research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen bonding, ππ stacking and van der Waals forces-dominated layered regions in the crystal structure of 4-amino­pyridinium hydrogen (9-phosphono­non­yl)phospho­nate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2016; accepted 8 September 2016; online 23 September 2016)

The asymmetric unit of the title mol­ecular salt, [C5H7N2+][(HO)2OP(CH2)9PO2(OH)], consists of one 4-amino­pyridinium cation and one hydrogen (9-phos­phono­non­yl)phospho­nate anion, both in general positions. As expected, the 4-amino­pyridinium moieties are protonated exclusively at their endocyclic nitro­gen atom due to a mesomeric stabilization by the imine form which would not be given in the corresponding double-protonated dicationic species. In the crystal, the phosphonyl (–PO3H2) and hydrogen phospho­nate (–PO3H) groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks in the ab plane built from 24-membered hydrogen-bonded ring motifs with the graph-set descriptor R66(24). These networks are pairwise linked by the anions' alkyl­ene chains. The 4-amino­pyridinium cations are stacked in parallel displaced face-to-face arrangements and connect neighboring anionic substructures via medium–strong charge-supported N—H⋯O hydrogen bonds along the c axis. The resulting three-dimensional hydrogen-bonded network shows clearly separated hydro­philic and hydro­phobic structural domains.

1. Chemical context

Salts of organo­phospho­nic acids with organic cations, e.g. with protonated primary (Mahmoudkhani & Langer, 2002b[Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97-108.]), secondary (Wheatley et al., 2001[Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95-102.]) and tertiary amines (Kan & Ma, 2011[Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73-74.]) are of growing inter­est in supra­molecular chemistry and crystal engineering. Besides their inter­esting topologies and structural diversity, they seem to be feasible model compounds for metal phospho­nates as they exhibit similar structural characteristics but are less difficult to crystallize. Mostly, these organic solids establish extended hydrogen-bonded networks which are characterized by a rich diversity of strong charge-supported hydrogen bonds (Aakeröy & Seddon, 1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]) and can either be one-, two- or three-dimensional. This contribution forms part of our research on the principles of the arrangement of alkane-α,ω-di­phospho­nic acids (van Megen et al., 2015[Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485-494.]) and their organic aminium salts (van Megen et al., 2016[Megen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574-3584.]). Moreover, amino­pyridines and the related protonated cations are of crucial inter­est in the field of biochemistry (Muñoz-Caro & Niño, 2002[Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1-14.]; Bolliger et al., 2011[Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945-954.]) and are also used as counter-cations to stabilize complex salts (Reiss & Leske, 2014a[Reiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239-240.],b[Reiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452-454.]), in crystal engineering (Sertucha et al., 1998[Sertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875-3880.]; Surbella III et al., 2016[Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257-271.]) as well as in polymer chemistry (Deng et al., 2015[Deng, Y., Helms, B. A. & Rolandi, M. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 211-214.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, [C5H7N2+][(HO)2OP(CH2)9PO2(OH)], consists of one 4-amino­pyridinium cation and one hydrogen (9-phosphono­non­yl)phospho­nate anion, both in general positions (Fig. 1[link]). Generally, the first protonation of the 4-amino­pyridine can take place at the exo- as well as at the endocyclic nitro­gen atom. In the literature, all monoprotonated 4-amino­pyridines characterized to date are protonated at the endocyclic nitro­gen atom. Geometric parameters derived from the single-crystal diffraction experiment for the title compound show a short exocyclic N—C bond length [1.324 (2) Å] and slightly longer C—C and C—N bond lengths of the six-membered ring [1.350 (3)–1.425 (2) Å]. The bonding properties of this cation are best described by a pair of mesomeric structures: the enamine and the imine form (Scheme 2), which have been discussed in detail before (Koleva et al., 2008[Koleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Frigge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta part A, 71, 695-702.]).

[Scheme 2]
[Figure 1]
Figure 1
The asymmetric unit of the title compound plus symmetry-related hydrogen-bonded atoms [displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are drawn as spheres with arbitrary radii; symmetry codes: (i) 1 + x, −1 + y, 1 + z; (ii) x, −1 + y, 1 + z; (iii) 1 − x, 2 − y, 1 − z; (iv) 1 − x, 1 − y, 1 − z; (v) −x, 1 − y, 1 − z; (vi) −1 + x, 1 + y, −1 + z, (vii) x, 1 + y, −1 + z].

For the designation of the title compound, the systematic name of the amino form is used throughout this article. The bond lengths and angles of the anion are unexceptional and lie within the expected ranges. The alkyl­ene chain of the anion shows nearly anti­periplanar conformations. In detail, the P—OH distances of the phospho­nate moieties have values between 1.5535 (13) and 1.5786 (14) Å, longer than the P=O distances [1.5045 (13)–1.5149 (12) Å].

3. Supra­molecular features

Within the crystal of the title compound, the phosphonyl and hydrogen phospho­nate groups of the anions form two-dimensional O—H⋯O hydrogen-bonded networks which propagate in the ab plane. These networks contain 24-membered rings classified as a third level graph set R66(24) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Fig. 2[link]; Table 1[link]). 24-Membered hydrogen-bonded rings have been well known for decades (e.g. Mootz & Poll, 1984[Mootz, D. & Poll, W. (1984). Z. Naturforsch. Teil B, 39, 290-297.]). In particular, the R66(24) motif is very common (e.g. Gomathi & Mu­thiah, 2011[Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762.]; Maspoch et al., 2007[Maspoch, D., Domingo, N., Roques, N., Wurst, K., Tejada, J., Rovira, C., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Eur. J. 13, 8153-8163.]). Along the c-axis direction, these networks are pairwise linked by the anions' alkyl­ene chains to form a three-dimensional anionic substructure. The 4-amino­pyridinium cations show ππ stacking inter­actions. The rings are oriented in parallel displaced face-to-face arrangements (Grimme, 2008[Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430-3434.]; Fig. 3[link]). The geometry of these ππ inter­actions is reflected by distances of 3.25 and 3.32 Å between neighbouring pyridinium rings and centroid offsets of 2.37 and 2.42 Å. These findings are comparable to those found for other compounds containing pyridyl moieties (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Anions and cations are connected by medium–strong, charge-supported N—H⋯O hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]; Table 2[link]) along the c axis. For these connections, each nitro­gen-bound hydrogen atom forms one unbifurcated hydrogen bond (Fig. 1[link]). The resulting three-dimensional hydrogen-bonded network clearly shows separated hydro­philic and hydro­phobic regions (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6i 0.78 (3) 1.85 (3) 2.6171 (18) 166 (3)
O5—H5⋯O1ii 0.88 (3) 1.64 (3) 2.5059 (18) 168 (3)
O4—H4⋯O2iii 0.91 (3) 1.59 (3) 2.4977 (17) 178 (3)
N1—H1⋯O6 0.96 (2) 1.74 (3) 2.696 (2) 173 (2)
N2—H22⋯O2iv 0.90 (3) 1.92 (3) 2.806 (2) 170 (2)
N2—H21⋯O1v 0.88 (3) 2.14 (3) 2.965 (2) 156 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z+1; (v) x+1, y-1, z+1.

Table 2
Experimental details

Crystal data
Chemical formula C5H7N2+·C9H21O6P2
Mr 382.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 6.7275 (4), 6.8963 (4), 20.0643 (10)
α, β, γ (°) 97.956 (4), 98.767 (4), 94.309 (5)
V3) 906.73 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.33 × 0.07 × 0.03
 
Data collection
Diffractometer Stoe IPDS
No. of measured, independent and observed [I > 2σ(I)] reflections 8855, 4131, 3674
Rint 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.079, 1.02
No. of reflections 4131
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.36
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL-2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).
[Figure 2]
Figure 2
Two-dimensional hydrogen-bonded networks composed of phosphonyl and hydrogen phospho­nate groups. The graph set R66(24) is indicated by blue bonds.
[Figure 3]
Figure 3
View along [010] of the title structure, showing the hydrogen bonding (red), ππ stacking (blue), and van der Waals forces (grey) dominated layered regions within the three-dimensional network.

4. Related structures

For related phospho­nate and bis­(phospho­nate) salts, see: Ferguson et al. (1998[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129-138.]); Fu et al. (2004[Fu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855-861.]); Fuller & Heimer (1995[Fuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129-136.]); Glidewell et al. (2000[Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855-858.]); Kan & Ma (2011[Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73-74.]); Mahmoudkhani & Langer (2002a[Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21-25.],b[Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97-108.],c[Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus, Sulfur Silicon Relat. Elem. 177, 2941-2951.]); van Megen et al. (2016[Megen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574-3584.]); Plabst et al. (2009[Plabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049-5060.]); Wheatley et al. (2001[Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95-102.]). For related 4-amino­pyridinium salts, see: Sertucha et al. (1998[Sertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875-3880.]); Reiss & Leske (2014a[Reiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239-240.],b[Reiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452-454.]); Surbella III et al. (2016[Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257-271.]).

5. Synthesis and crystallization

Equimolar qu­anti­ties (0.5 mmol) of 4-amino­pyridine (47.1 mg) and nonane-1,9-di­phospho­nic acid (144.1 mg) were dissolved in methanol, separately. The solutions were mixed and stored in an open petri dish. Within several days, colorless platelet-shaped crystals of the title compound were obtained by slow evaporation of the solvent. 4-Amino­pyridine was purchased from commercial sources and nonane-1,9-di­phospho­nic acid was synthesized according to the literature (Schwarzenbach & Zurc, 1950[Schwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202-212.]; Moedritzer & Irani, 1961[Moedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297-304.]; Griffith et al., 1998[Griffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317-4323.]). Elemental analysis: C14H28N2O6P2 (382.3): calculated C 44.0, H 7.4, N 7.3; found C 43.6, H 7.9, N 7.1. M. p.: 157 °C. The IR and Raman spectra of the title compound are shown in Fig. 4[link].

[Figure 4]
Figure 4
The IR (blue) and Raman (red) spectra of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bound to either nitro­gen or oxygen atoms were identified in difference syntheses and refined without any geometric constraints or restraints with individual Uiso(H) values. Carbon-bound hydrogen atoms were included using a riding model (AFIX23 option of the SHELX program for the methyl­ene groups and AFIX43 option for the methine groups).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015).

4-Aminopyridinium hydrogen (9-phosphonononyl)phosphonate top
Crystal data top
C5H7N2+·C9H21O6P2Z = 2
Mr = 382.32F(000) = 408
Triclinic, P1Dx = 1.400 Mg m3
a = 6.7275 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8963 (4) ÅCell parameters from 6853 reflections
c = 20.0643 (10) Åθ = 3.0–35.3°
α = 97.956 (4)°µ = 0.27 mm1
β = 98.767 (4)°T = 123 K
γ = 94.309 (5)°Platelet, colourless
V = 906.73 (9) Å30.33 × 0.07 × 0.03 mm
Data collection top
Stoe IPDS
diffractometer
Rint = 0.029
Radiation source: sealed tubeθmax = 27.5°, θmin = 3.0°
ω scansh = 88
8855 measured reflectionsk = 88
4131 independent reflectionsl = 2626
3674 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.011P)2 + 1.110P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4131 reflectionsΔρmax = 0.50 e Å3
241 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29655 (6)1.15924 (6)0.22320 (2)0.01579 (10)
O10.14667 (19)1.0094 (2)0.17549 (6)0.0230 (3)
N10.5995 (3)0.2836 (2)0.92948 (8)0.0257 (3)
H10.553 (4)0.306 (4)0.8838 (13)0.036 (6)*
C10.2470 (3)1.1616 (3)0.30883 (8)0.0179 (3)
H1A0.31611.28020.33710.021*
H1B0.10321.16630.30860.021*
P20.24757 (6)0.29013 (6)0.77082 (2)0.01589 (10)
O20.51802 (18)1.13618 (18)0.22159 (6)0.0199 (3)
N20.7740 (3)0.1858 (3)1.12583 (8)0.0252 (3)
H210.901 (4)0.169 (4)1.1403 (14)0.049 (8)*
H220.681 (4)0.172 (4)1.1527 (12)0.035 (6)*
C20.3143 (3)0.9827 (3)0.34082 (8)0.0191 (3)
H2A0.26860.86400.30840.023*
H2B0.46080.99290.35040.023*
O30.2486 (2)1.3660 (2)0.20293 (7)0.0239 (3)
C30.2306 (3)0.9668 (3)0.40681 (8)0.0191 (3)
H3A0.26991.08910.43790.023*
H3B0.08420.95030.39640.023*
H30.343 (5)1.442 (5)0.2068 (17)0.070 (11)*
O40.24107 (19)0.08343 (18)0.72796 (6)0.0188 (2)
C40.3028 (3)0.7975 (3)0.44244 (8)0.0195 (3)
H4A0.44900.81570.45420.023*
H4B0.26640.67520.41120.023*
H40.330 (5)0.006 (5)0.7471 (16)0.066 (9)*
O50.1083 (2)0.27587 (19)0.82576 (6)0.0216 (3)
C50.2125 (3)0.7822 (3)0.50710 (9)0.0195 (3)
H5A0.24830.90550.53790.023*
H5B0.06640.76480.49500.023*
H50.017 (5)0.174 (5)0.8191 (16)0.064 (9)*
O60.45679 (19)0.37295 (19)0.80557 (6)0.0220 (3)
C60.2806 (3)0.6151 (3)0.54491 (8)0.0188 (3)
H6A0.42640.63250.55790.023*
H6B0.24500.49100.51460.023*
C70.1838 (3)0.6074 (3)0.60867 (8)0.0179 (3)
H7A0.03830.58580.59510.022*
H7B0.21460.73410.63770.022*
C80.2526 (3)0.4476 (3)0.65035 (8)0.0180 (3)
H8A0.39720.47160.66610.022*
H8B0.22610.32050.62140.022*
C90.1432 (3)0.4431 (3)0.71211 (8)0.0175 (3)
H9A0.00220.39660.69590.021*
H9B0.14880.57620.73600.021*
C100.7973 (3)0.2769 (3)0.95325 (10)0.0283 (4)
H100.89190.29280.92470.034*
C110.8604 (3)0.2470 (3)1.01867 (9)0.0272 (4)
H110.99720.24201.03410.033*
C120.7189 (3)0.2236 (3)1.06310 (9)0.0199 (3)
C130.5127 (3)0.2384 (3)1.03659 (9)0.0214 (4)
H130.41440.22881.06420.026*
C140.4601 (3)0.2665 (3)0.97075 (10)0.0242 (4)
H140.32490.27410.95370.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01293 (19)0.0198 (2)0.0158 (2)0.00022 (16)0.00233 (15)0.00733 (16)
O10.0224 (6)0.0286 (7)0.0167 (6)0.0056 (5)0.0023 (5)0.0042 (5)
N10.0360 (9)0.0236 (8)0.0159 (7)0.0009 (7)0.0008 (6)0.0036 (6)
C10.0179 (8)0.0202 (8)0.0161 (8)0.0003 (6)0.0038 (6)0.0048 (6)
P20.0175 (2)0.0167 (2)0.01360 (19)0.00040 (16)0.00111 (15)0.00535 (15)
O20.0163 (6)0.0239 (6)0.0228 (6)0.0042 (5)0.0057 (5)0.0111 (5)
N20.0187 (8)0.0392 (10)0.0194 (7)0.0036 (7)0.0035 (6)0.0097 (7)
C20.0185 (8)0.0237 (9)0.0162 (8)0.0015 (7)0.0030 (6)0.0072 (6)
O30.0158 (6)0.0267 (7)0.0328 (7)0.0026 (5)0.0047 (5)0.0162 (6)
C30.0195 (8)0.0229 (9)0.0163 (8)0.0003 (7)0.0047 (6)0.0066 (6)
O40.0190 (6)0.0194 (6)0.0178 (6)0.0029 (5)0.0014 (5)0.0036 (5)
C40.0201 (8)0.0239 (9)0.0161 (8)0.0009 (7)0.0038 (6)0.0079 (6)
O50.0280 (7)0.0206 (6)0.0170 (6)0.0021 (5)0.0070 (5)0.0041 (5)
C50.0209 (8)0.0217 (8)0.0169 (8)0.0002 (7)0.0039 (6)0.0063 (6)
O60.0216 (6)0.0228 (6)0.0202 (6)0.0045 (5)0.0032 (5)0.0091 (5)
C60.0193 (8)0.0221 (8)0.0161 (8)0.0008 (7)0.0041 (6)0.0056 (6)
C70.0195 (8)0.0199 (8)0.0153 (7)0.0014 (6)0.0029 (6)0.0060 (6)
C80.0191 (8)0.0200 (8)0.0157 (7)0.0019 (6)0.0027 (6)0.0058 (6)
C90.0178 (8)0.0198 (8)0.0157 (7)0.0020 (6)0.0027 (6)0.0054 (6)
C100.0305 (10)0.0338 (11)0.0206 (9)0.0008 (8)0.0077 (7)0.0020 (8)
C110.0206 (9)0.0390 (11)0.0215 (9)0.0018 (8)0.0038 (7)0.0032 (8)
C120.0212 (8)0.0192 (8)0.0184 (8)0.0008 (7)0.0025 (6)0.0014 (6)
C130.0206 (8)0.0207 (8)0.0232 (9)0.0010 (7)0.0039 (7)0.0047 (7)
C140.0249 (9)0.0206 (9)0.0254 (9)0.0022 (7)0.0020 (7)0.0046 (7)
Geometric parameters (Å, º) top
P1—O11.5088 (13)C4—H4A0.9700
P1—O21.5149 (12)C4—H4B0.9700
P1—O31.5786 (14)O5—H50.88 (3)
P1—C11.7974 (17)C5—C61.526 (2)
N1—C101.350 (3)C5—H5A0.9700
N1—C141.352 (3)C5—H5B0.9700
N1—H10.96 (2)C6—C71.527 (2)
C1—C21.534 (2)C6—H6A0.9700
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C7—C81.530 (2)
P2—O61.5045 (13)C7—H7A0.9700
P2—O41.5535 (13)C7—H7B0.9700
P2—O51.5601 (13)C8—C91.537 (2)
P2—C91.7880 (17)C8—H8A0.9700
N2—C121.324 (2)C8—H8B0.9700
N2—H210.88 (3)C9—H9A0.9700
N2—H220.90 (3)C9—H9B0.9700
C2—C31.530 (2)C10—C111.365 (3)
C2—H2A0.9700C10—H100.9300
C2—H2B0.9700C11—C121.415 (3)
O3—H30.78 (3)C11—H110.9300
C3—C41.523 (2)C12—C131.425 (2)
C3—H3A0.9700C13—C141.359 (3)
C3—H3B0.9700C13—H130.9300
O4—H40.91 (3)C14—H140.9300
C4—C51.527 (2)
O1—P1—O2116.41 (8)C6—C5—C4114.77 (15)
O1—P1—O3105.96 (8)C6—C5—H5A108.6
O2—P1—O3108.76 (7)C4—C5—H5A108.6
O1—P1—C1109.09 (8)C6—C5—H5B108.6
O2—P1—C1109.62 (7)C4—C5—H5B108.6
O3—P1—C1106.51 (8)H5A—C5—H5B107.6
C10—N1—C14120.49 (16)C5—C6—C7112.06 (14)
C10—N1—H1121.8 (15)C5—C6—H6A109.2
C14—N1—H1117.6 (15)C7—C6—H6A109.2
C2—C1—P1113.66 (12)C5—C6—H6B109.2
C2—C1—H1A108.8C7—C6—H6B109.2
P1—C1—H1A108.8H6A—C6—H6B107.9
C2—C1—H1B108.8C6—C7—C8114.51 (14)
P1—C1—H1B108.8C6—C7—H7A108.6
H1A—C1—H1B107.7C8—C7—H7A108.6
O6—P2—O4113.40 (7)C6—C7—H7B108.6
O6—P2—O5109.15 (7)C8—C7—H7B108.6
O4—P2—O5108.70 (7)H7A—C7—H7B107.6
O6—P2—C9111.12 (8)C7—C8—C9111.67 (14)
O4—P2—C9105.43 (8)C7—C8—H8A109.3
O5—P2—C9108.89 (8)C9—C8—H8A109.3
C12—N2—H21119.9 (18)C7—C8—H8B109.3
C12—N2—H22119.6 (16)C9—C8—H8B109.3
H21—N2—H22120 (2)H8A—C8—H8B107.9
C3—C2—C1112.06 (14)C8—C9—P2113.70 (12)
C3—C2—H2A109.2C8—C9—H9A108.8
C1—C2—H2A109.2P2—C9—H9A108.8
C3—C2—H2B109.2C8—C9—H9B108.8
C1—C2—H2B109.2P2—C9—H9B108.8
H2A—C2—H2B107.9H9A—C9—H9B107.7
P1—O3—H3115 (2)N1—C10—C11120.95 (18)
C4—C3—C2113.89 (15)N1—C10—H10119.5
C4—C3—H3A108.8C11—C10—H10119.5
C2—C3—H3A108.8C10—C11—C12120.38 (18)
C4—C3—H3B108.8C10—C11—H11119.8
C2—C3—H3B108.8C12—C11—H11119.8
H3A—C3—H3B107.7N2—C12—C11121.92 (17)
P2—O4—H4113 (2)N2—C12—C13121.32 (17)
C3—C4—C5112.68 (15)C11—C12—C13116.75 (16)
C3—C4—H4A109.1C14—C13—C12119.77 (17)
C5—C4—H4A109.1C14—C13—H13120.1
C3—C4—H4B109.1C12—C13—H13120.1
C5—C4—H4B109.1N1—C14—C13121.60 (18)
H4A—C4—H4B107.8N1—C14—H14119.2
P2—O5—H5117 (2)C13—C14—H14119.2
O1—P1—C1—C274.30 (14)O6—P2—C9—C866.99 (14)
O2—P1—C1—C254.24 (14)O4—P2—C9—C856.25 (14)
O3—P1—C1—C2171.74 (12)O5—P2—C9—C8172.75 (12)
P1—C1—C2—C3167.86 (12)C14—N1—C10—C111.9 (3)
C1—C2—C3—C4176.88 (14)N1—C10—C11—C120.4 (3)
C2—C3—C4—C5178.52 (15)C10—C11—C12—N2176.98 (19)
C3—C4—C5—C6179.83 (15)C10—C11—C12—C131.7 (3)
C4—C5—C6—C7179.62 (14)N2—C12—C13—C14176.38 (18)
C5—C6—C7—C8177.72 (15)C11—C12—C13—C142.3 (3)
C6—C7—C8—C9177.78 (14)C10—N1—C14—C131.3 (3)
C7—C8—C9—P2169.70 (12)C12—C13—C14—N10.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6i0.78 (3)1.85 (3)2.6171 (18)166 (3)
O5—H5···O1ii0.88 (3)1.64 (3)2.5059 (18)168 (3)
O4—H4···O2iii0.91 (3)1.59 (3)2.4977 (17)178 (3)
N1—H1···O60.96 (2)1.74 (3)2.696 (2)173 (2)
N2—H22···O2iv0.90 (3)1.92 (3)2.806 (2)170 (2)
N2—H21···O1v0.88 (3)2.14 (3)2.965 (2)156 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z+1; (v) x+1, y1, z+1.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationBolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945–954.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDeng, Y., Helms, B. A. & Rolandi, M. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 211–214.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855–861.  CAS Google Scholar
First citationFuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129–136.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762.  CSD CrossRef IUCr Journals Google Scholar
First citationGriffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317–4323.  Web of Science CrossRef CAS Google Scholar
First citationGrimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73–74.  CAS Google Scholar
First citationKoleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Frigge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta part A, 71, 695–702.  CSD CrossRef Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus, Sulfur Silicon Relat. Elem. 177, 2941–2951.  Google Scholar
First citationMaspoch, D., Domingo, N., Roques, N., Wurst, K., Tejada, J., Rovira, C., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Eur. J. 13, 8153–8163.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMegen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485–494.  Google Scholar
First citationMegen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574–3584.  Google Scholar
First citationMoedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297–304.  CrossRef CAS Web of Science Google Scholar
First citationMootz, D. & Poll, W. (1984). Z. Naturforsch. Teil B, 39, 290–297.  Google Scholar
First citationMuñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1–14.  Web of Science PubMed Google Scholar
First citationPlabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049–5060.  CSD CrossRef CAS Google Scholar
First citationReiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239–240.  CAS Google Scholar
First citationReiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452–454.  CAS Google Scholar
First citationSchwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202–212.  CrossRef CAS Web of Science Google Scholar
First citationSertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875–3880.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSurbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271.  CSD CrossRef CAS Google Scholar
First citationWheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds