research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two C,N-disubstituted acetamides: 2-(4-chloro­phen­yl)-N-(2-iodo­phen­yl)acetamide and 2-(4-chloro­phen­yl)-N-(pyrazin-2-yl)acetamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, cCentre for Biological Sciences (Bioinformatics), Central University of South Bihar, BIT Campus, PO, B.V. College, Patna 800 014, Bihar State, India, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 July 2016; accepted 3 August 2016; online 9 August 2016)

In the crystal of 2-(4-chloro­phen­yl)-N-(2-iodo­phen­yl)acetamide, C14H11ClINO, mol­ecules are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds to form a C(4)C(4)[R21(7)] chain of rings and chains of this type are linked by a combination of C—Cl⋯π(arene) and C—I⋯π(arene) inter­actions to form deeply puckered twofold inter­woven sheets. In the crystal of 2-(4-chloro­phen­yl)-N-(pyrazin-2-yl)acetamide, C12H10ClN3O, mol­ecules are linked into complex sheets by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, and by C—H⋯π(arene) inter­actions.

1. Chemical context

Substituted acetamides of the type R1CH2CONHR2, where R1 and R2 are aromatic or hetero-aromatic substituents, are of inter­est as they have some resemblance to benzyl penicillins (Pitt, 1952[Pitt, G. J. (1952). Acta Cryst. 5, 770-775.]; Csöregh & Palm, 1977[Csöregh, I. & Palm, T.-B. (1977). Acta Cryst. B33, 2169-2175.]; Kojić-Prodić & Rużoć-Toroš, 1978[Kojić-Prodić, B. & Rużoć-Toroš, Ž. (1978). Acta Cryst. B34, 1271-1275.]; Mijin & Marinković, 2006[Mijin, D. & Marinković, A. (2006). Synth. Commun. 36, 193-198.]; Mijin et al., 2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). Here we report on the mol­ecular structures and supra­molecular assembly of two such amides, compounds (I)[link] and (II)[link]. The compounds were prepared by the reaction between (4-chloro­phen­yl)acetic acid and either 2-iodo­aniline for (I)[link], or 2-amino­pyrazine for (II)[link], using 1-ethyl-3-(3-di­methyl­amino­prop­yl)-carbodi­imide hydro­chloride as the coupling agent.

2. Structural commentary

The mol­ecular conformations of compounds (I)[link] and (II)[link], illustrated in Figs. 1[link] and 2[link], respectively, can be defined in terms of the torsional angles N1—C1—C2—C21, 141.8 (3) and 129.22 (18)° respectively, and by the dihedral angles between the central spacer unit, atoms N1,C1,O1,C2, and the two independent rings. The dihedral angles to the chlorinated ring (C21–C26) are 80.02 (11) and 61.74 (6)° in (I)[link] and (II)[link]; those to the iodinated ring in (I)[link] and the pyrazinyl ring in (II)[link] are 67.48 (11) and 5.86 (11)°, respectively. This difference is probably associated with the participation in the inter­molecular hydrogen bond of both N atoms of the pyrazinyl ring in (II), as discussed below. The mol­ecules of (I)[link] and (II)[link] do not therefore exhibit any inter­nal symmetry, so that they are conformationally chiral: the centrosymmetric space groups confirm that each compound has crystallized as a conformational racemate.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

In the pyrazine ring of compound (II)[link] the four independent C—N distances span a range of only ca 0.01 Å, indicating that this ring is fully aromatic.

