)0.0079 (14)0.0018 (15)0.0117 (14)
C120.0371 (15)0.0397 (16)0.0431 (17)0.0068 (12)0.0045 (13)0.0131 (13)
C130.0381 (16)0.0488 (18)0.0429 (17)0.0036 (13)0.0049 (14)0.0106 (14)
C140.0320 (15)0.0461 (17)0.0424 (17)0.0001 (13)0.0032 (13)0.0085 (14)
C150.0404 (17)0.064 (2)0.0436 (18)0.0002 (15)0.0069 (15)0.0034 (16)
C160.056 (2)0.060 (2)0.048 (2)0.0037 (17)0.0068 (17)0.0067 (17)
C170.063 (2)0.0480 (19)0.056 (2)0.0015 (16)0.0022 (18)0.0074 (17)
C180.0499 (19)0.0428 (17)0.0463 (18)0.0039 (14)0.0009 (15)0.0041 (14)
C190.0346 (15)0.0414 (16)0.0378 (16)0.0013 (12)0.0052 (13)0.0063 (13)
C200.0337 (14)0.0350 (14)0.0390 (16)0.0047 (12)0.0053 (12)0.0070 (12)
C210.0395 (16)0.0313 (14)0.0378 (16)0.0015 (12)0.0001 (13)0.0026 (12)
C220.0503 (19)0.0420 (17)0.0473 (19)0.0103 (14)0.0043 (15)0.0079 (14)
C230.0486 (19)0.0469 (18)0.066 (2)0.0118 (15)0.0052 (17)0.0024 (17)
C240.058 (2)0.0461 (18)0.055 (2)0.0043 (16)0.0195 (18)0.0078 (16)
C250.062 (2)0.058 (2)0.0407 (18)0.0048 (17)0.0045 (16)0.0088 (16)
C260.0431 (17)0.055 (2)0.0450 (18)0.0027 (15)0.0013 (15)0.0070 (15)
S10.0709 (6)0.0480 (5)0.0453 (5)0.0081 (4)0.0074 (4)0.0035 (4)
Geometric parameters (Å, º) top
C1—C201.414 (4)C13—H130.9300
C1—C21.414 (4)C14—C151.423 (5)
C1—C121.444 (4)C14—C191.440 (4)
C2—C31.362 (4)C15—C161.338 (5)
C2—H20.9300C15—H150.9300
C3—C101.431 (4)C16—C171.408 (5)
C3—S11.734 (3)C16—H160.9300
C4—C51.380 (5)C17—C181.356 (5)
C4—C91.385 (5)C17—H170.9300
C4—S11.764 (4)C18—C191.433 (4)
C5—C61.366 (6)C18—H180.9300
C5—H50.9300C19—C201.400 (4)
C6—C71.384 (6)C20—C211.489 (4)
C6—H60.9300C21—C221.382 (4)
C7—C81.388 (5)C21—C261.392 (4)
C7—H70.9300C22—C231.381 (5)
C8—C91.393 (5)C22—H220.9300
C8—H80.9300C23—C241.366 (5)
C9—C101.466 (4)C23—H230.9300
C10—C111.350 (5)C24—C251.374 (5)
C11—C121.424 (4)C24—H240.9300
C11—H110.9300C25—C261.380 (5)
C12—C131.386 (5)C25—H250.9300
C13—C141.386 (4)C26—H260.9300
C20—C1—C2122.0 (3)C13—C14—C19119.2 (3)
C20—C1—C12119.5 (3)C15—C14—C19118.6 (3)
C2—C1—C12118.5 (3)C16—C15—C14121.9 (3)
C3—C2—C1119.9 (3)C16—C15—H15119.0
C3—C2—H2120.1C14—C15—H15119.0
C1—C2—H2120.1C15—C16—C17120.2 (3)
C2—C3—C10121.9 (3)C15—C16—H16119.9
C2—C3—S1125.2 (3)C17—C16—H16119.9
C10—C3—S1112.9 (2)C18—C17—C16120.6 (3)
C5—C4—C9121.9 (3)C18—C17—H17119.7
C5—C4—S1125.7 (3)C16—C17—H17119.7
C9—C4—S1112.3 (3)C17—C18—C19121.6 (3)
C6—C5—C4118.3 (4)C17—C18—H18119.2
C6—C5—H5120.9C19—C18—H18119.2
C4—C5—H5120.9C20—C19—C18123.1 (3)
C5—C6—C7121.4 (3)C20—C19—C14119.9 (3)
C5—C6—H6119.3C18—C19—C14117.0 (3)
C7—C6—H6119.3C19—C20—C1120.0 (3)
C6—C7—C8120.3 (3)C19—C20—C21121.1 (3)
C6—C7—H7119.9C1—C20—C21118.8 (3)
C8—C7—H7119.9C22—C21—C26118.2 (3)
C7—C8—C9118.9 (4)C22—C21—C20121.7 (3)
C7—C8—H8120.6C26—C21—C20120.1 (3)
C9—C8—H8120.6C23—C22—C21120.6 (3)
C8—C9—C4119.3 (3)C23—C22—H22119.7
C8—C9—C10127.7 (3)C21—C22—H22119.7
C4—C9—C10113.0 (3)C22—C23—C24120.8 (3)
C11—C10—C3119.5 (3)C22—C23—H23119.6
C11—C10—C9130.2 (3)C24—C23—H23119.6
C3—C10—C9110.3 (3)C25—C24—C23119.3 (3)
C10—C11—C12120.8 (3)C25—C24—H24120.3
C10—C11—H11119.6C23—C24—H24120.3
C12—C11—H11119.6C24—C25—C26120.5 (3)
C13—C12—C11121.7 (3)C24—C25—H25119.8
C13—C12—C1119.1 (3)C26—C25—H25119.8
C11—C12—C1119.2 (3)C25—C26—C21120.5 (3)
C12—C13—C14122.0 (3)C25—C26—H26119.7
C12—C13—H13119.0C21—C26—H26119.7
C14—C13—H13119.0C3—S1—C491.43 (16)
C13—C14—C15122.2 (3)
C20—C1—C2—C3177.9 (3)C13—C14—C15—C16175.5 (3)
C12—C1—C2—C33.1 (4)C19—C14—C15—C162.7 (5)
C1—C2—C3—C101.6 (5)C14—C15—C16—C170.1 (5)
C1—C2—C3—S1178.5 (2)C15—C16—C17—C181.6 (6)
C9—C4—C5—C61.4 (5)C16—C17—C18—C190.5 (5)
S1—C4—C5—C6179.9 (3)C17—C18—C19—C20179.0 (3)
C4—C5—C6—C70.8 (6)C17—C18—C19—C142.1 (5)
C5—C6—C7—C80.1 (6)C13—C14—C19—C204.3 (4)
C6—C7—C8—C90.5 (5)C15—C14—C19—C20177.5 (3)
C7—C8—C9—C40.1 (5)C13—C14—C19—C18174.7 (3)
C7—C8—C9—C10179.9 (3)C15—C14—C19—C183.6 (4)
C5—C4—C9—C81.1 (5)C18—C19—C20—C1178.8 (3)
S1—C4—C9—C8180.0 (2)C14—C19—C20—C10.1 (4)
C5—C4—C9—C10179.2 (3)C18—C19—C20—C212.0 (4)
S1—C4—C9—C100.2 (3)C14—C19—C20—C21176.9 (3)
C2—C3—C10—C113.8 (5)C2—C1—C20—C19174.5 (3)
S1—C3—C10—C11176.4 (2)C12—C1—C20—C194.5 (4)
C2—C3—C10—C9177.4 (3)C2—C1—C20—C218.6 (4)
S1—C3—C10—C92.5 (3)C12—C1—C20—C21172.4 (3)
C8—C9—C10—C113.0 (6)C19—C20—C21—C2269.3 (4)
C4—C9—C10—C11177.3 (3)C1—C20—C21—C22113.8 (3)
C8—C9—C10—C3178.4 (3)C19—C20—C21—C26111.1 (3)
C4—C9—C10—C31.4 (4)C1—C20—C21—C2665.7 (4)
C3—C10—C11—C121.0 (5)C26—C21—C22—C231.4 (5)
C9—C10—C11—C12179.6 (3)C20—C21—C22—C23179.0 (3)
C10—C11—C12—C13176.1 (3)C21—C22—C23—C240.2 (5)
C10—C11—C12—C13.7 (4)C22—C23—C24—C251.6 (5)
C20—C1—C12—C134.9 (4)C23—C24—C25—C261.4 (5)
C2—C1—C12—C13174.1 (3)C24—C25—C26—C210.2 (5)
C20—C1—C12—C11175.3 (3)C22—C21—C26—C251.6 (5)
C2—C1—C12—C115.7 (4)C20—C21—C26—C25178.8 (3)
C11—C12—C13—C14179.5 (3)C2—C3—S1—C4177.6 (3)
C1—C12—C13—C140.7 (5)C10—C3—S1—C42.2 (2)
C12—C13—C14—C15177.9 (3)C5—C4—S1—C3179.7 (3)
C12—C13—C14—C193.9 (5)C9—C4—S1—C31.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings (C1–C3/C10–C12) and (C1/C12–C14/C19/C20), respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg2i0.932.973.885 (4)168
C15—H15···Cg3i0.932.573.479 (4)166
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officers, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationBedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.  CrossRef CAS Web of Science Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhayalan, V., Clement, J. A., Jagan, R. & Mohanakrishnan, A. K. (2009). Eur. J. Org. Chem. pp. 531–546.  Web of Science CSD CrossRef Google Scholar
First citationDu, C., Guo, Y., Liu, Y., Qiu, W., Zhang, H., Gao, X., Liu, Y., Qi, T., Lu, K. & Yu, G. (2008). Chem. Mater. 20, 4188–4190.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHänsel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056–2060.  Google Scholar
First citationJordan, V. C. (2003). J. Med. Chem. 46, 1081–1111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJustin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.  Web of Science CrossRef Google Scholar
First citationLi, G., Zhou, S., Su, G., Liu, Y. & Wang, P. G. (2007). J. Org. Chem. 72, 9830–9833.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.  Web of Science CrossRef CAS Google Scholar
First citationRafiq, S. M., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2014). Org. Lett. 16, 2720–2723.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62–73.  Web of Science CrossRef CAS Google Scholar
First citationRussell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohanakrishnan, A. K. & Velmurugan, D. (2012). Acta Cryst. E68, o3408–o3409.  CSD CrossRef IUCr Journals Google Scholar
First citationSilambarasan, V., Srinivasan, T., Sivasakthikumaran, R., Mohana­krishnan, A. K. & Velmurugan, D. (2013). Acta Cryst. E69, o36.  CSD CrossRef IUCr Journals Google Scholar
First citationSivasakthikumaran, R., Nandakumar, M. & Mohanakrishnan, A. K. (2012). J. Org. Chem. 77, 9053–9071.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2006). J. Med. Chem. 49, 7816–7825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZuse, A., Schmidt, P., Baasner, S., Böhm, K. J., Müller, K., Gerlach, M., Günther, E. G., Unger, E. & Prinz, H. (2007). J. Med. Chem. 50, 6059–6066.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds