research communications
Hydrogen bonding, π–π stacking and van der Waals forces-dominated layered regions in the of 4-aminopyridinium hydrogen (9-phosphonononyl)phosphonate
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de
The 5H7N2+][(HO)2OP(CH2)9PO2(OH)−], consists of one 4-aminopyridinium cation and one hydrogen (9-phosphonononyl)phosphonate anion, both in general positions. As expected, the 4-aminopyridinium moieties are protonated exclusively at their endocyclic nitrogen atom due to a mesomeric stabilization by the imine form which would not be given in the corresponding double-protonated dicationic species. In the crystal, the phosphonyl (–PO3H2) and hydrogen phosphonate (–PO3H) groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks in the ab plane built from 24-membered hydrogen-bonded ring motifs with the graph-set descriptor R66(24). These networks are pairwise linked by the anions' alkylene chains. The 4-aminopyridinium cations are stacked in parallel displaced face-to-face arrangements and connect neighboring anionic substructures via medium–strong charge-supported N—H⋯O hydrogen bonds along the c axis. The resulting three-dimensional hydrogen-bonded network shows clearly separated hydrophilic and hydrophobic structural domains.
of the title molecular salt, [CCCDC reference: 1503436
1. Chemical context
Salts of organophosphonic acids with organic cations, e.g. with protonated primary (Mahmoudkhani & Langer, 2002b), secondary (Wheatley et al., 2001) and tertiary (Kan & Ma, 2011) are of growing interest in supramolecular chemistry and crystal engineering. Besides their interesting topologies and structural diversity, they seem to be feasible model compounds for metal phosphonates as they exhibit similar structural characteristics but are less difficult to crystallize. Mostly, these organic solids establish extended hydrogen-bonded networks which are characterized by a rich diversity of strong charge-supported hydrogen bonds (Aakeröy & Seddon, 1993) and can either be one-, two- or three-dimensional. This contribution forms part of our research on the principles of the arrangement of alkane-α,ω-diphosphonic acids (van Megen et al., 2015) and their organic aminium salts (van Megen et al., 2016). Moreover, aminopyridines and the related protonated cations are of crucial interest in the field of biochemistry (Muñoz-Caro & Niño, 2002; Bolliger et al., 2011) and are also used as counter-cations to stabilize complex salts (Reiss & Leske, 2014a,b), in crystal engineering (Sertucha et al., 1998; Surbella III et al., 2016) as well as in polymer chemistry (Deng et al., 2015).
2. Structural commentary
The 5H7N2+][(HO)2OP(CH2)9PO2(OH)−], consists of one 4-aminopyridinium cation and one hydrogen (9-phosphonononyl)phosphonate anion, both in general positions (Fig. 1). Generally, the first protonation of the 4-aminopyridine can take place at the exo- as well as at the endocyclic nitrogen atom. In the literature, all monoprotonated 4-aminopyridines characterized to date are protonated at the endocyclic nitrogen atom. Geometric parameters derived from the single-crystal diffraction experiment for the title compound show a short exocyclic N—C bond length [1.324 (2) Å] and slightly longer C—C and C—N bond lengths of the six-membered ring [1.350 (3)–1.425 (2) Å]. The bonding properties of this cation are best described by a pair of mesomeric structures: the enamine and the imine form (Scheme 2), which have been discussed in detail before (Koleva et al., 2008).
of the title compound, [CFor the designation of the title compound, the
of the amino form is used throughout this article. The bond lengths and angles of the anion are unexceptional and lie within the expected ranges. The alkylene chain of the anion shows nearly antiperiplanar conformations. In detail, the P—OH distances of the phosphonate moieties have values between 1.5535 (13) and 1.5786 (14) Å, longer than the P=O distances [1.5045 (13)–1.5149 (12) Å].3. Supramolecular features
Within the crystal of the title compound, the phosphonyl and hydrogen phosphonate groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks which propagate in the ab plane. These networks contain 24-membered rings classified as a third level graph set R66(24) (Etter et al., 1990; Fig. 2; Table 1). 24-Membered hydrogen-bonded rings have been well known for decades (e.g. Mootz & Poll, 1984). In particular, the R66(24) motif is very common (e.g. Gomathi & Muthiah, 2011; Maspoch et al., 2007). Along the c-axis direction, these networks are pairwise linked by the anions' alkylene chains to form a three-dimensional anionic The 4-aminopyridinium cations show π–π stacking interactions. The rings are oriented in parallel displaced face-to-face arrangements (Grimme, 2008; Fig. 3). The geometry of these π–π interactions is reflected by distances of 3.25 and 3.32 Å between neighbouring pyridinium rings and centroid offsets of 2.37 and 2.42 Å. These findings are comparable to those found for other compounds containing pyridyl moieties (Janiak, 2000). Anions and cations are connected by medium–strong, charge-supported N—H⋯O hydrogen bonds (Steiner, 2002; Table 2) along the c axis. For these connections, each nitrogen-bound hydrogen atom forms one unbifurcated hydrogen bond (Fig. 1). The resulting three-dimensional hydrogen-bonded network clearly shows separated hydrophilic and hydrophobic regions (Fig. 3).
|
4. Related structures
For related phosphonate and bis(phosphonate) salts, see: Ferguson et al. (1998); Fu et al. (2004); Fuller & Heimer (1995); Glidewell et al. (2000); Kan & Ma (2011); Mahmoudkhani & Langer (2002a,b,c); van Megen et al. (2016); Plabst et al. (2009); Wheatley et al. (2001). For related 4-aminopyridinium salts, see: Sertucha et al. (1998); Reiss & Leske (2014a,b); Surbella III et al. (2016).
5. Synthesis and crystallization
Equimolar quantities (0.5 mmol) of 4-aminopyridine (47.1 mg) and nonane-1,9-diphosphonic acid (144.1 mg) were dissolved in methanol, separately. The solutions were mixed and stored in an open petri dish. Within several days, colorless platelet-shaped crystals of the title compound were obtained by slow evaporation of the solvent. 4-Aminopyridine was purchased from commercial sources and nonane-1,9-diphosphonic acid was synthesized according to the literature (Schwarzenbach & Zurc, 1950; Moedritzer & Irani, 1961; Griffith et al., 1998). Elemental analysis: C14H28N2O6P2 (382.3): calculated C 44.0, H 7.4, N 7.3; found C 43.6, H 7.9, N 7.1. M. p.: 157 °C. The IR and Raman spectra of the title compound are shown in Fig. 4.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms bound to either nitrogen or oxygen atoms were identified in difference syntheses and refined without any geometric constraints or restraints with individual Uiso(H) values. Carbon-bound hydrogen atoms were included using a riding model (AFIX23 option of the SHELX program for the methylene groups and AFIX43 option for the methine groups).
details are summarized in Table 2Supporting information
CCDC reference: 1503436
https://doi.org/10.1107/S2056989016014298/hb7610sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014298/hb7610Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016014298/hb7610Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015).C5H7N2+·C9H21O6P2− | Z = 2 |
Mr = 382.32 | F(000) = 408 |
Triclinic, P1 | Dx = 1.400 Mg m−3 |
a = 6.7275 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.8963 (4) Å | Cell parameters from 6853 reflections |
c = 20.0643 (10) Å | θ = 3.0–35.3° |
α = 97.956 (4)° | µ = 0.27 mm−1 |
β = 98.767 (4)° | T = 123 K |
γ = 94.309 (5)° | Platelet, colourless |
V = 906.73 (9) Å3 | 0.33 × 0.07 × 0.03 mm |
Stoe IPDS diffractometer | Rint = 0.029 |
Radiation source: sealed tube | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −8→8 |
8855 measured reflections | k = −8→8 |
4131 independent reflections | l = −26→26 |
3674 reflections with I > 2σ(I) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.011P)2 + 1.110P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4131 reflections | Δρmax = 0.50 e Å−3 |
241 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.29655 (6) | 1.15924 (6) | 0.22320 (2) | 0.01579 (10) | |
O1 | 0.14667 (19) | 1.0094 (2) | 0.17549 (6) | 0.0230 (3) | |
N1 | 0.5995 (3) | 0.2836 (2) | 0.92948 (8) | 0.0257 (3) | |
H1 | 0.553 (4) | 0.306 (4) | 0.8838 (13) | 0.036 (6)* | |
C1 | 0.2470 (3) | 1.1616 (3) | 0.30883 (8) | 0.0179 (3) | |
H1A | 0.3161 | 1.2802 | 0.3371 | 0.021* | |
H1B | 0.1032 | 1.1663 | 0.3086 | 0.021* | |
P2 | 0.24757 (6) | 0.29013 (6) | 0.77082 (2) | 0.01589 (10) | |
O2 | 0.51802 (18) | 1.13618 (18) | 0.22159 (6) | 0.0199 (3) | |
N2 | 0.7740 (3) | 0.1858 (3) | 1.12583 (8) | 0.0252 (3) | |
H21 | 0.901 (4) | 0.169 (4) | 1.1403 (14) | 0.049 (8)* | |
H22 | 0.681 (4) | 0.172 (4) | 1.1527 (12) | 0.035 (6)* | |
C2 | 0.3143 (3) | 0.9827 (3) | 0.34082 (8) | 0.0191 (3) | |
H2A | 0.2686 | 0.8640 | 0.3084 | 0.023* | |
H2B | 0.4608 | 0.9929 | 0.3504 | 0.023* | |
O3 | 0.2486 (2) | 1.3660 (2) | 0.20293 (7) | 0.0239 (3) | |
C3 | 0.2306 (3) | 0.9668 (3) | 0.40681 (8) | 0.0191 (3) | |
H3A | 0.2699 | 1.0891 | 0.4379 | 0.023* | |
H3B | 0.0842 | 0.9503 | 0.3964 | 0.023* | |
H3 | 0.343 (5) | 1.442 (5) | 0.2068 (17) | 0.070 (11)* | |
O4 | 0.24107 (19) | 0.08343 (18) | 0.72796 (6) | 0.0188 (2) | |
C4 | 0.3028 (3) | 0.7975 (3) | 0.44244 (8) | 0.0195 (3) | |
H4A | 0.4490 | 0.8157 | 0.4542 | 0.023* | |
H4B | 0.2664 | 0.6752 | 0.4112 | 0.023* | |
H4 | 0.330 (5) | 0.006 (5) | 0.7471 (16) | 0.066 (9)* | |
O5 | 0.1083 (2) | 0.27587 (19) | 0.82576 (6) | 0.0216 (3) | |
C5 | 0.2125 (3) | 0.7822 (3) | 0.50710 (9) | 0.0195 (3) | |
H5A | 0.2483 | 0.9055 | 0.5379 | 0.023* | |
H5B | 0.0664 | 0.7648 | 0.4950 | 0.023* | |
H5 | 0.017 (5) | 0.174 (5) | 0.8191 (16) | 0.064 (9)* | |
O6 | 0.45679 (19) | 0.37295 (19) | 0.80557 (6) | 0.0220 (3) | |
C6 | 0.2806 (3) | 0.6151 (3) | 0.54491 (8) | 0.0188 (3) | |
H6A | 0.4264 | 0.6325 | 0.5579 | 0.023* | |
H6B | 0.2450 | 0.4910 | 0.5146 | 0.023* | |
C7 | 0.1838 (3) | 0.6074 (3) | 0.60867 (8) | 0.0179 (3) | |
H7A | 0.0383 | 0.5858 | 0.5951 | 0.022* | |
H7B | 0.2146 | 0.7341 | 0.6377 | 0.022* | |
C8 | 0.2526 (3) | 0.4476 (3) | 0.65035 (8) | 0.0180 (3) | |
H8A | 0.3972 | 0.4716 | 0.6661 | 0.022* | |
H8B | 0.2261 | 0.3205 | 0.6214 | 0.022* | |
C9 | 0.1432 (3) | 0.4431 (3) | 0.71211 (8) | 0.0175 (3) | |
H9A | 0.0022 | 0.3966 | 0.6959 | 0.021* | |
H9B | 0.1488 | 0.5762 | 0.7360 | 0.021* | |
C10 | 0.7973 (3) | 0.2769 (3) | 0.95325 (10) | 0.0283 (4) | |
H10 | 0.8919 | 0.2928 | 0.9247 | 0.034* | |
C11 | 0.8604 (3) | 0.2470 (3) | 1.01867 (9) | 0.0272 (4) | |
H11 | 0.9972 | 0.2420 | 1.0341 | 0.033* | |
C12 | 0.7189 (3) | 0.2236 (3) | 1.06310 (9) | 0.0199 (3) | |
C13 | 0.5127 (3) | 0.2384 (3) | 1.03659 (9) | 0.0214 (4) | |
H13 | 0.4144 | 0.2288 | 1.0642 | 0.026* | |
C14 | 0.4601 (3) | 0.2665 (3) | 0.97075 (10) | 0.0242 (4) | |
H14 | 0.3249 | 0.2741 | 0.9537 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01293 (19) | 0.0198 (2) | 0.0158 (2) | 0.00022 (16) | 0.00233 (15) | 0.00733 (16) |
O1 | 0.0224 (6) | 0.0286 (7) | 0.0167 (6) | −0.0056 (5) | 0.0023 (5) | 0.0042 (5) |
N1 | 0.0360 (9) | 0.0236 (8) | 0.0159 (7) | 0.0009 (7) | −0.0008 (6) | 0.0036 (6) |
C1 | 0.0179 (8) | 0.0202 (8) | 0.0161 (8) | −0.0003 (6) | 0.0038 (6) | 0.0048 (6) |
P2 | 0.0175 (2) | 0.0167 (2) | 0.01360 (19) | −0.00040 (16) | 0.00111 (15) | 0.00535 (15) |
O2 | 0.0163 (6) | 0.0239 (6) | 0.0228 (6) | 0.0042 (5) | 0.0057 (5) | 0.0111 (5) |
N2 | 0.0187 (8) | 0.0392 (10) | 0.0194 (7) | 0.0036 (7) | 0.0035 (6) | 0.0097 (7) |
C2 | 0.0185 (8) | 0.0237 (9) | 0.0162 (8) | 0.0015 (7) | 0.0030 (6) | 0.0072 (6) |
O3 | 0.0158 (6) | 0.0267 (7) | 0.0328 (7) | 0.0026 (5) | 0.0047 (5) | 0.0162 (6) |
C3 | 0.0195 (8) | 0.0229 (9) | 0.0163 (8) | 0.0003 (7) | 0.0047 (6) | 0.0066 (6) |
O4 | 0.0190 (6) | 0.0194 (6) | 0.0178 (6) | 0.0029 (5) | 0.0014 (5) | 0.0036 (5) |
C4 | 0.0201 (8) | 0.0239 (9) | 0.0161 (8) | 0.0009 (7) | 0.0038 (6) | 0.0079 (6) |
O5 | 0.0280 (7) | 0.0206 (6) | 0.0170 (6) | −0.0021 (5) | 0.0070 (5) | 0.0041 (5) |
C5 | 0.0209 (8) | 0.0217 (8) | 0.0169 (8) | 0.0002 (7) | 0.0039 (6) | 0.0063 (6) |
O6 | 0.0216 (6) | 0.0228 (6) | 0.0202 (6) | −0.0045 (5) | −0.0032 (5) | 0.0091 (5) |
C6 | 0.0193 (8) | 0.0221 (8) | 0.0161 (8) | 0.0008 (7) | 0.0041 (6) | 0.0056 (6) |
C7 | 0.0195 (8) | 0.0199 (8) | 0.0153 (7) | 0.0014 (6) | 0.0029 (6) | 0.0060 (6) |
C8 | 0.0191 (8) | 0.0200 (8) | 0.0157 (7) | 0.0019 (6) | 0.0027 (6) | 0.0058 (6) |
C9 | 0.0178 (8) | 0.0198 (8) | 0.0157 (7) | 0.0020 (6) | 0.0027 (6) | 0.0054 (6) |
C10 | 0.0305 (10) | 0.0338 (11) | 0.0206 (9) | 0.0008 (8) | 0.0077 (7) | 0.0020 (8) |
C11 | 0.0206 (9) | 0.0390 (11) | 0.0215 (9) | 0.0018 (8) | 0.0038 (7) | 0.0032 (8) |
C12 | 0.0212 (8) | 0.0192 (8) | 0.0184 (8) | 0.0008 (7) | 0.0025 (6) | 0.0014 (6) |
C13 | 0.0206 (8) | 0.0207 (8) | 0.0232 (9) | 0.0010 (7) | 0.0039 (7) | 0.0047 (7) |
C14 | 0.0249 (9) | 0.0206 (9) | 0.0254 (9) | 0.0022 (7) | −0.0020 (7) | 0.0046 (7) |
P1—O1 | 1.5088 (13) | C4—H4A | 0.9700 |
P1—O2 | 1.5149 (12) | C4—H4B | 0.9700 |
P1—O3 | 1.5786 (14) | O5—H5 | 0.88 (3) |
P1—C1 | 1.7974 (17) | C5—C6 | 1.526 (2) |
N1—C10 | 1.350 (3) | C5—H5A | 0.9700 |
N1—C14 | 1.352 (3) | C5—H5B | 0.9700 |
N1—H1 | 0.96 (2) | C6—C7 | 1.527 (2) |
C1—C2 | 1.534 (2) | C6—H6A | 0.9700 |
C1—H1A | 0.9700 | C6—H6B | 0.9700 |
C1—H1B | 0.9700 | C7—C8 | 1.530 (2) |
P2—O6 | 1.5045 (13) | C7—H7A | 0.9700 |
P2—O4 | 1.5535 (13) | C7—H7B | 0.9700 |
P2—O5 | 1.5601 (13) | C8—C9 | 1.537 (2) |
P2—C9 | 1.7880 (17) | C8—H8A | 0.9700 |
N2—C12 | 1.324 (2) | C8—H8B | 0.9700 |
N2—H21 | 0.88 (3) | C9—H9A | 0.9700 |
N2—H22 | 0.90 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.530 (2) | C10—C11 | 1.365 (3) |
C2—H2A | 0.9700 | C10—H10 | 0.9300 |
C2—H2B | 0.9700 | C11—C12 | 1.415 (3) |
O3—H3 | 0.78 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.523 (2) | C12—C13 | 1.425 (2) |
C3—H3A | 0.9700 | C13—C14 | 1.359 (3) |
C3—H3B | 0.9700 | C13—H13 | 0.9300 |
O4—H4 | 0.91 (3) | C14—H14 | 0.9300 |
C4—C5 | 1.527 (2) | ||
O1—P1—O2 | 116.41 (8) | C6—C5—C4 | 114.77 (15) |
O1—P1—O3 | 105.96 (8) | C6—C5—H5A | 108.6 |
O2—P1—O3 | 108.76 (7) | C4—C5—H5A | 108.6 |
O1—P1—C1 | 109.09 (8) | C6—C5—H5B | 108.6 |
O2—P1—C1 | 109.62 (7) | C4—C5—H5B | 108.6 |
O3—P1—C1 | 106.51 (8) | H5A—C5—H5B | 107.6 |
C10—N1—C14 | 120.49 (16) | C5—C6—C7 | 112.06 (14) |
C10—N1—H1 | 121.8 (15) | C5—C6—H6A | 109.2 |
C14—N1—H1 | 117.6 (15) | C7—C6—H6A | 109.2 |
C2—C1—P1 | 113.66 (12) | C5—C6—H6B | 109.2 |
C2—C1—H1A | 108.8 | C7—C6—H6B | 109.2 |
P1—C1—H1A | 108.8 | H6A—C6—H6B | 107.9 |
C2—C1—H1B | 108.8 | C6—C7—C8 | 114.51 (14) |
P1—C1—H1B | 108.8 | C6—C7—H7A | 108.6 |
H1A—C1—H1B | 107.7 | C8—C7—H7A | 108.6 |
O6—P2—O4 | 113.40 (7) | C6—C7—H7B | 108.6 |
O6—P2—O5 | 109.15 (7) | C8—C7—H7B | 108.6 |
O4—P2—O5 | 108.70 (7) | H7A—C7—H7B | 107.6 |
O6—P2—C9 | 111.12 (8) | C7—C8—C9 | 111.67 (14) |
O4—P2—C9 | 105.43 (8) | C7—C8—H8A | 109.3 |
O5—P2—C9 | 108.89 (8) | C9—C8—H8A | 109.3 |
C12—N2—H21 | 119.9 (18) | C7—C8—H8B | 109.3 |
C12—N2—H22 | 119.6 (16) | C9—C8—H8B | 109.3 |
H21—N2—H22 | 120 (2) | H8A—C8—H8B | 107.9 |
C3—C2—C1 | 112.06 (14) | C8—C9—P2 | 113.70 (12) |
C3—C2—H2A | 109.2 | C8—C9—H9A | 108.8 |
C1—C2—H2A | 109.2 | P2—C9—H9A | 108.8 |
C3—C2—H2B | 109.2 | C8—C9—H9B | 108.8 |
C1—C2—H2B | 109.2 | P2—C9—H9B | 108.8 |
H2A—C2—H2B | 107.9 | H9A—C9—H9B | 107.7 |
P1—O3—H3 | 115 (2) | N1—C10—C11 | 120.95 (18) |
C4—C3—C2 | 113.89 (15) | N1—C10—H10 | 119.5 |
C4—C3—H3A | 108.8 | C11—C10—H10 | 119.5 |
C2—C3—H3A | 108.8 | C10—C11—C12 | 120.38 (18) |
C4—C3—H3B | 108.8 | C10—C11—H11 | 119.8 |
C2—C3—H3B | 108.8 | C12—C11—H11 | 119.8 |
H3A—C3—H3B | 107.7 | N2—C12—C11 | 121.92 (17) |
P2—O4—H4 | 113 (2) | N2—C12—C13 | 121.32 (17) |
C3—C4—C5 | 112.68 (15) | C11—C12—C13 | 116.75 (16) |
C3—C4—H4A | 109.1 | C14—C13—C12 | 119.77 (17) |
C5—C4—H4A | 109.1 | C14—C13—H13 | 120.1 |
C3—C4—H4B | 109.1 | C12—C13—H13 | 120.1 |
C5—C4—H4B | 109.1 | N1—C14—C13 | 121.60 (18) |
H4A—C4—H4B | 107.8 | N1—C14—H14 | 119.2 |
P2—O5—H5 | 117 (2) | C13—C14—H14 | 119.2 |
O1—P1—C1—C2 | 74.30 (14) | O6—P2—C9—C8 | 66.99 (14) |
O2—P1—C1—C2 | −54.24 (14) | O4—P2—C9—C8 | −56.25 (14) |
O3—P1—C1—C2 | −171.74 (12) | O5—P2—C9—C8 | −172.75 (12) |
P1—C1—C2—C3 | −167.86 (12) | C14—N1—C10—C11 | 1.9 (3) |
C1—C2—C3—C4 | −176.88 (14) | N1—C10—C11—C12 | −0.4 (3) |
C2—C3—C4—C5 | −178.52 (15) | C10—C11—C12—N2 | 176.98 (19) |
C3—C4—C5—C6 | −179.83 (15) | C10—C11—C12—C13 | −1.7 (3) |
C4—C5—C6—C7 | −179.62 (14) | N2—C12—C13—C14 | −176.38 (18) |
C5—C6—C7—C8 | −177.72 (15) | C11—C12—C13—C14 | 2.3 (3) |
C6—C7—C8—C9 | −177.78 (14) | C10—N1—C14—C13 | −1.3 (3) |
C7—C8—C9—P2 | −169.70 (12) | C12—C13—C14—N1 | −0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O6i | 0.78 (3) | 1.85 (3) | 2.6171 (18) | 166 (3) |
O5—H5···O1ii | 0.88 (3) | 1.64 (3) | 2.5059 (18) | 168 (3) |
O4—H4···O2iii | 0.91 (3) | 1.59 (3) | 2.4977 (17) | 178 (3) |
N1—H1···O6 | 0.96 (2) | 1.74 (3) | 2.696 (2) | 173 (2) |
N2—H22···O2iv | 0.90 (3) | 1.92 (3) | 2.806 (2) | 170 (2) |
N2—H21···O1v | 0.88 (3) | 2.14 (3) | 2.965 (2) | 156 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z+1; (v) x+1, y−1, z+1. |
Acknowledgements
We thank E. Hammes and P. Roloff for technical support.
References
Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407. CrossRef CAS Web of Science Google Scholar
Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945–954. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Deng, Y., Helms, B. A. & Rolandi, M. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 211–214. CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855–861. CAS Google Scholar
Fuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129–136. CSD CrossRef CAS Web of Science Google Scholar
Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762. CSD CrossRef IUCr Journals Google Scholar
Griffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317–4323. Web of Science CrossRef CAS Google Scholar
Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434. Web of Science CrossRef CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73–74. CAS Google Scholar
Koleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Frigge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta part A, 71, 695–702. CSD CrossRef Google Scholar
Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21–25. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97–108. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus, Sulfur Silicon Relat. Elem. 177, 2941–2951. Google Scholar
Maspoch, D., Domingo, N., Roques, N., Wurst, K., Tejada, J., Rovira, C., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Eur. J. 13, 8153–8163. Web of Science CSD CrossRef PubMed CAS Google Scholar
Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485–494. Google Scholar
Megen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574–3584. Google Scholar
Moedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297–304. CrossRef CAS Web of Science Google Scholar
Mootz, D. & Poll, W. (1984). Z. Naturforsch. Teil B, 39, 290–297. Google Scholar
Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1–14. Web of Science PubMed Google Scholar
Plabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049–5060. CSD CrossRef CAS Google Scholar
Reiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239–240. CAS Google Scholar
Reiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452–454. CAS Google Scholar
Schwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202–212. CrossRef CAS Web of Science Google Scholar
Sertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875–3880. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271. CSD CrossRef CAS Google Scholar
Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.