3. Supra­molecular inter­actions

The hydrogen-bonded assembly in compound (I)[link] is very simple: a combination of N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) links the mol­ecules into a C(4)C(4)[R21(6)] chain of rings. This chain contains mol­ecules which are related by a c-glide plane, producing a chain running parallel to the [001] direction (Fig. 3[link]). There is also a C—H⋯π(arene) contact in compound (I)[link] (Table 1[link]), lying within the [001] chain, but the dimensions make it unlikely that this has any structural significance. Two chains of this type, which are related to one another by inversion, pass through each unit cell, and a combination of C—I⋯π(arene) and C—Cl⋯π(arene) inter­actions links the chains into a sheet in the form of a (4,4) net lying parallel to (100) (Fig. 4[link]). The dimensions of these inter­actions are: for C12—I12⋯Cg1i [symmetry code: (i) x, [{3\over 2}] − y, [{1\over 2}] + z, where Cg1 represents the centroid of the C11–C16] ring, I⋯Cg 3.7977 (14), C⋯Cg 5.082 (3) Å and C—I⋯Cg 116.34 (8)°; for C24—Cl24⋯Cg2ii [symmetry code: (ii) x, −[{1\over 2}] − y, −[{1\over 2}] + z, where Cg2 represents the centroid of the C21–C26 ring], Cl⋯Cg 3.4557 (8), C⋯Cg 4.504 (3) Å and C—Cl⋯Cg 116.19 (11)°. The metrics of the C—Cl⋯Cg inter­action are well within the normal range, as deduced using database analysis (Imai et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.06 2.908 (3) 167
C2—H2A⋯O1i 0.97 2.58 3.420 (4) 145
C2—H2BCg2i 0.97 2.99 3.589 (3) 121
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of rings running parallel to the [001] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1\over 2}] − y, [{1\over 2}] + z) and (x, [{1\over 2}] − y, −[{1\over 2}] + z), respectively.
[Figure 4]
Figure 4
A projection down [100] of part of the crystal structure of compound (I)[link] showing the formation of a sheet built from C—Cl⋯π(arene) and C—I⋯π(arene) inter­actions, shown as thin tapered lines. For the sake of clarity, the H atoms have all been omitted.

Because the repeat unit of this sheet in the [010] direction spans two unit cells, there are in fact two such sheets present, related to one another by a unit translation along [010]: the deep puckering of the sheets (Fig. 5[link]) means that the two independent sheets are inter­woven. The structure of (I)[link] also contains a short I⋯O contact with dimension I12⋯O1i 3.058 (2) Å and C12—I12⋯O1i 170.88 (8)° [symmetry code: (i) x, [{3\over 2}] − y, [{1\over 2}] + z] which complements the C—Cl⋯Cg contact. The I⋯O distance here is significantly shorter than the sum of the van der Waals radii, 3.56 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), or 3.30 Å if account is taken of the polar flattening model (Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]).

[Figure 5]
Figure 5
A projection down [001] of one of the (100) sheets in the crystal structure of compound (I)[link] showing the deep puckering of the sheet enabling inter­weaving. The C—Xπ(arene) inter­actions (X = Cl or I) are shown as thin tapered lines, and for the sake of clarity, the H atoms have all been omitted.

The hydrogen-bonded supra­molecular assembly in compound (II)[link] is more complex than that in compound (I)[link]: mol­ecules of (II)[link] are linked into complex sheets by a combin­ation of N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, weakly augmented by two C—H⋯π(arene) hydrogen bonds (Table 2[link]): hydrogen bonds of N—H⋯O type, often observed in the structures of amides, are absent, however. The formation of this structure can readily be analysed in terms of two simple sub-structures in one- and two-dimensions (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simpler of the sub-structures, a combination of N—H⋯N and C—H⋯N hydrogen bonds links mol­ecules which are related by the 21 screw axis along (x, [{3\over 4}], [{1\over 2}]) into a C(4)C(5)[R22(7)] chain of rings running parallel to the [100] direction (Fig. 6[link]). A more complex one-dimensional sub-structure results from the combination of the N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, in the form of a ribbon containing alternating R22(7) and R44(22) rings (Fig. 7[link]). The combination of these two chains along [100] and [010] generates a sheet lying parallel to (001) in the domain [{1\over 4}] < z < [{3\over 4}], and a second such sheet, related to the first by inversion, lies in the domain [{3\over 4}] < z < [{5\over 4}]. The C—H⋯π(arene) inter­actions both lie within the sheet.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N14i 0.85 (2) 2.23 (2) 3.077 (2) 175 (2)
C2—H2A⋯O1ii 0.97 2.57 3.461 (3) 153
C13—H13⋯N11iii 0.93 2.50 3.277 (2) 142
C22—H22⋯Cg2ii 0.93 2.99 3.6416 (17) 129
C25—H25⋯Cg2iv 0.93 2.89 3.743 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded chain of rings running parallel to the [010] direction and built from N—H⋯N and C—H⋯N hydrogen bonds, shown as dashed lines. For the sake of clarity, the C-bound H atoms which are not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{3\over 2}] − y, 1 − z) and (−[{1\over 2}] + x, [{3\over 2}] − y, 1 − z), respectively.
[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded ribbon of R22(7) and R44(22) rings running parallel to the [100] direction and built from N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, shown as dashed lines. For the sake of clarity, the C-bound H atoms which are not involved in the motifs shown have been omitted.

4. Database survey

The structures of a number of 2-aryl-N-aryl acetamides related to compounds (I)[link] and (II)[link] have been reported recently. We note in particular the structure of 2-(4-chloro­phen­yl)-N-(2,6-di­methyl­phen­yl)acetamide (III) (Narayana et al., 2016[Narayana, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2016). Private communication (CCDC 1491671). CCDC, Cambridge, England.]), where the mol­ecules are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds to form a C(4)C(4)[R21(7)] chain of rings very much like that in compound (I)[link], except that the mol­ecules comprising the chain in (III) are related by translation along [100], whereas those in (I)[link] are related by a c-glide plane. Other recently reported structures include those of N-(4-bromo­phen­yl)-2-(4-chloro­phen­yl)acetamide (IV) (Fun, Shahani et al., 2012[Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.]), 2-(4-bromo­phen­yl)-N-(pyrazin-2-yl)acetamide (V) (Nayak et al., 2013[Nayak, P. S., Narayana, B., Jasinski, J. P., Yathirajan, H. S. & Sarojini, B. K. (2013). Acta Cryst. E69, o891.]) and 2-(4-chloro­phen­yl)-N-(2,6-di­methyl­phen­yl)acetamide (VI) (Fun, Quah et al., 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2678.]), which are related to compounds (I)–(III), respectively. In addition, the structures of some compounds related to (I)[link], but carrying more than one substituent in the N-aryl ring have been reported (Praveen et al., 2013a[Praveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013a). Acta Cryst. E69, o900-o901.],b[Praveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013b). Acta Cryst. E69, o996-o997.]; Nayak et al., 2014[Nayak, P. S., Jasinski, J. P., Golen, J. A., Narayana, B., Kaur, M., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 889-894.]).

5. Synthesis and crystallization

For the synthesis of compounds (I)[link] and (II)[link], equimolar qu­anti­ties (1.0 mmol of each component) of (4-chloro­phen­yl)acetic acid and either 2-iodo­aniline for (I)[link], or 2-amino­pyrazine for (II)[link], were dissolved in di­chloro­methane (20 ml) in the presence of 1-ethyl-3-(3-di­methyl­amino­prop­yl)carbodi­imide hydro­chloride (0.01 mol) and tri­ethyl­amine (0.02 mol) at 273 K. The mixtures were stirred at 273 K for 3 h, and then poured with stirring into an excess of aqueous hydro­chloric acid (4 mol dm−3). The aqueous mixtures were exhaustively extracted with di­chloro­methane and in each case, the combined organic extracts were washed first with saturated aqueous sodium hydrogencarbonate solution and then with brine. The solutions were dried with anhydrous sodium sulfate and then the solvent was removed under reduced pressure, to give the products. Compound (I)[link]: yield 78%, m. p. 441–443 K; analysis found C 45.4, H 2.9, N 3.9%, C14H11ClINO requires C 45.2, H 3.0, N 3.8%. Compound (II)[link]: yield 85%, m. p. 421–423 K; analysis found C 58.3, H 4.2, N 16.9%, C12H10ClN3O requires C 58.2, H 4.1, N 17.0%. Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­chloro­methane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference Fourier maps. The C-bound H atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic and hetero-aromatic) or 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N atoms in compound (II)[link], the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) giving the N—H distance shown in Table 2[link]; an attempt to refine similarly the corresponding H-atom coordinates in compound (I)[link] led to an unsatisfactorily low value, 0.74 (3) Å for the N—H distance, possibly associated with the presence of the strongly scattering iodene atom: accordingly this distance was thereafter fixed at 0.86 Å. A small number of low-angle reflections, which had been attenuated by the beam stop [(100) and (200) for (I)[link]; (002) for (II)] were omitted from the final cycles of refinement. In the final analysis of variance for compound (I)[link], there was a large value, 4.245, of K = [mean(Fo2)/mean(Fc2)] for the group of 428 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.008.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H11ClINO C12H10ClN3O
Mr 371.59 247.68
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca
Temperature (K) 295 295
a, b, c (Å) 24.001 (1), 6.2369 (3), 9.3266 (4) 10.7041 (4), 7.5724 (3), 28.6619 (11)
α, β, γ (°) 90, 99.621 (2), 90 90, 90, 90
V3) 1376.48 (11) 2323.21 (15)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.51 0.32
Crystal size (mm) 0.30 × 0.18 × 0.12 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker APEXII area detector Bruker APEXII area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS . University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS . University of Göttingen, Germany.])
Tmin, Tmax 0.528, 0.740 0.739, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 15082, 3960, 3183 24592, 3380, 2287
Rint 0.026 0.029
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.074, 1.07 0.047, 0.136, 1.02
No. of reflections 3960 3380
No. of parameters 163 157
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.49, −0.60 0.47, −0.51
Computer programs: APEX2 and SAINT-Plus (Bruker, 2012[Bruker (2012). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) 2-(4-Chlorophenyl)-N-(2-iodophenyl)acetamide top
Crystal data top
C14H11ClINOF(000) = 720
Mr = 371.59Dx = 1.793 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.001 (1) ÅCell parameters from 5030 reflections
b = 6.2369 (3) Åθ = 0.9–33.5°
c = 9.3266 (4) ŵ = 2.51 mm1
β = 99.621 (2)°T = 295 K
V = 1376.48 (11) Å3Block, colourless
Z = 40.30 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII area detector
diffractometer
3960 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3333
Tmin = 0.528, Tmax = 0.740k = 88
15082 measured reflectionsl = 139
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0189P)2 + 1.9949P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3960 reflectionsΔρmax = 1.49 e Å3
163 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25595 (11)0.3149 (5)0.2858 (3)0.0344 (6)
O10.24811 (9)0.3574 (4)0.1558 (2)0.0496 (6)
N10.21438 (10)0.3174 (4)0.3652 (2)0.0340 (5)
H10.22230.28390.45570.041*
C20.31392 (12)0.2634 (6)0.3678 (3)0.0445 (7)
H2A0.31010.19000.45740.053*
H2B0.33420.39620.39350.053*
C110.15786 (11)0.3726 (4)0.3066 (3)0.0325 (6)
C120.13408 (11)0.5596 (4)0.3479 (3)0.0350 (6)
I120.18141 (2)0.77640 (3)0.48960 (2)0.04554 (8)
C130.07856 (13)0.6103 (6)0.2902 (4)0.0506 (8)
H130.06230.73490.31920.061*
C140.04773 (14)0.4773 (7)0.1907 (4)0.0610 (10)
H140.01070.51310.15110.073*
C150.07091 (15)0.2923 (6)0.1492 (5)0.0626 (10)
H150.04970.20250.08150.075*
C160.12596 (14)0.2378 (5)0.2076 (4)0.0456 (7)
H160.14150.11060.18020.055*
C210.34782 (11)0.1252 (5)0.2816 (3)0.0363 (6)
C220.39910 (13)0.1937 (5)0.2504 (4)0.0441 (7)
H220.41290.32790.28210.053*
C230.43017 (13)0.0644 (6)0.1724 (4)0.0472 (8)
H230.46460.11190.15120.057*
C240.41012 (12)0.1323 (6)0.1268 (3)0.0440 (7)
Cl240.44931 (4)0.2968 (2)0.03026 (13)0.0754 (3)
C250.35920 (13)0.2053 (5)0.1558 (4)0.0460 (7)
H250.34570.33970.12370.055*
C260.32848 (12)0.0756 (6)0.2333 (3)0.0440 (7)
H260.29400.12410.25360.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (14)0.0370 (15)0.0273 (14)0.0082 (11)0.0026 (11)0.0040 (11)
O10.0484 (12)0.0757 (16)0.0244 (11)0.0167 (11)0.0056 (9)0.0077 (11)
N10.0421 (12)0.0387 (13)0.0214 (11)0.0094 (10)0.0057 (9)0.0008 (9)
C20.0408 (15)0.065 (2)0.0257 (14)0.0123 (14)0.0011 (11)0.0074 (14)
C110.0379 (14)0.0331 (14)0.0268 (13)0.0007 (11)0.0059 (10)0.0026 (11)
C120.0385 (14)0.0322 (14)0.0349 (15)0.0005 (11)0.0082 (11)0.0002 (11)
I120.05868 (14)0.03484 (11)0.04157 (12)0.00133 (9)0.00388 (9)0.00538 (9)
C130.0365 (16)0.0478 (19)0.067 (2)0.0083 (13)0.0081 (15)0.0018 (17)
C140.0366 (17)0.068 (2)0.075 (3)0.0006 (16)0.0011 (16)0.002 (2)
C150.0490 (19)0.064 (2)0.068 (3)0.0141 (17)0.0083 (17)0.011 (2)
C160.0515 (18)0.0405 (17)0.0431 (18)0.0003 (13)0.0031 (14)0.0052 (14)
C210.0332 (13)0.0469 (17)0.0271 (14)0.0082 (12)0.0003 (10)0.0029 (12)
C220.0397 (15)0.0464 (18)0.0441 (18)0.0023 (13)0.0013 (13)0.0022 (14)
C230.0350 (15)0.062 (2)0.0460 (19)0.0005 (14)0.0100 (13)0.0001 (16)
C240.0380 (15)0.060 (2)0.0328 (16)0.0157 (14)0.0030 (12)0.0055 (14)
Cl240.0581 (5)0.0985 (8)0.0703 (7)0.0263 (5)0.0122 (5)0.0270 (6)
C250.0452 (17)0.0417 (17)0.0487 (19)0.0025 (13)0.0008 (14)0.0069 (14)
C260.0304 (14)0.0551 (19)0.0466 (18)0.0005 (13)0.0063 (12)0.0012 (15)
Geometric parameters (Å, º) top
C1—O11.225 (3)C14—H140.9300
C1—N11.338 (4)C15—C161.385 (5)
C1—C21.506 (4)C15—H150.9300
N1—C111.418 (3)C16—H160.9300
N1—H10.8600C21—C221.379 (4)
C2—C211.507 (4)C21—C261.385 (4)
C2—H2A0.9700C22—C231.385 (5)
C2—H2B0.9700C22—H220.9300
C11—C121.381 (4)C23—C241.360 (5)
C11—C161.381 (4)C23—H230.9300
C12—C131.388 (4)C24—C251.373 (5)
C12—I122.089 (3)C24—Cl241.741 (3)
C13—C141.366 (5)C25—C261.378 (4)
C13—H130.9300C25—H250.9300
C14—C151.365 (5)C26—H260.9300
O1—C1—N1122.7 (3)C14—C15—C16120.2 (3)
O1—C1—C2121.7 (3)C14—C15—H15119.9
N1—C1—C2115.6 (2)C16—C15—H15119.9
C1—N1—C11122.9 (2)C11—C16—C15120.0 (3)
C1—N1—H1118.5C11—C16—H16120.0
C11—N1—H1118.5C15—C16—H16120.0
C1—C2—C21112.7 (2)C22—C21—C26118.3 (3)
C1—C2—H2A109.0C22—C21—C2121.0 (3)
C21—C2—H2A109.0C26—C21—C2120.6 (3)
C1—C2—H2B109.0C21—C22—C23120.6 (3)
C21—C2—H2B109.0C21—C22—H22119.7
H2A—C2—H2B107.8C23—C22—H22119.7
C12—C11—C16119.4 (3)C24—C23—C22119.8 (3)
C12—C11—N1120.7 (2)C24—C23—H23120.1
C16—C11—N1119.8 (3)C22—C23—H23120.1
C11—C12—C13119.9 (3)C23—C24—C25121.2 (3)
C11—C12—I12121.1 (2)C23—C24—Cl24120.0 (3)
C13—C12—I12118.9 (2)C25—C24—Cl24118.8 (3)
C14—C13—C12120.1 (3)C24—C25—C26118.7 (3)
C14—C13—H13120.0C24—C25—H25120.6
C12—C13—H13120.0C26—C25—H25120.6
C15—C14—C13120.4 (3)C25—C26—C21121.5 (3)
C15—C14—H14119.8C25—C26—H26119.3
C13—C14—H14119.8C21—C26—H26119.3
O1—C1—N1—C111.1 (5)N1—C11—C16—C15179.4 (3)
C2—C1—N1—C11177.0 (3)C14—C15—C16—C111.0 (6)
O1—C1—C2—C2140.1 (4)C1—C2—C21—C22121.2 (3)
N1—C1—C2—C21141.8 (3)C1—C2—C21—C2659.7 (4)
C1—N1—C11—C12111.7 (3)C26—C21—C22—C230.2 (5)
C1—N1—C11—C1668.6 (4)C2—C21—C22—C23179.3 (3)
C16—C11—C12—C130.1 (4)C21—C22—C23—C240.4 (5)
N1—C11—C12—C13179.6 (3)C22—C23—C24—C250.4 (5)
C16—C11—C12—I12177.1 (2)C22—C23—C24—Cl24179.3 (3)
N1—C11—C12—I123.2 (4)C23—C24—C25—C260.3 (5)
C11—C12—C13—C141.1 (5)Cl24—C24—C25—C26179.4 (3)
I12—C12—C13—C14176.2 (3)C24—C25—C26—C210.2 (5)
C12—C13—C14—C151.1 (6)C22—C21—C26—C250.1 (5)
C13—C14—C15—C160.0 (6)C2—C21—C26—C25179.2 (3)
C12—C11—C16—C150.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.908 (3)167
C2—H2A···O1i0.972.583.420 (4)145
C2—H2B···Cg2i0.972.993.589 (3)121
Symmetry code: (i) x, y+1/2, z+1/2.
(II) 2-(4-Chlorophenyl)-N-(pyrazin-2-yl)acetamide top
Crystal data top
C12H10ClN3ODx = 1.416 Mg m3
Mr = 247.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3760 reflections
a = 10.7041 (4) Åθ = 1.4–32.3°
b = 7.5724 (3) ŵ = 0.32 mm1
c = 28.6619 (11) ÅT = 295 K
V = 2323.21 (15) Å3Block, colourless
Z = 80.40 × 0.30 × 0.20 mm
F(000) = 1024
Data collection top
Bruker APEXII area detector
diffractometer
3380 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1514
Tmin = 0.739, Tmax = 0.939k = 910
24592 measured reflectionsl = 4040
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.9776P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3380 reflectionsΔρmax = 0.47 e Å3
157 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34192 (16)0.6027 (3)0.57916 (6)0.0514 (4)
O10.23005 (12)0.6165 (3)0.58396 (5)0.0760 (5)
N10.40586 (13)0.6699 (2)0.54222 (5)0.0488 (4)
H10.484 (2)0.654 (3)0.5421 (7)0.059*
C20.42190 (17)0.5037 (3)0.61387 (7)0.0561 (5)
H2A0.40310.37870.61180.067*
H2B0.50910.51950.60570.067*
N110.44426 (13)0.8104 (2)0.47344 (6)0.0522 (4)
C120.35844 (15)0.7566 (2)0.50359 (6)0.0430 (4)
C130.23119 (15)0.7832 (3)0.49531 (6)0.0472 (4)
H130.17300.74360.51700.057*
N140.19234 (13)0.8640 (2)0.45707 (5)0.0507 (4)
C150.27929 (17)0.9194 (3)0.42717 (7)0.0531 (4)
H150.25500.97730.40000.064*
C160.40366 (18)0.8925 (3)0.43564 (7)0.0562 (5)
H160.46170.93350.41410.067*
C210.40218 (15)0.5639 (2)0.66329 (6)0.0440 (4)
C220.29842 (16)0.5106 (2)0.68824 (6)0.0470 (4)
H220.23830.44080.67380.056*
C230.28265 (16)0.5594 (2)0.73413 (6)0.0492 (4)
H230.21240.52280.75060.059*
C240.37099 (18)0.6618 (2)0.75533 (6)0.0486 (4)
Cl240.35395 (7)0.71602 (9)0.81390 (2)0.0808 (2)
C250.47361 (18)0.7207 (3)0.73145 (8)0.0575 (5)
H250.53250.79250.74600.069*
C260.48787 (16)0.6715 (3)0.68544 (7)0.0555 (5)
H260.55700.71180.66890.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (8)0.0669 (12)0.0507 (9)0.0063 (8)0.0034 (7)0.0025 (8)
O10.0359 (7)0.1235 (14)0.0685 (9)0.0117 (8)0.0105 (6)0.0210 (9)
N10.0278 (6)0.0693 (10)0.0492 (8)0.0028 (7)0.0001 (6)0.0025 (7)
C20.0434 (9)0.0685 (13)0.0563 (10)0.0119 (9)0.0050 (8)0.0023 (9)
N110.0331 (7)0.0684 (11)0.0549 (8)0.0003 (7)0.0030 (6)0.0011 (8)
C120.0315 (7)0.0526 (9)0.0449 (8)0.0001 (7)0.0004 (6)0.0100 (7)
C130.0303 (7)0.0622 (11)0.0489 (9)0.0015 (7)0.0005 (6)0.0074 (8)
N140.0373 (7)0.0616 (10)0.0532 (8)0.0057 (7)0.0032 (6)0.0080 (7)
C150.0474 (10)0.0615 (12)0.0503 (9)0.0049 (9)0.0019 (7)0.0021 (9)
C160.0437 (9)0.0686 (13)0.0563 (10)0.0005 (9)0.0070 (8)0.0014 (9)
C210.0337 (7)0.0449 (9)0.0534 (9)0.0055 (7)0.0011 (7)0.0054 (7)
C220.0401 (8)0.0454 (10)0.0556 (10)0.0074 (7)0.0003 (7)0.0003 (8)
C230.0453 (9)0.0463 (10)0.0560 (9)0.0047 (8)0.0067 (7)0.0046 (8)
C240.0536 (10)0.0421 (9)0.0499 (9)0.0035 (8)0.0046 (8)0.0009 (7)
Cl240.1048 (5)0.0848 (5)0.0529 (3)0.0046 (4)0.0051 (3)0.0082 (3)
C250.0456 (10)0.0533 (11)0.0738 (12)0.0094 (8)0.0114 (9)0.0054 (9)
C260.0341 (8)0.0615 (12)0.0709 (12)0.0066 (8)0.0044 (8)0.0059 (10)
Geometric parameters (Å, º) top
C1—O11.210 (2)C15—C161.368 (3)
C1—N11.360 (2)C15—H150.9300
C1—C21.511 (3)C16—H160.9300
N1—C121.384 (2)C21—C221.381 (2)
N1—H10.85 (2)C21—C261.382 (3)
C2—C211.503 (3)C22—C231.377 (3)
C2—H2A0.9700C22—H220.9300
C2—H2B0.9700C23—C241.366 (3)
N11—C161.323 (3)C23—H230.9300
N11—C121.325 (2)C24—C251.369 (3)
C12—C131.397 (2)C24—Cl241.7378 (19)
C13—N141.322 (2)C25—C261.379 (3)
C13—H130.9300C25—H250.9300
N14—C151.333 (2)C26—H260.9300
O1—C1—N1123.67 (18)C16—C15—H15119.4
O1—C1—C2121.92 (18)N11—C16—C15122.33 (18)
N1—C1—C2114.39 (15)N11—C16—H16118.8
C1—N1—C12128.03 (14)C15—C16—H16118.8
C1—N1—H1116.6 (14)C22—C21—C26117.92 (17)
C12—N1—H1115.3 (14)C22—C21—C2120.83 (17)
C21—C2—C1112.98 (15)C26—C21—C2121.24 (16)
C21—C2—H2A109.0C23—C22—C21121.00 (17)
C1—C2—H2A109.0C23—C22—H22119.5
C21—C2—H2B109.0C21—C22—H22119.5
C1—C2—H2B109.0C24—C23—C22119.51 (17)
H2A—C2—H2B107.8C24—C23—H23120.2
C16—N11—C12116.79 (15)C22—C23—H23120.2
N11—C12—N1114.40 (14)C23—C24—C25121.21 (18)
N11—C12—C13121.38 (16)C23—C24—Cl24119.43 (15)
N1—C12—C13124.19 (16)C25—C24—Cl24119.35 (15)
N14—C13—C12120.94 (16)C24—C25—C26118.61 (18)
N14—C13—H13119.5C24—C25—H25120.7
C12—C13—H13119.5C26—C25—H25120.7
C13—N14—C15117.31 (15)C25—C26—C21121.70 (17)
N14—C15—C16121.23 (18)C25—C26—H26119.2
N14—C15—H15119.4C21—C26—H26119.2
O1—C1—N1—C122.8 (3)N14—C15—C16—N110.3 (3)
C2—C1—N1—C12175.70 (18)C1—C2—C21—C2277.6 (2)
O1—C1—C2—C2152.2 (3)C1—C2—C21—C26103.5 (2)
N1—C1—C2—C21129.22 (18)C26—C21—C22—C231.7 (3)
C16—N11—C12—N1179.33 (17)C2—C21—C22—C23177.25 (17)
C16—N11—C12—C131.0 (3)C21—C22—C23—C240.1 (3)
C1—N1—C12—N11178.81 (18)C22—C23—C24—C251.7 (3)
C1—N1—C12—C132.9 (3)C22—C23—C24—Cl24177.50 (14)
N11—C12—C13—N140.3 (3)C23—C24—C25—C261.4 (3)
N1—C12—C13—N14178.47 (17)Cl24—C24—C25—C26177.80 (16)
C12—C13—N14—C150.4 (3)C24—C25—C26—C210.5 (3)
C13—N14—C15—C160.4 (3)C22—C21—C26—C252.0 (3)
C12—N11—C16—C151.0 (3)C2—C21—C26—C25176.93 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N14i0.85 (2)2.23 (2)3.077 (2)175 (2)
C2—H2A···O1ii0.972.573.461 (3)153
C13—H13···N11iii0.932.503.277 (2)142
C22—H22···Cg2ii0.932.993.6416 (17)129
C25—H25···Cg2iv0.932.893.743 (2)154
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x1/2, y+3/2, z+1; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

BN thanks the UGC (India) for financial assistance through a BSR one-time grant for the purchase of chemicals. The authors thank P. S. Nayak of Mangalore University for the synthesis of the compounds. RSR thanks the Head of the Sophisticated Analytical Instrument Facility (SAIF), IIT, Chennai, for X-ray data collection.

References

First citationBruker (2012). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCsöregh, I. & Palm, T.-B. (1977). Acta Cryst. B33, 2169–2175.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2678.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKojić-Prodić, B. & Rużoć-Toroš, Ž. (1978). Acta Cryst. B34, 1271–1275.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMijin, D. & Marinković, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationNarayana, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2016). Private communication (CCDC 1491671). CCDC, Cambridge, England.  Google Scholar
First citationNayak, P. S., Jasinski, J. P., Golen, J. A., Narayana, B., Kaur, M., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 889–894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNayak, P. S., Narayana, B., Jasinski, J. P., Yathirajan, H. S. & Sarojini, B. K. (2013). Acta Cryst. E69, o891.  CSD CrossRef IUCr Journals Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPitt, G. J. (1952). Acta Cryst. 5, 770–775.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPraveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013a). Acta Cryst. E69, o900–o901.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Yathirajan, H. S., Jasinski, J. P., Keeley, A. C., Narayana, B. & Sarojini, B. K. (2013b). Acta Cryst. E69, o996–o997.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS . University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds