research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-bis­[2-((benzyl){[5-(di­methyl­amino)naph­tha­len-1-yl]sulfonyl}amino)ethyl]naphthalene-1,8:4,5-tetracarboximide 1,2-di­chloro­benzene tris­­olvate

CROSSMARK_Color_square_no_text.svg

aCentro de Investigaciones Químicas IICBA. Universidad Autónoma del Estado de, Morelos, Av. Universidad No. 1001, Col., Chamilpa, C. P. 62209, Cuernavaca Mor., México
*Correspondence e-mail: tlahuext@uaem.mx

Edited by G. Smith, Queensland University of Technology, Australia (Received 26 August 2016; accepted 26 September 2016; online 30 September 2016)

The asymmetric unit of the title compound, C56H50N6O8S2·3C6H4Cl2, contains two half-mol­ecules of the parent, A and B, which both have crystallographic inversion symmetry, together with three 2,3-di­chloro­benzene mol­ecules of solvation. Mol­ecules A and B are conformationally similar, with dihedral angles between the central naphthalenedi­imide ring and the peripheral naphthalene and benzyl rings of 2.43 (7), 81.87 (7)° (A) and 3.95 (7), 84.88 (7)° (B), respectively. The conformations are stabilized by the presence of intra­molecular ππ inter­actions between the naphthalene ring and the six-membered di­imide ring of the central naphthalenedi­imide moiety, with ring centroid-to-centroid distances of 3.5795 (8) Å (A) and 3.5640 (8) Å (B). In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into infinite supra­molecular chains along the c axis. These chains are inter­connected through C—H⋯π and offset ππ inter­actions, generating supra­molecular nanotubes which are filled by 1,2-di­chloro­benzene mol­ecules.

1. Chemical context

Non-covalent inter­actions concern a broad range of attractive effects with an equally varied energy contribution to bonding. An inter­esting group of inter­actions is one formed by the stabilizing weak polar contacts such C—H⋯ X (X = O, F, Cl, Br, I), C—H⋯π hydrogen bonds and offset ππ inter­actions. These inter­actions are involved in biological, materials, supra­molecular chemistry and crystal engineering (Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]; Lehn, 1995[Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinhein, Germany: VCH.]; Steed & Atwood, 2000[Steed, J. E. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 400. Chichester, UK: John Wiley & Sons.]).

Naphthalimide is a highly fluorescent moiety that has been used as a construction block in the design of receptors and sensors that recognize charged species and other guests (Landey-Álvarez et al., 2016[Landey-Álvarez, M. A., Ochoa-Terán, A., Pina-Luis, G., Martínez-Quiroz, M., Aguilar-Martínez, M., Elías-García, J., Miranda-Soto, V., Ramírez, J.-Z., Machi-Lara, L., Labastida-Galván, V. & Ordoñez, M. (2016). Supramol. Chem. pp. 1-15.]). Aromatic imides show a highly efficient photo-induced electron transfer (PET) process that can be used as a signaling method in the building of sensors or on–off mol­ecular switches. In this sense, some researchers have proposed one approximation that involves the use of two different fluorescent units linked via a suitable spacer group characterized by PET or singlet–singlet energy transfer mechanisms (SSET) called dyads: such units are naphthalimide and dansyl amide. In a former study, these moieties were linked by methyl­ene units as a bridging group and only the photon-induced fluorescence switching was studied (Abad et al., 2005[Abad, S., Kluciar, M., Miranda, M. A. & Pischel, U. (2005). J. Org. Chem. 70, 10565-10568.]). Later, inter­actions with different metallic ions were investigated (Shankar & Ramaiah, 2011[Shankar, B. H. & Ramaiah, D. (2011). J. Phys. Chem. B, 115, 13292-13299.]). Actually, we have studied by single-crystal X-ray diffraction the mol­ecular structure of a naphthalimide-dansyl amide dyad and its inter­action in solution with anions and aromatic mol­ecules (Claudio-Catalán et al., 2016[Claudio-Catalán, M. A., Medrano, F., Tlahuext, H. & Godoy-Alcantar, C. (2016). Unpublished data set.]). The ability of the dyad to function as a receptor of electron-rich guests and such aromatic compounds and anions are being studied by UV–Vis, fluorescence and NMR experiments. We have found that the dyad could inter­act with the guests tested through the aryl C—H⋯anion and aryl C—H⋯π inter­actions. In our ongoing research on naphthalimides as anion receptors, we report herein the synthesis and crystal structure of the title compound, a 1,2-di­chloro­benzene solvate, C56H50N6O8S2·3C6H4Cl2, (I)[link], which has been shown to be inert to the presence of anions or neutral mol­ecules in solution probably due to high stability acquired by the overlap of the aromatic rings.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (I)[link] contains two half-mol­ecules of the parent mol­ecule (A and B), both having crystallographic inversion symmetry [(i) −x, −y + 2, −z + 1 for (A) and (ii) −x, −y + 2, −z + 2 for (B)], and three 2,3-di­chloro­benzene mol­ecules of solvation (Fig. 1[link]). The N,N-naphthalenedi­imide [N2/C13–C19 (A); N5/C41–C47 (B)] and aromatic dansyl groups [C1–C10 (A) and C29–C38 (B)] are almost planar with r.m.s. deviations of 0.0055, 0.0183, 0.0664 and 0.0698 Å, respectively. The two mol­ecules are conformationally similar with dihedral angles between the central naphthalenedi­imide ring and the peripheral naphthalene and benzyl rings, respectively, of 2.43 (7), 81.87 (7)° (A) and 3.95 (7), 84.88 (7)° (B). The conformations of A and B are stabilized by the presence of intra­molecular aromatic ring-stacking with distances of 3.5795 (8) and 3.5640 (8) Å for Cg1..Cg2 and Cg3⋯ Cg4, respectively [Cg1 and Cg3 are the centroids of naphathalene­imides C13–C17/N2 (A) and C41–C45/N5 (B) and Cg2 and Cg4 are the centroids of phenyl rings C1–C5/C10 (A) and C29–C33/C38 (B)] (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The inversion-related halves of mol­ecules A and B are generated by symmetry operations (i) −x, −y + 2, −z + 1 and (ii) −x, −y + 2, −z + 2, respectively.
[Figure 2]
Figure 2
Mol­ecules A and B showing intra­molecular aromatic stacking. Dashed lines indicate the inter­actions between naphathalene­imide centroids Cg1 [C13–C17/N2 (A)] and Cg3 [C41–C45/N5 (B)] and aryl centroids Cg2 [C1–C5/C10 (A)] and Cg4 [C29–C33/C38 (B)]. Benzyl and methyl groups and H atoms are omitted.

3. Supra­molecular features

In the crystal, four C—H⋯O hydrogen bonds link the mol­ecules into infinite supra­molecular chains extending along the c axis (Fig. 3[link], Table 1[link]). The chains are inter­connected through C—H⋯π and offset ππ inter­actions, generating channels which are filled by solvent mol­ecules (Fig. 4[link]). The C—H⋯π inter­actions are between the benzyl groups with distances C48⋯Cg5′ = 3.6180 (17) and C20⋯Cg6′ = 3.6054 (17) Å (Cg5′ and Cg6′ are the centroids of the phenyl rings C21–C26 and C49–C54, respectively) (Fig. 5[link]). The weak offset ππ inter­action is between adjacent phenyl rings with Cg6⋯Cg6′(−x, −y + 1, −z + 1) = 4.0277 (10) Å (Cg6 is the centroid of the C49–C54 phenyl ring). In addition, the dansyl groups show C—H⋯π inter­actions, with distances C27⋯Cg7′ = 3.585 (2) and C55⋯Cg8′ = 3.632 (2) Å (Fig. 6, Table 1[link]) where Cg7′ and Cg8′ are the centroids of naphthyl ring systems C1–C10 and C29–C38, respectively. In the channel, the N⋯N distance is 12.5 Å. The solvent mol­ecules are inter­connected by C71—H71⋯Cg(C63–C68)] and C68—H68⋯Cl1 inter­actions and are also linked to the channel by C72—H72⋯O6 and C60—H60⋯O2 inter­actions (Table 1[link]). In the crystal, there are also short Cl4⋯O4(−x, 1 − y, 1 − z) inter­actions [3.0923 (12) Å] and 22.6 Å3 solvent-accessible voids.

Table 1
Hydrogen-bond geometry (Å, °)

Cg, Cg5′, Cg6′, Cg7′ and Cg8′ are the centroids of atoms C63–C68, C21–C26, C49–C54, C1–C10 and C29–C38, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5 0.95 2.53 3.1926 (19) 127
C19—H19⋯O7 0.95 2.55 3.2615 (19) 132
C31—H31⋯O3i 0.95 2.59 3.3818 (19) 141
C47—H47⋯O3ii 0.95 2.58 3.2148 (19) 125
C60—H60⋯O2 0.95 2.54 3.335 (2) 142
C68—H68⋯Cl1ii 0.95 2.79 3.5922 (19) 142
C72—H72⋯O6 0.95 2.50 3.293 (2) 141
C71—H71⋯Cg 0.95 2.99 3.813 (2) 145
C55—H55ACg8′iii 0.98 2.94 3.632 (2) 129
C27—H27ACg7′iv 0.98 3.03 3.585 (2) 117
C20—H20BCg6′v 0.99 3.12 3.6054 (17) 111
C48—H48BCg5′v 0.99 3.13 3.6180 (17) 112
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.
[Figure 3]
Figure 3
A view of the supra­molecular chain extending along the c axis, generated by C—H⋯O hydrogen bonds (dashed lines).
[Figure 4]
Figure 4
A perspective view along the c axis of the supra­molecular nanotube generated by cooperative C—H⋯π and offset ππ inter­actions, showing filling by 1,2-di­chloro­benzene mol­ecules.
[Figure 5]
Figure 5
(a) A view of the C—H⋯π and offset ππ inter­actions between adjacent benzyl groups; (b) A view of additional C—H⋯π inter­actions between dansyl amide moieties. Hydrogen atoms not involved in the hydrogen-bonding inter­actions are omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the existence of 324 deposited naphthalenedi­imide structures. Amongst those, 94 structures are metal complexes. Supra­molecular constructs based on naphthalenedi­imide moieties with potential applications have been reported; for example PUNPAR (Wu et al., 2015[Wu, Y., Nalluri, S. K. M., Young, R. M., Krzyaniak, M. D., Margulies, E. A., Stoddart, J. F. & Wasielewski, M. R. (2015). Angew. Chem. Int. Ed. 54, 11971-11977.]) and NUXJEX (Liu et al., 2014[Liu, Z., Liu, G., Wu, Y., Cao, D., Sun, J., Schneebeli, S. T., Nassar, M. S., Mirkin, C. A. & Stoddart, J. F. (2014). J. Am. Chem. Soc. 136, 16651-16660.]) exhibit the formation of supra­molecular nanotubes through cooperative [C—H⋯O=C] inter­actions. In the same way, pseudorotaxanes BALVIU and GUNPEL (Colquhoun, et al., 2010[Colquhoun, H. M., Zhu, Z., Williams, D. J., Drew, M. G. B., Cardin, C. J., Gan, Y., Crawford, A. G. & Marder, T. B. (2010). Chem. Eur. J. 16, 907-918.]) and catenanes IVUNUI (Fallon, et al., 2004[Fallon, G. D., Lee, M. A.-P., Langford, S. J. & Nichols, P. J. (2004). Org. Lett. 6, 655-658.]), SUJZIG (Hamilton et al., 1998[Hamilton, D. G., Feeder, N., Teat, S. J. & Sanders, J. K. M. (1998). New J. Chem. 22, 1019-1021.]) and WATYAR (Hansen et al., 2000[Hansen, J. G., Feeder, N., Hamilton, D. G., Gunter, M. J., Becher, J. & Sanders, J. K. M. (2000). Org. Lett. 2, 449-452.]) have been prepared. Naphthalenedi­imides have also been used in mol­ecular recognition [HIRLAX (Schneebeli et al., 2013[Schneebeli, S. T., Frasconi, M., Liu, Z., Wu, Y., Gardner, D. M., Strutt, N. L., Cheng, C., Carmieli, R., Wasielewski, M. R. & Stoddart, J. F. (2013). Angew. Chem. Int. Ed. 52, 13100-13104.]), MUVJUJ (Shimizu, 2010[Shimizu, K. D. (2010). Nat. Chem. 2, 612-613.]), PUBPAE (Koshkakaryan et al., 2009[Koshkakaryan, G., Klivansky, L. M., Cao, D., Snauko, M., Teat, S. J., Struppe, J. O. & Liu, Y. (2009). J. Am. Chem. Soc. 131, 2078-2079.]) and RULWUS (Ono et al., 2015[Ono, T., Sugimoto, M. & Hisaeda, Y. (2015). J. Am. Chem. Soc. 137, 9519-9522.])].

5. Synthesis and crystallization

The title compound (I)[link] was prepared from 2,7-bis­(2-benzyl­amino­eth­yl)naphthalenedi­imide (II), which was synthesized as follows. To a stirred solution of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride (0.5 g, 1.86 mmol) in toluene (25 mL) was added N-benzyl­ethyl­endi­amine (0.56 mL, 0.56 g, 3.73 mmol) followed by the addition of tri­ethyl­amine (0.52 mL, 0.377 g, 3.73 mmol). The reaction mixture was heated to reflux with azeotropic removal of water using a Dean–Stark trap, for 24 h. The solution was cooled and the solvent was removed under reduced pressure. The resultant oil was purified by column chromatography on silica gel (CH2Cl2–MeOH 95:05). Compound (II) was obtained as a yellow solid (0.777 g, 78%). M.p. 482–484 K. IR (neat): 3314, 2817, 1700, 1655, 1579, 1454 cm−1. RMN 1H (400 MHz, CDCl3) δ: 1.59 (s, 2H, NH), 3.03 (t, J = 6.4 Hz, 4H, CH2NH), 3.84 (s, 4H, CH2Ph), 4.38 (t, J = 6.4 Hz, 4H, NCH2), 7.16–7.30 (m, 10H, Haromatic), 8.74 (s, 4H, Haromatic). RMN 13C (100 MHz, CDCl3) δ: 40.6 (2C, NCH2), 47.0 (2C, CH2NH), 53.7 (2C, CH2Ph), 126.8 (4C), 126.9 (2C), 127.1 (2C), 128.3 (4C), 128.5 (4C), 131.2 (4C), 140.4 (2C), 163.2 (C=O). MS (FAB+): m/z (%) 533 (37) [M]; HRMS (FAB+): calculated for C32H29O4N4 [M], m/z 533.2189; found for [M], m/z 533.2142.

Synthesis of N,N′-bis[2-((benzyl){[5-(di­methyl­amino)naphtha­len-1-yl]sulfonyl}amino)ethyl]naphthalene-1,8:4,5-tetracarboximide 1,2-di­chloro­benzene tris­olvate (I)[link]. A mixture of 2,7-bis­(2-benzyl­amino­eth­yl)naphthalenedi­imide (II) (0.5 g, 0.937 mmol), dansyl chloride (0.505 g, l.874 mmol) and K2CO3 (0.259 g, 1.874 mmol) in chloro­form/water (4:1) (10 mL) was stirred at room temperature for 20 h. The organic layer was extracted with di­chloro­methane (2 x 20 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. Further purification was performed by flash chromatography on silica gel (CH2Cl2–MeOH 95:5). After treatment with diethyl ether, the unsolvated title compound was obtained as a yellow solid (0.936 g, 100%). Crystallization from a chloro­form:1,2-di­chloro­benzene mixture afforded suitable crystals of the solvated compound (I)[link] for the X-ray crystallographic analysis. M.p. 516–517 K. IR (neat): cm−1. RMN 1H (400 MHz, CDCl3) δ: 2.59 [s, 12H, (CH3)2N], 3.69 (t, J = 5.4 Hz, 4H, CH2NSO2), 4.28 (t, J = 5.4 Hz, 4H, CH2NCO), 4.85 (s, 4H, CH2Ph), 6.73 (d, J = 7.2 Hz, 2H, Haromatic), 7.18 (dd, J = 8.4, 7.2 Hz, 2H, Haromatic), 7.22–7.29 (m, 12H, Haromatic), 7.89 (d, J = 8.4 Hz, 2H, Haromatic), 7.97 (t, J = 8.8 Hz, 2H, Haromatic), 8.08 (dd, J = 7.2, 1.2 Hz, 2H, Haromatic), 8.42 (s, 4H, Haromatic). RMN 13C (100 MHz, CDCl3) δ: 37.5 (2C, CH2NCO), 43.1 (2C, CH2NSO2), 45.3 (4C, (CH3)2N), 49.9 (2C, CH2Ph), 114.4 (2C), 119.1 (2C), 123.0 (2C), 125.9 (4C),126.3 (2C), 128.1 (2C), 128.3 (2C), 128.9 (4C), 129.1 (4C), 129.2 (2C), 129.7 (2C), 130.1 (2C), 130.5 (2C), 130.6 (4C), 134.9 (2C), 135.6 (2C), 151.3 (2C), 162.9 (C=O). MS (FAB+): m/z (%) 999 (31) [M + H]+; HRMS (FAB+): calculated for C21H19O2N2 [M + H]+, m/z 999.3210; found for [M + H]+, m/z 999.3365. UV/Vis three bands CH3Cl: λ nm (, M−1 cm−1): 350 (24698), 362 (25362), 383 (29604).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.[link] Aromatic, methyl­ene and methyl H atoms were positioned geometrically and were constrained using the riding-model approximation [C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.5Ueq(C) for other H atoms].

Table 2
Experimental details

Crystal data
Chemical formula C56H50N6O8S2·3C6H4Cl2
Mr 1440.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.17737 (14), 17.2876 (2), 17.8916 (2)
α, β, γ (°) 110.9544 (12), 96.2760 (11), 103.5159 (10)
V3) 3341.91 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.44
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, EosS2
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.874, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 54279, 13086, 11914
Rint 0.026
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.03
No. of reflections 13086
No. of parameters 869
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.45
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N,N'-Bis[2-((benzyl){[5-(dimethylamino)naphthalen-1-yl]sulfonyl}amino)ethyl]naphthalene-1,8:4,5-tetracarboximide 1,2-dichlorobenzene trisolvate top
Crystal data top
C56H50N6O8S2·3C6H4Cl2F(000) = 1492
Mr = 1440.11Dx = 1.431 Mg m3
Triclinic, P1Melting point = 516–517 K
a = 12.17737 (14) ÅCu Kα radiation, λ = 1.54184 Å
b = 17.2876 (2) ÅCell parameters from 29431 reflections
c = 17.8916 (2) Åθ = 2.9–72.6°
α = 110.9544 (12)°µ = 3.44 mm1
β = 96.2760 (11)°T = 100 K
γ = 103.5159 (10)°Prism, orange
V = 3341.91 (8) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova, Dual, Cu at zero, EosS2
diffractometer
13086 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source11914 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 8.0769 pixels mm-1θmax = 73.0°, θmin = 2.7°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2121
Tmin = 0.874, Tmax = 1.000l = 2122
54279 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.056P)2 + 1.406P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
13086 reflectionsΔρmax = 0.74 e Å3
869 parametersΔρmin = 0.45 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C12(H12A,H12B), C11(H11A,H11B), C20(H20A,H20B), C39(H39A,H39B), C48(H48A, H48B), C40(H40A,H40B) 2.b Aromatic/amide H refined with riding coordinates: C2(H2), C18(H18), C4(H4), C23(H23), C19(H19), C3(H3), C22(H22), C9(H9), C25(H25), C8(H8), C73(H73), C7(H7), C74(H74), C24(H24), C26(H26), C71(H71), C72(H72), C47(H47), C32(H32), C30(H30), C62(H62), C46(H46), C51(H51), C36(H36), C50(H50), C37(H37), C31(H31), C61(H61), C54(H54), C35(H35), C60(H60), C53(H53), C52(H52), C59(H59), C65(H65), C67(H67), C68(H68), C66(H66) 2.c Idealised Me refined as rotating group: C28(H28A,H28B,H28C), C27(H27A,H27B,H27C), C56(H56A,H56B,H56C), C55(H55A,H55B, H55C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19073 (3)0.75685 (2)0.24683 (2)0.01493 (8)
Cl60.67288 (4)0.57176 (3)0.54497 (3)0.03455 (10)
Cl50.69686 (4)0.73661 (3)0.50338 (3)0.04428 (13)
O30.08861 (9)0.89558 (7)0.24342 (6)0.0210 (2)
O10.19908 (9)0.77111 (7)0.17289 (6)0.0212 (2)
O40.08934 (9)0.72885 (6)0.39083 (6)0.0194 (2)
O20.26566 (9)0.71343 (7)0.27162 (6)0.0197 (2)
N20.08971 (10)0.81240 (7)0.31685 (7)0.0149 (2)
N10.05830 (10)0.70359 (7)0.24087 (7)0.0152 (2)
C130.07211 (12)0.89229 (9)0.31046 (9)0.0157 (3)
C10.21767 (11)0.86101 (9)0.32637 (9)0.0148 (3)
C20.22425 (12)0.92925 (9)0.30290 (9)0.0185 (3)
H20.21120.91900.24640.022*
N30.35385 (11)1.06595 (8)0.61154 (8)0.0203 (3)
C150.01802 (11)0.96231 (9)0.46334 (8)0.0133 (3)
C180.01783 (12)0.87352 (9)0.54171 (9)0.0170 (3)
H180.02900.81810.54370.020*
C40.27689 (12)1.02957 (9)0.44374 (9)0.0181 (3)
H40.29671.08730.48340.022*
C160.03523 (11)0.88034 (9)0.46729 (9)0.0139 (3)
C230.14700 (13)0.41817 (10)0.06594 (10)0.0226 (3)
H230.22580.38480.04450.027*
C170.07277 (11)0.80072 (9)0.39066 (9)0.0148 (3)
C190.01643 (12)0.94848 (9)0.61479 (9)0.0177 (3)
H190.02700.94350.66610.021*
C120.13094 (12)0.73496 (9)0.23968 (9)0.0169 (3)
H12A0.19310.74190.20430.020*
H12B0.16420.68380.25170.020*
C50.27561 (11)0.96116 (9)0.47012 (9)0.0148 (3)
C100.23834 (11)0.87377 (9)0.41091 (9)0.0140 (3)
C210.00149 (12)0.54144 (9)0.17070 (9)0.0157 (3)
C140.03475 (12)0.97082 (9)0.38777 (9)0.0150 (3)
C30.25032 (13)1.01428 (9)0.36250 (10)0.0202 (3)
H30.24951.06080.34630.024*
C60.30788 (11)0.97820 (9)0.55544 (9)0.0166 (3)
C220.11631 (13)0.49109 (9)0.13944 (9)0.0186 (3)
H220.17410.50650.16830.022*
C90.22245 (12)0.80530 (9)0.43852 (9)0.0168 (3)
H90.19600.74680.40000.020*
C110.03476 (12)0.71921 (9)0.19387 (8)0.0155 (3)
H11A0.06760.66850.14120.019*
H11B0.00200.77020.18150.019*
C250.05176 (14)0.44374 (10)0.05536 (10)0.0241 (3)
H250.10970.42730.02720.029*
C80.24521 (13)0.82367 (10)0.52047 (9)0.0202 (3)
H80.23060.77740.53840.024*
C730.43748 (14)0.73761 (12)0.62140 (11)0.0321 (4)
H730.38670.77180.63710.039*
C70.28998 (13)0.90977 (10)0.57924 (9)0.0201 (3)
H70.30790.92050.63570.024*
C740.51894 (16)0.75901 (11)0.57842 (11)0.0300 (4)
H740.52430.80780.56470.036*
C690.59299 (14)0.70853 (10)0.55541 (10)0.0243 (3)
C200.03168 (12)0.62007 (9)0.25087 (9)0.0163 (3)
H20A0.03260.61660.28020.020*
H20B0.10020.61890.28530.020*
C700.58373 (13)0.63686 (10)0.57470 (10)0.0226 (3)
C240.06324 (14)0.39416 (10)0.02411 (10)0.0234 (3)
H240.08420.34410.02560.028*
C280.35179 (15)1.08222 (11)0.69698 (10)0.0276 (3)
H28A0.27501.05240.70090.041*
H28B0.36921.14470.72860.041*
H28C0.40981.06060.71890.041*
C260.08184 (13)0.51720 (9)0.12751 (9)0.0199 (3)
H260.16030.55150.14780.024*
C710.50229 (16)0.61617 (12)0.61816 (11)0.0308 (4)
H710.49650.56730.63180.037*
C270.47087 (14)1.10772 (12)0.60510 (11)0.0308 (4)
H27A0.52701.08550.62830.046*
H27B0.49041.17060.63540.046*
H27C0.47291.09480.54740.046*
C720.42945 (15)0.66686 (13)0.64163 (11)0.0346 (4)
H720.37380.65300.67170.042*
S20.17486 (3)0.76401 (2)0.74465 (2)0.01531 (8)
Cl10.74045 (3)0.73768 (3)0.03177 (3)0.03251 (10)
Cl20.67800 (3)0.56374 (2)0.06086 (3)0.03107 (10)
O70.11632 (9)0.89353 (7)0.74506 (6)0.0215 (2)
O50.17643 (9)0.78095 (7)0.67160 (6)0.0225 (2)
O80.10021 (9)0.72829 (6)0.89241 (6)0.0199 (2)
O60.25383 (9)0.72127 (7)0.76537 (7)0.0212 (2)
N50.10660 (10)0.81110 (8)0.81829 (7)0.0157 (2)
N40.04457 (10)0.70822 (7)0.74075 (7)0.0154 (2)
C470.03877 (12)0.94984 (9)1.11372 (9)0.0171 (3)
H470.05850.94541.16460.020*
C410.09349 (12)0.89094 (9)0.81190 (9)0.0163 (3)
C380.23320 (11)0.87835 (9)0.91056 (9)0.0141 (3)
C440.03418 (11)0.88033 (9)0.96747 (9)0.0144 (3)
C490.00293 (12)0.54617 (9)0.67090 (9)0.0161 (3)
C320.26568 (12)1.03448 (9)0.94680 (9)0.0175 (3)
H320.28661.09180.98740.021*
C290.20294 (11)0.86685 (9)0.82676 (9)0.0149 (3)
N60.36162 (11)1.06867 (8)1.11139 (8)0.0201 (3)
C300.20231 (12)0.93567 (9)0.80535 (9)0.0184 (3)
H300.18330.92630.74930.022*
C430.02205 (11)0.96206 (9)0.96352 (8)0.0136 (3)
C570.61803 (13)0.70800 (10)0.06827 (9)0.0209 (3)
C620.54740 (14)0.76180 (10)0.08531 (10)0.0250 (3)
H620.56450.81310.07500.030*
C460.00313 (12)0.87448 (9)1.04134 (9)0.0161 (3)
H460.01010.81941.04320.019*
C450.08202 (11)0.80018 (9)0.89182 (9)0.0151 (3)
C420.05138 (12)0.96965 (9)0.88864 (9)0.0153 (3)
C390.05221 (12)0.72071 (9)0.69431 (9)0.0161 (3)
H39A0.08430.66950.64190.019*
H39B0.02330.77190.68140.019*
C510.14298 (14)0.42729 (10)0.55784 (10)0.0250 (3)
H510.22120.39680.53060.030*
C480.02496 (12)0.62465 (9)0.75062 (9)0.0169 (3)
H48A0.03950.61800.77930.020*
H48B0.09510.62660.78580.020*
C360.25694 (13)0.82636 (9)1.01796 (9)0.0196 (3)
H360.24710.77961.03510.024*
C400.14825 (12)0.73367 (9)0.74141 (9)0.0178 (3)
H40A0.21260.73940.70690.021*
H40B0.17830.68210.75360.021*
C500.11737 (13)0.50007 (9)0.63098 (10)0.0202 (3)
H500.17840.51840.65380.024*
C340.31473 (11)0.98141 (9)1.05462 (9)0.0163 (3)
C370.22504 (12)0.80914 (9)0.93661 (9)0.0168 (3)
H370.19740.75090.89760.020*
C580.59165 (13)0.63204 (10)0.08181 (9)0.0203 (3)
C310.22989 (12)1.02016 (9)0.86658 (9)0.0191 (3)
H310.22361.06700.85210.023*
C610.45182 (14)0.74021 (11)0.11743 (10)0.0273 (3)
H610.40380.77720.12980.033*
C540.08498 (13)0.51758 (9)0.63686 (10)0.0209 (3)
H540.16330.54850.66330.025*
C330.27227 (11)0.96537 (9)0.97068 (9)0.0148 (3)
C560.37005 (14)1.08286 (11)1.19736 (10)0.0267 (3)
H56A0.29631.05211.20480.040*
H56B0.38821.14501.23060.040*
H56C0.43141.06101.21460.040*
C350.30409 (13)0.91200 (10)1.07700 (9)0.0194 (3)
H350.32880.92191.13280.023*
C600.42596 (14)0.66501 (11)0.13160 (11)0.0275 (3)
H600.36050.65070.15390.033*
C530.05946 (15)0.44438 (10)0.56466 (10)0.0251 (3)
H530.12020.42500.54250.030*
C520.05465 (15)0.39939 (10)0.52484 (10)0.0257 (3)
H520.07210.34960.47510.031*
C590.49533 (14)0.61065 (10)0.11340 (10)0.0243 (3)
H590.47700.55870.12250.029*
C550.47316 (14)1.11330 (12)1.09971 (11)0.0323 (4)
H55A0.53401.09211.11870.048*
H55B0.49141.17581.13120.048*
H55C0.46821.10171.04150.048*
Cl40.30187 (3)0.43343 (3)0.69251 (3)0.03212 (10)
Cl30.40852 (4)0.62180 (3)0.83265 (3)0.03876 (11)
C630.49571 (14)0.55818 (10)0.79349 (10)0.0242 (3)
C650.52000 (14)0.42501 (11)0.70186 (11)0.0269 (3)
H650.48780.36850.65990.032*
C640.44887 (13)0.47549 (10)0.73244 (10)0.0226 (3)
C670.68559 (14)0.54154 (12)0.79409 (12)0.0313 (4)
H670.76670.56410.81510.038*
C680.61463 (15)0.59036 (11)0.82303 (11)0.0302 (4)
H680.64690.64730.86410.036*
C660.63803 (15)0.45730 (12)0.73272 (12)0.0322 (4)
H660.68700.42270.71260.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01687 (16)0.01485 (15)0.01071 (16)0.00375 (12)0.00225 (12)0.00316 (13)
Cl60.0310 (2)0.0289 (2)0.0372 (2)0.01418 (16)0.00131 (17)0.00403 (18)
Cl50.0503 (3)0.0319 (2)0.0516 (3)0.00476 (19)0.0321 (2)0.0162 (2)
O30.0307 (6)0.0202 (5)0.0120 (5)0.0091 (4)0.0009 (4)0.0061 (4)
O10.0241 (5)0.0239 (5)0.0123 (5)0.0032 (4)0.0045 (4)0.0057 (4)
O40.0258 (5)0.0134 (5)0.0168 (5)0.0037 (4)0.0036 (4)0.0050 (4)
O20.0198 (5)0.0201 (5)0.0182 (5)0.0089 (4)0.0034 (4)0.0046 (4)
N20.0169 (5)0.0141 (5)0.0111 (6)0.0045 (4)0.0008 (4)0.0026 (5)
N10.0160 (5)0.0129 (5)0.0151 (6)0.0031 (4)0.0000 (4)0.0053 (5)
C130.0171 (6)0.0164 (7)0.0126 (7)0.0062 (5)0.0016 (5)0.0043 (6)
C10.0128 (6)0.0142 (6)0.0134 (7)0.0019 (5)0.0005 (5)0.0030 (5)
C20.0194 (7)0.0205 (7)0.0145 (7)0.0039 (5)0.0002 (5)0.0079 (6)
N30.0178 (6)0.0194 (6)0.0144 (6)0.0007 (5)0.0001 (5)0.0001 (5)
C150.0117 (6)0.0154 (6)0.0132 (7)0.0053 (5)0.0029 (5)0.0053 (6)
C180.0202 (7)0.0145 (6)0.0178 (7)0.0059 (5)0.0042 (5)0.0077 (6)
C40.0170 (6)0.0138 (6)0.0199 (7)0.0023 (5)0.0014 (5)0.0048 (6)
C160.0127 (6)0.0150 (6)0.0136 (7)0.0050 (5)0.0027 (5)0.0047 (5)
C230.0232 (7)0.0163 (7)0.0226 (8)0.0006 (6)0.0023 (6)0.0066 (6)
C170.0139 (6)0.0166 (7)0.0136 (7)0.0049 (5)0.0025 (5)0.0055 (6)
C190.0229 (7)0.0189 (7)0.0125 (7)0.0070 (6)0.0029 (5)0.0073 (6)
C120.0188 (7)0.0148 (6)0.0123 (7)0.0036 (5)0.0007 (5)0.0016 (5)
C50.0113 (6)0.0165 (6)0.0147 (7)0.0033 (5)0.0022 (5)0.0046 (6)
C100.0118 (6)0.0156 (6)0.0138 (7)0.0044 (5)0.0020 (5)0.0050 (5)
C210.0211 (7)0.0130 (6)0.0136 (7)0.0058 (5)0.0022 (5)0.0060 (5)
C140.0151 (6)0.0161 (6)0.0139 (7)0.0063 (5)0.0022 (5)0.0051 (6)
C30.0224 (7)0.0156 (7)0.0225 (8)0.0038 (5)0.0009 (6)0.0096 (6)
C60.0122 (6)0.0192 (7)0.0139 (7)0.0031 (5)0.0013 (5)0.0028 (6)
C220.0201 (7)0.0163 (6)0.0195 (7)0.0057 (5)0.0034 (6)0.0070 (6)
C90.0191 (7)0.0150 (6)0.0139 (7)0.0036 (5)0.0018 (5)0.0044 (6)
C110.0192 (6)0.0144 (6)0.0111 (6)0.0046 (5)0.0002 (5)0.0041 (5)
C250.0292 (8)0.0214 (7)0.0215 (8)0.0097 (6)0.0094 (6)0.0058 (6)
C80.0245 (7)0.0202 (7)0.0179 (7)0.0057 (6)0.0041 (6)0.0104 (6)
C730.0235 (8)0.0393 (10)0.0249 (9)0.0132 (7)0.0023 (7)0.0013 (8)
C70.0220 (7)0.0249 (7)0.0119 (7)0.0066 (6)0.0020 (5)0.0064 (6)
C740.0367 (9)0.0268 (8)0.0255 (9)0.0121 (7)0.0035 (7)0.0084 (7)
C690.0245 (7)0.0234 (7)0.0206 (8)0.0029 (6)0.0062 (6)0.0058 (6)
C200.0217 (7)0.0132 (6)0.0133 (7)0.0049 (5)0.0026 (5)0.0049 (6)
C700.0207 (7)0.0224 (7)0.0187 (8)0.0052 (6)0.0005 (6)0.0033 (6)
C240.0339 (8)0.0147 (7)0.0160 (7)0.0048 (6)0.0017 (6)0.0021 (6)
C280.0292 (8)0.0279 (8)0.0150 (8)0.0050 (7)0.0011 (6)0.0006 (6)
C260.0205 (7)0.0174 (7)0.0197 (7)0.0048 (6)0.0033 (6)0.0056 (6)
C710.0371 (9)0.0308 (9)0.0239 (9)0.0053 (7)0.0069 (7)0.0131 (7)
C270.0218 (8)0.0295 (8)0.0254 (9)0.0051 (6)0.0004 (7)0.0023 (7)
C720.0275 (8)0.0441 (10)0.0253 (9)0.0039 (8)0.0111 (7)0.0085 (8)
S20.01726 (16)0.01544 (16)0.01142 (16)0.00420 (12)0.00325 (12)0.00358 (13)
Cl10.02762 (19)0.0374 (2)0.0291 (2)0.00037 (16)0.01108 (16)0.01363 (18)
Cl20.02618 (19)0.02378 (19)0.0357 (2)0.01054 (15)0.00128 (16)0.00270 (17)
O70.0302 (6)0.0203 (5)0.0139 (5)0.0094 (4)0.0009 (4)0.0064 (4)
O50.0268 (5)0.0241 (5)0.0130 (5)0.0027 (4)0.0052 (4)0.0060 (4)
O80.0265 (5)0.0138 (5)0.0184 (5)0.0043 (4)0.0055 (4)0.0062 (4)
O60.0199 (5)0.0214 (5)0.0211 (5)0.0095 (4)0.0042 (4)0.0050 (4)
N50.0172 (5)0.0146 (5)0.0140 (6)0.0051 (4)0.0020 (4)0.0043 (5)
N40.0172 (6)0.0133 (5)0.0147 (6)0.0039 (4)0.0009 (5)0.0055 (5)
C470.0200 (7)0.0192 (7)0.0141 (7)0.0073 (5)0.0032 (5)0.0081 (6)
C410.0170 (6)0.0169 (7)0.0154 (7)0.0066 (5)0.0027 (5)0.0060 (6)
C380.0119 (6)0.0157 (6)0.0138 (7)0.0037 (5)0.0022 (5)0.0052 (5)
C440.0132 (6)0.0153 (6)0.0155 (7)0.0055 (5)0.0039 (5)0.0060 (6)
C490.0216 (7)0.0132 (6)0.0141 (7)0.0049 (5)0.0024 (5)0.0065 (6)
C320.0168 (6)0.0136 (6)0.0197 (7)0.0026 (5)0.0031 (5)0.0053 (6)
C290.0140 (6)0.0141 (6)0.0144 (7)0.0030 (5)0.0024 (5)0.0040 (5)
N60.0185 (6)0.0192 (6)0.0152 (6)0.0015 (5)0.0011 (5)0.0017 (5)
C300.0191 (7)0.0205 (7)0.0159 (7)0.0045 (5)0.0016 (5)0.0090 (6)
C430.0123 (6)0.0153 (6)0.0145 (7)0.0056 (5)0.0040 (5)0.0060 (6)
C570.0193 (7)0.0250 (7)0.0135 (7)0.0009 (6)0.0015 (6)0.0060 (6)
C620.0282 (8)0.0222 (7)0.0227 (8)0.0051 (6)0.0008 (6)0.0099 (6)
C460.0187 (6)0.0145 (6)0.0175 (7)0.0061 (5)0.0050 (5)0.0080 (6)
C450.0144 (6)0.0167 (7)0.0159 (7)0.0059 (5)0.0054 (5)0.0070 (6)
C420.0153 (6)0.0165 (7)0.0151 (7)0.0057 (5)0.0039 (5)0.0065 (6)
C390.0190 (7)0.0148 (6)0.0120 (7)0.0043 (5)0.0002 (5)0.0039 (5)
C510.0270 (8)0.0178 (7)0.0230 (8)0.0012 (6)0.0033 (6)0.0059 (6)
C480.0220 (7)0.0143 (6)0.0145 (7)0.0053 (5)0.0030 (5)0.0061 (6)
C360.0235 (7)0.0191 (7)0.0177 (7)0.0066 (6)0.0027 (6)0.0093 (6)
C400.0188 (7)0.0158 (6)0.0138 (7)0.0038 (5)0.0008 (5)0.0022 (6)
C500.0215 (7)0.0173 (7)0.0216 (8)0.0059 (6)0.0031 (6)0.0079 (6)
C340.0125 (6)0.0182 (7)0.0143 (7)0.0034 (5)0.0020 (5)0.0031 (6)
C370.0192 (7)0.0146 (6)0.0150 (7)0.0043 (5)0.0022 (5)0.0050 (6)
C580.0199 (7)0.0205 (7)0.0154 (7)0.0053 (6)0.0010 (6)0.0031 (6)
C310.0217 (7)0.0153 (6)0.0218 (8)0.0048 (5)0.0025 (6)0.0100 (6)
C610.0243 (8)0.0297 (8)0.0248 (9)0.0115 (7)0.0003 (6)0.0065 (7)
C540.0221 (7)0.0170 (7)0.0217 (8)0.0050 (6)0.0036 (6)0.0062 (6)
C330.0113 (6)0.0167 (6)0.0153 (7)0.0033 (5)0.0030 (5)0.0056 (6)
C560.0289 (8)0.0264 (8)0.0150 (8)0.0059 (6)0.0005 (6)0.0002 (6)
C350.0210 (7)0.0241 (7)0.0125 (7)0.0068 (6)0.0009 (5)0.0072 (6)
C600.0198 (7)0.0350 (9)0.0254 (8)0.0055 (6)0.0071 (6)0.0104 (7)
C530.0325 (8)0.0192 (7)0.0247 (8)0.0101 (6)0.0118 (7)0.0067 (6)
C520.0399 (9)0.0148 (7)0.0169 (8)0.0050 (6)0.0035 (7)0.0026 (6)
C590.0245 (7)0.0243 (8)0.0231 (8)0.0028 (6)0.0023 (6)0.0119 (7)
C550.0239 (8)0.0291 (8)0.0276 (9)0.0054 (7)0.0026 (7)0.0017 (7)
Cl40.01841 (17)0.0384 (2)0.0331 (2)0.00178 (15)0.00127 (15)0.01215 (18)
Cl30.0389 (2)0.0291 (2)0.0496 (3)0.01544 (17)0.0146 (2)0.0123 (2)
C630.0263 (8)0.0249 (8)0.0262 (8)0.0083 (6)0.0062 (6)0.0149 (7)
C650.0296 (8)0.0228 (8)0.0301 (9)0.0058 (6)0.0090 (7)0.0130 (7)
C640.0190 (7)0.0243 (7)0.0264 (8)0.0035 (6)0.0025 (6)0.0146 (7)
C670.0168 (7)0.0407 (10)0.0444 (11)0.0047 (7)0.0024 (7)0.0296 (9)
C680.0305 (8)0.0249 (8)0.0304 (9)0.0012 (7)0.0021 (7)0.0138 (7)
C660.0270 (8)0.0356 (9)0.0481 (11)0.0154 (7)0.0151 (8)0.0267 (9)
Geometric parameters (Å, º) top
S1—O11.4397 (11)O7—C411.2168 (18)
S1—O21.4361 (10)O8—C451.2146 (17)
S1—N11.6303 (12)N5—C411.3991 (18)
S1—C11.7789 (14)N5—C451.4049 (18)
Cl6—C701.7313 (16)N5—C401.4677 (18)
Cl5—C691.7308 (16)N4—C391.4694 (17)
O3—C131.2181 (18)N4—C481.4853 (17)
O4—C171.2124 (17)C47—H470.9500
N2—C131.3952 (18)C47—C461.404 (2)
N2—C171.4065 (18)C47—C42ii1.3808 (19)
N2—C121.4706 (17)C41—C421.478 (2)
N1—C111.4701 (17)C38—C291.433 (2)
N1—C201.4834 (17)C38—C371.4186 (19)
C13—C141.4812 (19)C38—C331.4292 (19)
C1—C21.376 (2)C44—C431.4139 (19)
C1—C101.432 (2)C44—C461.380 (2)
C2—H20.9500C44—C451.483 (2)
C2—C31.409 (2)C49—C481.5117 (19)
N3—C61.4189 (19)C49—C501.394 (2)
N3—C281.456 (2)C49—C541.391 (2)
N3—C271.476 (2)C32—H320.9500
C15—C15i1.413 (3)C32—C311.367 (2)
C15—C161.4118 (19)C32—C331.4208 (19)
C15—C141.410 (2)C29—C301.376 (2)
C18—H180.9500N6—C341.4169 (19)
C18—C161.376 (2)N6—C561.456 (2)
C18—C191.407 (2)N6—C551.474 (2)
C4—H40.9500C30—H300.9500
C4—C51.4190 (19)C30—C311.411 (2)
C4—C31.367 (2)C43—C43ii1.416 (3)
C16—C171.4841 (19)C43—C421.408 (2)
C23—H230.9500C57—C621.388 (2)
C23—C221.395 (2)C57—C581.391 (2)
C23—C241.384 (2)C62—H620.9500
C19—H190.9500C62—C611.386 (2)
C19—C14i1.3787 (19)C46—H460.9500
C12—H12A0.9900C42—C47ii1.3808 (19)
C12—H12B0.9900C39—H39A0.9900
C12—C111.522 (2)C39—H39B0.9900
C5—C101.4285 (19)C39—C401.527 (2)
C5—C61.437 (2)C51—H510.9500
C10—C91.4194 (19)C51—C501.394 (2)
C21—C221.392 (2)C51—C521.384 (2)
C21—C201.5134 (19)C48—H48A0.9900
C21—C261.393 (2)C48—H48B0.9900
C14—C19i1.3787 (19)C36—H360.9500
C3—H30.9500C36—C371.368 (2)
C6—C71.374 (2)C36—C351.410 (2)
C22—H220.9500C40—H40A0.9900
C9—H90.9500C40—H40B0.9900
C9—C81.365 (2)C50—H500.9500
C11—H11A0.9900C34—C331.437 (2)
C11—H11B0.9900C34—C351.378 (2)
C25—H250.9500C37—H370.9500
C25—C241.390 (2)C58—C591.387 (2)
C25—C261.386 (2)C31—H310.9500
C8—H80.9500C61—H610.9500
C8—C71.412 (2)C61—C601.384 (2)
C73—H730.9500C54—H540.9500
C73—C741.382 (3)C54—C531.388 (2)
C73—C721.380 (3)C56—H56A0.9800
C7—H70.9500C56—H56B0.9800
C74—H740.9500C56—H56C0.9800
C74—C691.391 (2)C35—H350.9500
C69—C701.384 (2)C60—H600.9500
C20—H20A0.9900C60—C591.384 (2)
C20—H20B0.9900C53—H530.9500
C70—C711.385 (2)C53—C521.388 (2)
C24—H240.9500C52—H520.9500
C28—H28A0.9800C59—H590.9500
C28—H28B0.9800C55—H55A0.9800
C28—H28C0.9800C55—H55B0.9800
C26—H260.9500C55—H55C0.9800
C71—H710.9500Cl4—C641.7274 (15)
C71—C721.383 (3)Cl3—C631.7278 (17)
C27—H27A0.9800C63—C641.388 (2)
C27—H27B0.9800C63—C681.390 (2)
C27—H27C0.9800C65—H650.9500
C72—H720.9500C65—C641.388 (2)
S2—O51.4391 (11)C65—C661.383 (2)
S2—O61.4347 (11)C67—H670.9500
S2—N41.6323 (12)C67—C681.361 (3)
S2—C291.7815 (14)C67—C661.409 (3)
Cl1—C571.7341 (15)C68—H680.9500
Cl2—C581.7293 (15)C66—H660.9500
O1—S1—N1109.76 (6)C39—N4—S2117.29 (9)
O1—S1—C1106.07 (7)C39—N4—C48117.42 (11)
O2—S1—O1118.32 (7)C48—N4—S2120.32 (9)
O2—S1—N1107.61 (6)C46—C47—H47119.8
O2—S1—C1108.46 (6)C42ii—C47—H47119.8
N1—S1—C1105.96 (6)C42ii—C47—C46120.35 (13)
C13—N2—C17125.20 (12)O7—C41—N5120.01 (13)
C13—N2—C12116.53 (11)O7—C41—C42122.72 (13)
C17—N2—C12118.27 (11)N5—C41—C42117.27 (12)
C11—N1—S1117.28 (9)C37—C38—C29124.03 (13)
C11—N1—C20117.11 (11)C37—C38—C33118.94 (13)
C20—N1—S1121.14 (9)C33—C38—C29117.03 (12)
O3—C13—N2120.21 (13)C43—C44—C45119.78 (12)
O3—C13—C14122.57 (13)C46—C44—C43120.51 (13)
N2—C13—C14117.22 (12)C46—C44—C45119.70 (12)
C2—C1—S1116.75 (11)C50—C49—C48120.56 (13)
C2—C1—C10121.69 (13)C54—C49—C48120.66 (13)
C10—C1—S1121.45 (10)C54—C49—C50118.77 (14)
C1—C2—H2119.9C31—C32—H32119.3
C1—C2—C3120.12 (13)C31—C32—C33121.38 (13)
C3—C2—H2119.9C33—C32—H32119.3
C6—N3—C28115.76 (13)C38—C29—S2121.66 (10)
C6—N3—C27113.39 (12)C30—C29—S2116.46 (11)
C28—N3—C27109.56 (13)C30—C29—C38121.72 (13)
C16—C15—C15i119.37 (16)C34—N6—C56115.73 (13)
C14—C15—C15i119.12 (15)C34—N6—C55113.73 (12)
C14—C15—C16121.51 (13)C56—N6—C55109.64 (13)
C16—C18—H18120.0C29—C30—H30120.0
C16—C18—C19120.10 (13)C29—C30—C31120.10 (13)
C19—C18—H18120.0C31—C30—H30120.0
C5—C4—H4119.2C44—C43—C43ii119.12 (16)
C3—C4—H4119.2C42—C43—C44121.49 (13)
C3—C4—C5121.53 (13)C42—C43—C43ii119.39 (16)
C15—C16—C17119.85 (12)C62—C57—Cl1119.23 (12)
C18—C16—C15120.56 (13)C62—C57—C58120.14 (14)
C18—C16—C17119.59 (12)C58—C57—Cl1120.62 (12)
C22—C23—H23119.8C57—C62—H62120.2
C24—C23—H23119.8C61—C62—C57119.58 (15)
C24—C23—C22120.31 (14)C61—C62—H62120.2
O4—C17—N2121.06 (13)C47—C46—H46119.9
O4—C17—C16122.35 (13)C44—C46—C47120.15 (13)
N2—C17—C16116.59 (12)C44—C46—H46119.9
C18—C19—H19119.9O8—C45—N5120.90 (13)
C14i—C19—C18120.23 (13)O8—C45—C44122.48 (13)
C14i—C19—H19119.9N5—C45—C44116.62 (12)
N2—C12—H12A109.2C47ii—C42—C41119.85 (13)
N2—C12—H12B109.2C47ii—C42—C43120.46 (13)
N2—C12—C11112.25 (11)C43—C42—C41119.68 (12)
H12A—C12—H12B107.9N4—C39—H39A109.1
C11—C12—H12A109.2N4—C39—H39B109.1
C11—C12—H12B109.2N4—C39—C40112.29 (11)
C4—C5—C10119.27 (13)H39A—C39—H39B107.9
C4—C5—C6121.13 (13)C40—C39—H39A109.1
C10—C5—C6119.57 (13)C40—C39—H39B109.1
C5—C10—C1117.12 (12)C50—C51—H51120.0
C9—C10—C1123.99 (13)C52—C51—H51119.9
C9—C10—C5118.88 (13)C52—C51—C50120.10 (15)
C22—C21—C20120.26 (13)N4—C48—C49114.11 (11)
C22—C21—C26118.75 (13)N4—C48—H48A108.7
C26—C21—C20120.98 (13)N4—C48—H48B108.7
C15—C14—C13119.63 (12)C49—C48—H48A108.7
C19i—C14—C13119.76 (13)C49—C48—H48B108.7
C19i—C14—C15120.61 (13)H48A—C48—H48B107.6
C2—C3—H3120.1C37—C36—H36119.3
C4—C3—C2119.80 (13)C37—C36—C35121.49 (13)
C4—C3—H3120.1C35—C36—H36119.3
N3—C6—C5117.79 (13)N5—C40—C39111.48 (11)
C7—C6—N3123.13 (13)N5—C40—H40A109.3
C7—C6—C5119.05 (13)N5—C40—H40B109.3
C23—C22—H22119.8C39—C40—H40A109.3
C21—C22—C23120.39 (14)C39—C40—H40B109.3
C21—C22—H22119.8H40A—C40—H40B108.0
C10—C9—H9120.0C49—C50—H50119.8
C8—C9—C10119.91 (13)C51—C50—C49120.50 (14)
C8—C9—H9120.0C51—C50—H50119.8
N1—C11—C12112.44 (11)N6—C34—C33118.05 (13)
N1—C11—H11A109.1C35—C34—N6122.96 (13)
N1—C11—H11B109.1C35—C34—C33118.94 (13)
C12—C11—H11A109.1C38—C37—H37120.0
C12—C11—H11B109.1C36—C37—C38119.94 (13)
H11A—C11—H11B107.8C36—C37—H37120.0
C24—C25—H25120.0C57—C58—Cl2121.08 (12)
C26—C25—H25120.0C59—C58—Cl2119.07 (12)
C26—C25—C24120.04 (15)C59—C58—C57119.85 (14)
C9—C8—H8119.2C32—C31—C30119.85 (13)
C9—C8—C7121.58 (13)C32—C31—H31120.1
C7—C8—H8119.2C30—C31—H31120.1
C74—C73—H73119.8C62—C61—H61119.8
C72—C73—H73119.8C60—C61—C62120.36 (15)
C72—C73—C74120.47 (16)C60—C61—H61119.8
C6—C7—C8120.58 (14)C49—C54—H54119.6
C6—C7—H7119.7C53—C54—C49120.74 (14)
C8—C7—H7119.7C53—C54—H54119.6
C73—C74—H74120.2C38—C33—C34119.53 (13)
C73—C74—C69119.51 (16)C32—C33—C38119.41 (13)
C69—C74—H74120.2C32—C33—C34121.04 (13)
C74—C69—Cl5119.49 (13)N6—C56—H56A109.5
C70—C69—Cl5120.55 (13)N6—C56—H56B109.5
C70—C69—C74119.96 (15)N6—C56—H56C109.5
N1—C20—C21113.67 (11)H56A—C56—H56B109.5
N1—C20—H20A108.8H56A—C56—H56C109.5
N1—C20—H20B108.8H56B—C56—H56C109.5
C21—C20—H20A108.8C36—C35—H35119.7
C21—C20—H20B108.8C34—C35—C36120.66 (13)
H20A—C20—H20B107.7C34—C35—H35119.7
C69—C70—Cl6120.85 (13)C61—C60—H60120.0
C69—C70—C71120.14 (15)C59—C60—C61120.07 (15)
C71—C70—Cl6119.01 (13)C59—C60—H60120.0
C23—C24—C25119.59 (14)C54—C53—H53119.9
C23—C24—H24120.2C52—C53—C54120.14 (15)
C25—C24—H24120.2C52—C53—H53119.9
N3—C28—H28A109.5C51—C52—C53119.75 (15)
N3—C28—H28B109.5C51—C52—H52120.1
N3—C28—H28C109.5C53—C52—H52120.1
H28A—C28—H28B109.5C58—C59—H59120.0
H28A—C28—H28C109.5C60—C59—C58119.98 (15)
H28B—C28—H28C109.5C60—C59—H59120.0
C21—C26—H26119.6N6—C55—H55A109.5
C25—C26—C21120.89 (14)N6—C55—H55B109.5
C25—C26—H26119.6N6—C55—H55C109.5
C70—C71—H71120.1H55A—C55—H55B109.5
C72—C71—C70119.83 (16)H55A—C55—H55C109.5
C72—C71—H71120.1H55B—C55—H55C109.5
N3—C27—H27A109.5C64—C63—Cl3120.99 (12)
N3—C27—H27B109.5C64—C63—C68119.41 (15)
N3—C27—H27C109.5C68—C63—Cl3119.61 (13)
H27A—C27—H27B109.5C64—C65—H65120.2
H27A—C27—H27C109.5C66—C65—H65120.2
H27B—C27—H27C109.5C66—C65—C64119.70 (16)
C73—C72—C71120.08 (16)C63—C64—Cl4121.09 (12)
C73—C72—H72120.0C65—C64—Cl4118.60 (13)
C71—C72—H72120.0C65—C64—C63120.31 (14)
O5—S2—N4109.36 (6)C68—C67—H67120.2
O5—S2—C29105.88 (7)C68—C67—C66119.59 (15)
O6—S2—O5118.74 (7)C66—C67—H67120.2
O6—S2—N4107.79 (6)C63—C68—H68119.5
O6—S2—C29108.16 (6)C67—C68—C63121.05 (16)
N4—S2—C29106.27 (6)C67—C68—H68119.5
C41—N5—C45125.05 (12)C65—C66—C67119.94 (16)
C41—N5—C40116.49 (12)C65—C66—H66120.0
C45—N5—C40118.46 (11)C67—C66—H66120.0
S1—N1—C11—C12132.54 (10)Cl2—C58—C59—C60179.14 (13)
S1—N1—C20—C2194.83 (13)O7—C41—C42—C47ii1.3 (2)
S1—C1—C2—C3177.24 (11)O7—C41—C42—C43177.36 (13)
S1—C1—C10—C5171.10 (10)O5—S2—N4—C3929.11 (12)
S1—C1—C10—C99.81 (19)O5—S2—N4—C48125.32 (11)
Cl6—C70—C71—C72179.28 (14)O5—S2—C29—C38165.99 (11)
Cl5—C69—C70—Cl61.77 (19)O5—S2—C29—C309.43 (13)
Cl5—C69—C70—C71178.36 (13)O6—S2—N4—C39159.49 (10)
O3—C13—C14—C15179.55 (13)O6—S2—N4—C485.06 (12)
O3—C13—C14—C19i0.6 (2)O6—S2—C29—C3837.72 (13)
O1—S1—N1—C1132.20 (12)O6—S2—C29—C30137.70 (11)
O1—S1—N1—C20123.41 (11)N5—C41—C42—C47ii178.82 (13)
O1—S1—C1—C28.55 (13)N5—C41—C42—C432.53 (19)
O1—S1—C1—C10167.82 (11)N4—S2—C29—C3877.78 (12)
O2—S1—N1—C11162.21 (10)N4—S2—C29—C30106.80 (11)
O2—S1—N1—C206.60 (12)N4—C39—C40—N561.25 (15)
O2—S1—C1—C2136.63 (11)C41—N5—C45—O8177.01 (13)
O2—S1—C1—C1039.74 (13)C41—N5—C45—C442.55 (19)
N2—C13—C14—C150.36 (19)C41—N5—C40—C3977.33 (15)
N2—C13—C14—C19i179.77 (13)C38—C29—C30—C311.2 (2)
N2—C12—C11—N161.88 (15)C44—C43—C42—C47ii179.98 (13)
N1—S1—C1—C2108.08 (11)C44—C43—C42—C411.3 (2)
N1—S1—C1—C1075.55 (12)C49—C54—C53—C520.9 (2)
C13—N2—C17—O4179.49 (13)C29—S2—N4—C3984.76 (11)
C13—N2—C17—C161.17 (19)C29—S2—N4—C48120.81 (11)
C13—N2—C12—C1177.16 (15)C29—C38—C37—C36179.38 (13)
C1—S1—N1—C1181.92 (11)C29—C38—C33—C327.81 (19)
C1—S1—N1—C20122.47 (11)C29—C38—C33—C34173.81 (12)
C1—C2—C3—C44.5 (2)C29—C30—C31—C324.9 (2)
C1—C10—C9—C8179.50 (13)N6—C34—C33—C38174.87 (12)
C2—C1—C10—C55.09 (19)N6—C34—C33—C326.8 (2)
C2—C1—C10—C9173.99 (13)N6—C34—C35—C36179.89 (13)
N3—C6—C7—C8179.25 (13)C43—C44—C46—C471.3 (2)
C15i—C15—C16—C180.4 (2)C43—C44—C45—O8175.86 (13)
C15i—C15—C16—C17179.83 (14)C43—C44—C45—N53.70 (18)
C15i—C15—C14—C13179.77 (15)C43ii—C43—C42—C47ii0.8 (2)
C15i—C15—C14—C19i0.1 (2)C43ii—C43—C42—C41177.83 (15)
C15—C16—C17—O4179.57 (13)C57—C62—C61—C600.8 (2)
C15—C16—C17—N20.24 (18)C57—C58—C59—C600.2 (2)
C18—C16—C17—O40.2 (2)C62—C57—C58—Cl2179.84 (12)
C18—C16—C17—N2179.56 (12)C62—C57—C58—C590.8 (2)
C4—C5—C10—C17.51 (19)C62—C61—C60—C590.3 (3)
C4—C5—C10—C9171.62 (13)C46—C44—C43—C43ii0.2 (2)
C4—C5—C6—N37.2 (2)C46—C44—C43—C42178.94 (13)
C4—C5—C6—C7170.94 (13)C46—C44—C45—O83.4 (2)
C16—C15—C14—C130.5 (2)C46—C44—C45—N5177.06 (12)
C16—C15—C14—C19i179.38 (13)C45—N5—C41—O7179.39 (13)
C16—C18—C19—C14i1.2 (2)C45—N5—C41—C420.5 (2)
C17—N2—C13—O3179.57 (13)C45—N5—C40—C39102.07 (14)
C17—N2—C13—C141.2 (2)C45—C44—C43—C43ii179.00 (14)
C17—N2—C12—C11103.74 (14)C45—C44—C43—C421.8 (2)
C19—C18—C16—C150.6 (2)C45—C44—C46—C47177.95 (13)
C19—C18—C16—C17179.24 (13)C42ii—C47—C46—C441.3 (2)
C12—N2—C13—O31.41 (19)C39—N4—C48—C4961.96 (16)
C12—N2—C13—C14177.80 (12)C48—N4—C39—C4071.72 (15)
C12—N2—C17—O41.49 (19)C48—C49—C50—C51179.45 (13)
C12—N2—C17—C16177.84 (11)C48—C49—C54—C53178.52 (13)
C5—C4—C3—C21.9 (2)C40—N5—C41—O70.03 (19)
C5—C10—C9—C81.4 (2)C40—N5—C41—C42179.86 (12)
C5—C6—C7—C82.7 (2)C40—N5—C45—O83.64 (19)
C10—C1—C2—C30.9 (2)C40—N5—C45—C44176.80 (11)
C10—C5—C6—N3174.66 (12)C50—C49—C48—N493.61 (16)
C10—C5—C6—C77.2 (2)C50—C49—C54—C530.2 (2)
C10—C9—C8—C73.2 (2)C50—C51—C52—C530.3 (2)
C14—C15—C16—C18179.66 (13)C37—C38—C29—S210.89 (19)
C14—C15—C16—C170.54 (19)C37—C38—C29—C30173.93 (14)
C3—C4—C5—C104.2 (2)C37—C38—C33—C32171.33 (13)
C3—C4—C5—C6177.62 (13)C37—C38—C33—C347.05 (19)
C6—C5—C10—C1174.30 (12)C37—C36—C35—C342.9 (2)
C6—C5—C10—C96.57 (19)C58—C57—C62—C611.3 (2)
C22—C23—C24—C250.7 (2)C31—C32—C33—C384.4 (2)
C22—C21—C20—N1105.22 (15)C31—C32—C33—C34177.27 (13)
C22—C21—C26—C250.9 (2)C61—C60—C59—C580.8 (2)
C9—C8—C7—C62.5 (2)C54—C49—C48—N487.67 (16)
C11—N1—C20—C2160.82 (16)C54—C49—C50—C510.7 (2)
C73—C74—C69—Cl5178.72 (13)C54—C53—C52—C510.7 (2)
C73—C74—C69—C700.8 (3)C33—C38—C29—S2170.02 (10)
C74—C73—C72—C710.7 (3)C33—C38—C29—C305.2 (2)
C74—C69—C70—Cl6178.69 (13)C33—C38—C37—C361.5 (2)
C74—C69—C70—C711.2 (2)C33—C32—C31—C302.1 (2)
C69—C70—C71—C720.6 (3)C33—C34—C35—C362.7 (2)
C20—N1—C11—C1270.86 (15)C56—N6—C34—C33161.71 (13)
C20—C21—C22—C23179.45 (13)C56—N6—C34—C3515.7 (2)
C20—C21—C26—C25178.09 (13)C35—C36—C37—C383.5 (2)
C70—C71—C72—C730.4 (3)C35—C34—C33—C387.6 (2)
C24—C23—C22—C211.3 (2)C35—C34—C33—C32170.71 (13)
C24—C25—C26—C211.5 (2)C52—C51—C50—C491.0 (2)
C28—N3—C6—C5161.65 (13)C55—N6—C34—C3370.03 (17)
C28—N3—C6—C716.4 (2)C55—N6—C34—C35112.59 (17)
C26—C21—C22—C230.5 (2)Cl3—C63—C64—Cl40.69 (19)
C26—C21—C20—N175.81 (16)Cl3—C63—C64—C65179.71 (13)
C26—C25—C24—C230.7 (2)Cl3—C63—C68—C67179.29 (13)
C27—N3—C6—C570.49 (17)C64—C63—C68—C671.2 (2)
C27—N3—C6—C7111.47 (17)C64—C65—C66—C670.9 (3)
C72—C73—C74—C690.1 (3)C68—C63—C64—Cl4178.84 (12)
S2—N4—C39—C40133.10 (10)C68—C63—C64—C650.8 (2)
S2—N4—C48—C4992.44 (13)C68—C67—C66—C650.5 (3)
S2—C29—C30—C31176.58 (11)C66—C65—C64—Cl4179.88 (13)
Cl1—C57—C62—C61177.56 (12)C66—C65—C64—C630.3 (2)
Cl1—C57—C58—Cl21.31 (18)C66—C67—C68—C630.5 (3)
Cl1—C57—C58—C59178.02 (12)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg, Cg5', Cg6', Cg7' and Cg8' are the centroids of atoms C63–C68, C21–C26, C49–C54, C1–C10 and C29–C38, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O50.952.533.1926 (19)127
C19—H19···O70.952.553.2615 (19)132
C31—H31···O3i0.952.593.3818 (19)141
C47—H47···O3iii0.952.583.2148 (19)125
C60—H60···O20.952.543.335 (2)142
C68—H68···Cl1iii0.952.793.5922 (19)142
C72—H72···O60.952.503.293 (2)141
C71—H71···Cg0.952.993.813 (2)145
C55—H55A···Cg8iv0.982.943.632 (2)129
C27—H27A···Cg7v0.983.033.585 (2)117
C20—H20B···Cg6vi0.993.123.6054 (17)111
C48—H48B···Cg5vi0.993.133.6180 (17)112
Symmetry codes: (i) x, y+2, z+1; (iii) x, y, z+1; (iv) x+1, y+2, z+2; (v) x+1, y+2, z+1; (vi) x, y+1, z+1.
 

Acknowledgements

This work was supported by CONACyT, project CB2011/168952. The authors thank the LANEM Laboratory for the use of spectrometric instruments.

References

First citationAbad, S., Kluciar, M., Miranda, M. A. & Pischel, U. (2005). J. Org. Chem. 70, 10565–10568.  CrossRef PubMed CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClaudio-Catalán, M. A., Medrano, F., Tlahuext, H. & Godoy-Alcantar, C. (2016). Unpublished data set.  Google Scholar
First citationColquhoun, H. M., Zhu, Z., Williams, D. J., Drew, M. G. B., Cardin, C. J., Gan, Y., Crawford, A. G. & Marder, T. B. (2010). Chem. Eur. J. 16, 907–918.  CSD CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFallon, G. D., Lee, M. A.-P., Langford, S. J. & Nichols, P. J. (2004). Org. Lett. 6, 655–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamilton, D. G., Feeder, N., Teat, S. J. & Sanders, J. K. M. (1998). New J. Chem. 22, 1019–1021.  CSD CrossRef CAS Google Scholar
First citationHansen, J. G., Feeder, N., Hamilton, D. G., Gunter, M. J., Becher, J. & Sanders, J. K. M. (2000). Org. Lett. 2, 449–452.  CSD CrossRef PubMed CAS Google Scholar
First citationKoshkakaryan, G., Klivansky, L. M., Cao, D., Snauko, M., Teat, S. J., Struppe, J. O. & Liu, Y. (2009). J. Am. Chem. Soc. 131, 2078–2079.  CSD CrossRef PubMed CAS Google Scholar
First citationLandey-Álvarez, M. A., Ochoa-Terán, A., Pina-Luis, G., Martínez-Quiroz, M., Aguilar-Martínez, M., Elías-García, J., Miranda-Soto, V., Ramírez, J.-Z., Machi-Lara, L., Labastida-Galván, V. & Ordoñez, M. (2016). Supramol. Chem. pp. 1–15.  Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinhein, Germany: VCH.  Google Scholar
First citationLiu, Z., Liu, G., Wu, Y., Cao, D., Sun, J., Schneebeli, S. T., Nassar, M. S., Mirkin, C. A. & Stoddart, J. F. (2014). J. Am. Chem. Soc. 136, 16651–16660.  CSD CrossRef CAS PubMed Google Scholar
First citationOno, T., Sugimoto, M. & Hisaeda, Y. (2015). J. Am. Chem. Soc. 137, 9519–9522.  CSD CrossRef CAS PubMed Google Scholar
First citationSchneebeli, S. T., Frasconi, M., Liu, Z., Wu, Y., Gardner, D. M., Strutt, N. L., Cheng, C., Carmieli, R., Wasielewski, M. R. & Stoddart, J. F. (2013). Angew. Chem. Int. Ed. 52, 13100–13104.  CSD CrossRef CAS Google Scholar
First citationShankar, B. H. & Ramaiah, D. (2011). J. Phys. Chem. B, 115, 13292–13299.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, K. D. (2010). Nat. Chem. 2, 612–613.  CrossRef CAS PubMed Google Scholar
First citationSteed, J. E. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 400. Chichester, UK: John Wiley & Sons.  Google Scholar
First citationWu, Y., Nalluri, S. K. M., Young, R. M., Krzyaniak, M. D., Margulies, E. A., Stoddart, J. F. & Wasielewski, M. R. (2015). Angew. Chem. Int. Ed. 54, 11971–11977.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds