research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Sr5Te4O12(OH)2, the first basic strontium oxotellurate(IV)

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 October 2016; accepted 4 October 2016; online 7 October 2016)

The asymmetric unit of the title basic strontium oxotellurate(IV), Sr5Te4O12(OH)2 {systematic name penta­strontium tetra­kis­[oxotellurate(IV)] di­hydroxide}, comprises three SrII cations (one with site symmetry 2) and two TeIV atoms, as well as seven O atoms. The coordination numbers of the alkaline earth cations to nearby O atoms range from seven (2 ×) to eight, and the TeIV atoms are surrounded by three oxygen partners in the form of trigonal pyramids. The SrOx polyhedra share corners and edges to build up a three-dimensional framework structure encapsulating channels propagating along [010]. The TeIV atoms flank the framework O atoms and are situated at the outer array of the channels with the 5s2 lone electron pairs protruding into the empty space of the channels (diameter ≃ 4 Å). Although the H atom of the OH group could not be located, bond-valence-sum calculations and typical O⋯O distances (range 2.81–3.06 Å) clearly indicate hydrogen bonding of medium to weak strengths.

1. Chemical context

The peculiar feature of the crystal chemistry of oxotellurates(IV) (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415-545.]) is the presence of the 5s2 lone electron pair, denoted E. In the majority of cases, the lone electron pair E is stereochemically active, making oxotellurates(IV) inter­esting for crystal engineering, e.g. in terms of the synthesis of compounds with non-centrosymmetric structures or structures with polar directions. Next to the influence of the (metal) cation on the physico-chemical characteristics of oxotellurates(IV), physical and underlying structural properties of such compounds can also be varied by incorporation of other oxoanions into the oxotellurate(IV) framework, e.g. by p-block oxoanions such as nitrate (Stöger & Weil, 2013[Stöger, B. & Weil, M. (2013). Miner. Petrol. 107, 253-263.]) or selen­ate (Weil & Shirkanlou, 2015[Weil, M. & Shirkanlou, M. (2015). Z. Anorg. Allg. Chem. 641, 1459-1466.]), or by d-block oxoanions such as vanadate (Weil, 2015[Weil, M. (2015). Acta Cryst. C71, 712-716.]).

In this context we attempted the hydro­thermal synthesis of new oxotellurate phases in the system Sr–Te–Se–O–(H). In comparison with typical solid-state reactions using open crucibles under atmospheric conditions, this method is more feasible because TeIV then tends not to be oxidized or to be evaporated during the reaction process. However, a clear disadvantage of the hydro­thermal method is the high(er) number of adjustable parameters (pressure, concentration, temperature, time, filling degree, solvent etc), which often makes the products of these experiments difficult to predict or even to reproduce, accompanied by formation of several solid phases in one batch. This was also the case for the present study. Instead of a strontium oxoselenatotellurate, several oxotellurate phases were obtained without incorporation of selenium. Amongst these phases, the title compound, Sr5Te4O12(OH)2, a hitherto unknown strontium oxotellurate, was isolated and structurally determined by single crystal X-ray diffraction.

2. Structural commentary

The asymmetric unit of Sr5Te4O12(OH)2 comprises three Sr, two Te and seven O atoms (H atoms were not included in the final model, see Section 5 and discussion below). Except one Sr atom (Sr2) that is located on a twofold rotation axis, all atoms are in general positions.

The coordination numbers of the Sr atoms are 7 (for Sr1 and Sr3) and 8 (for Sr2) if Sr—O distances < 3.0 Å are considered as relevant for the first coordination sphere. The corresponding polyhedra are considerably distorted, with Sr—O bond lengths ranging from 2.393 (11) to 2.960 (11) Å (Table 1[link]) and might be described as monocapped octa­hedra for Sr1 and Sr3, and as a bicapped trigonal prism for Sr2. The SrO8 and the two SrO7 polyhedra share corners and edges, thereby constructing a three-dimensional framework structure encapsulating channels that propagate along [010]. Each of the two Te atoms connect to the outer oxygen atoms of the framework in a very similar trigonal-prismatic configuration (Table 1[link]), with the 5s2 lone electron pair E being stereochemically active, i.e. pointing towards the empty space of the channels (Fig. 1[link]). The channel diameter (without contribution of the lone pairs) is ≃ 4 Å. Te—O bond lengths [1.865 (11)–1.890 (12) Å for Te1 and 1.858 (11)–1.886 (11) Å for Te2] and O—Te—O angles [98.0 (5)–100.3 (5)° for Te1 and 98.8 (5)—101.1 (5)° for Te2] are typical for oxotellurate(IV) anions with three oxygen partners (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415-545.]).

Table 1
Selected geometric parameters (Å, °)

Sr1—O7 2.430 (12) Sr3—O2 2.507 (11)
Sr1—O5i 2.476 (12) Sr3—O4v 2.517 (11)
Sr1—O1ii 2.593 (12) Sr3—O6i 2.536 (11)
Sr1—O3 2.596 (11) Sr3—O6vi 2.590 (12)
Sr1—O2iii 2.616 (12) Sr3—O4vii 2.644 (11)
Sr1—O7iii 2.700 (11) Sr3—O1viii 2.666 (11)
Sr1—O2 2.852 (12) Te1—O6 1.865 (11)
Sr2—O3 2.510 (11) Te1—O2 1.871 (11)
Sr2—O1iv 2.624 (12) Te1—O5 1.890 (12)
Sr2—O5 2.633 (12) Te2—O4 1.858 (11)
Sr2—O7 2.960 (11) Te2—O3 1.882 (11)
Sr3—O7iii 2.393 (11) Te2—O1 1.886 (11)
       
O6—Te1—O2 99.4 (4) O4—Te2—O3 101.1 (5)
O6—Te1—O5 100.3 (5) O4—Te2—O1 100.3 (5)
O2—Te1—O5 98.0 (5) O3—Te2—O1 98.8 (5)
Symmetry codes: (i) x, y-1, z; (ii) -x, y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iv) -x, y+1, -z+1; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (vii) -x, y, -z; (viii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
Projection of the crystal structure of Sr5Te4O12(OH)2 along [010], with displacement ellipsoids drawn at the 74% probability level. The trigonal–pyramidal TeO3 groups are given in red; the O atom representing the OH group is given in yellow, all other O atoms are colourless.

Bond-valence calculations (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) clearly reveal the presence of an OH group for atom O7 (Table 2[link]), also required by charge neutrality. Atom O7 is bonded to four Sr atoms (Table 1[link], Fig. 1[link]) and has also four possible oxygen acceptor atoms for hydrogen bonding of medium to weak strength (Table 3[link]). The situation of four possible acceptor atoms is displayed in Fig. 2[link] and makes it appear likely that the corres­ponding H atom of the OH group is positionally disordered and thus could not be located during the present study.

Table 2
Results of the bond-valance-sum (BVS) analysis

Atom BVS Δ to expected value
Sr1 2.07 0.07
Sr2 1.91 0.09
Sr3 2.23 0.23
Te1 3.94 0.06
Te2 3.93 0.07
O1 2.04 0.04
O2 2.08 0.08
O3 1.91 0.09
O4 1.96 0.04
O5 1.89 0.11
O6 1.95 0.05
O7 1.21 0.79
BVS parameters of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) were used for all bonds.

Table 3
Hydrogen-bond geometry (Å)

D—H⋯A DA
O7⋯O5 2.808 (12)
O7⋯O2 2.893 (12)
O7⋯O2ix 2.991 (11)
O7⋯O1iv 3.063 (11)
Symmetry codes: (iv) -x, y+1, -z+1; (ix) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The vicinity of the OH group emphasizing the different possibilities for O⋯O hydrogen bonding (green lines). Sr—(OH) bonds have been omitted for clarity. Symmetry operators refer to those of Table 3[link]; displacement ellipsoids are the same as in Fig. 1[link].

In the sense of a crystal-chemically more detailed formula, the title compound may alternatively be formulated as 4SrTeO3·Sr(OH)2 and represents the first basic strontium oxotellurate(IV), viz. with the presence of an OH functionality. In comparison with the other strontium oxotellurates(IV) compiled in Section 3, all Sr—O and Te—O lengths are in similar ranges.

3. Database survey

In the Inorganic Crystal Structure Database (ICSD, 2016[ICSD (2016). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. https://www.fiz-karlsruhe. de/icsd. html]) structural data for the following hydrous or anhydrous strontium oxotellurate(IV) phases have been deposited: SrTe5O11 (Burckhardt & Trömel, 1983[Burckhardt, H.-G. & Trömel, M. (1983). Acta Cryst. C39, 1322-1323.]), Sr3Te4O11 (Dytyatyev & Dolgikh, 1999[Dytyatyev, O. A. & Dolgikh, V. A. (1999). Mater. Res. Bull. 34, 733-740.]), various polymorphs of SrTeO3 (Dityatiev et al., 2006[Dityatiev, O. A., Berdonosov, P. S., Dolgikh, V. A., Aldous, D. W. & Lightfoot, P. (2006). Solid State Sci. 8, 830-835.]; Zavodnik et al., 2007a[Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007a). Acta Cryst. E63, i75-i76.],b[Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007b). Acta Cryst. E63, i111-i112.],c[Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007c). Acta Cryst. E63, i151.], 2008[Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2008). Acta Cryst. E63, i52.]; Stöger et al., 2011[Stöger, B., Weil, M., Baran, E. J., González-Baró, A. C., Malo, S., Rueff, J. M., Petit, S., Lepetit, M. B., Raveau, B. & Barrier, N. (2011). Dalton Trans. 40, 5538-5548.]), SrTe3O8 (Barrier et al., 2006[Barrier, N., Malo, S., Hernandez, O., Hervieu, M. & Raveau, B. (2006). J. Solid State Chem. 179, 3484-3488.]; Weil & Stöger, 2007[Weil, M. & Stöger, B. (2007). Acta Cryst. E63, i116-i118.]) and SrTeO3(H2O) (Stöger et al., 2011[Stöger, B., Weil, M., Baran, E. J., González-Baró, A. C., Malo, S., Rueff, J. M., Petit, S., Lepetit, M. B., Raveau, B. & Barrier, N. (2011). Dalton Trans. 40, 5538-5548.]). Additionally, in the Inter­national Centre for Diffraction Data PDF-4 database (ICDD, 2015[ICDD (2015). PDF-4+ 2015 Database, edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.]) diffraction data for the following phases are compiled: Sr2Te3O8 (Elerman & Koçak, 1986[Elerman, Y. & Koçak, M. (1986). J. Appl. Cryst. 19, 410.]), SrTe2O5 (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallio, W. J. (1970). J. Am. Ceram. Soc. 53, 645-648.]; Gorbenko et al., 1983[Gorbenko, V. M., Kudzin, A. Yu. & Sadovskaya, L. Ya. (1983). Inorg. Mater. (Engl. Transl.), 19, 267-300.]) and a high-temperature phase of the latter (Külcü et al., 1984[Külcü, N., Burckhardt, H. G. & Trömel, M. (1984). J. Solid State Chem. 2, 243-244.]).

4. Synthesis and crystallization

For the hydro­thermal experiment, a Teflon container was filled with 0.0733 g of strontium oxide, 0.1529 g of tellurium dioxide and 0.032 ml of selenic acid (conc.; 96 wt%), corresponding to the stoichiometric ratio 3:2:1. To this mixture 10 ml water were added to about three-fourth of the container volume. The container was then sealed with a Teflon lid and loaded into a stainless steel autoclave and then heated at autogenous pressure in an oven at 403 K for one week. After the reaction time, the autoclave was allowed to cool down to room temperature over six h. The formed solid product was filtered off and washed with water and ethanol. Inspection under a polarizing microscope revealed a phase mixture with different crystal forms clearly discernible. According to X-ray powder diffraction of the bulk material, the following phases could be identified: α-TeO2 (Lindqvist, 1968[Lindqvist, O. (1968). Acta Chem. Scand. 22, 977-982.]), SrTe2O5 (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallio, W. J. (1970). J. Am. Ceram. Soc. 53, 645-648.]), SrTe3O8 (Barrier et al., 2006[Barrier, N., Malo, S., Hernandez, O., Hervieu, M. & Raveau, B. (2006). J. Solid State Chem. 179, 3484-3488.]; Weil & Stöger, 2007[Weil, M. & Stöger, B. (2007). Acta Cryst. E63, i116-i118.]) and SrTe5O11 (Burckhardt & Trömel, 1983[Burckhardt, H.-G. & Trömel, M. (1983). Acta Cryst. C39, 1322-1323.]). Solid reaction products containing Se-phases were not detected. Platy Sr5Te4O12(OH)2 crystals were present in only minor amounts, and were manually separated for structure determination from the other solid products.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Some of the O atoms showed physically unreasonable behaviour when refined with anisotropic displacement parameters. Hence, for the final model all O atoms were refined with individual isotropic displacement parameters. The H atom of the OH group (or positionally disordered parts) could not be located and thus was not included in the model. Twinning by inversion was also taken into account, with a contribution of the minor twin component of about 6%. The maximum and minimum remaining electron densities are found 2.34 and 0.96 Å, respectively, from Sr3.

Table 4
Experimental details

Crystal data
Chemical formula Sr5Te4O12(OH)2
Mr 1174.52
Crystal system, space group Monoclinic, C2
Temperature (K) 295
a, b, c (Å) 16.0785 (10), 5.7927 (5), 8.9262 (7)
β (°) 107.542 (4)
V3) 792.71 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 23.99
Crystal size (mm) 0.18 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.099, 0.795
No. of measured, independent and observed [I > 2σ(I)] reflections 12913, 1914, 1319
Rint 0.088
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 1.02
No. of reflections 1914
No. of parameters 71
No. of restraints 1
H-atom treatment H-atom parameters not defined
Δρmax, Δρmin (e Å−3) 2.31, −1.78
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.058 (18)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Pentastrontium tetrakis[oxotellurate(IV)] dihydroxide top
Crystal data top
Sr5Te4O12(OH)2F(000) = 1024
Mr = 1174.52Dx = 4.921 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2028 reflections
a = 16.0785 (10) Åθ = 4.2–33.0°
b = 5.7927 (5) ŵ = 23.99 mm1
c = 8.9262 (7) ÅT = 295 K
β = 107.542 (4)°Plate, colourless
V = 792.71 (11) Å30.18 × 0.06 × 0.01 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1319 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
ω and φ scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2021
Tmin = 0.099, Tmax = 0.795k = 77
12913 measured reflectionsl = 1111
1914 independent reflections
Refinement top
Refinement on F2H-atom parameters not defined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0236P)2 + 0.7139P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.085Δρmax = 2.31 e Å3
S = 1.02Δρmin = 1.78 e Å3
1914 reflectionsAbsolute structure: Refined as an inversion twin
71 parametersAbsolute structure parameter: 0.058 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.16911 (10)0.0360 (4)0.4988 (2)0.0097 (5)
Sr20.00000.5471 (4)0.50000.0094 (8)
Sr30.27399 (11)0.0613 (2)0.1447 (2)0.0071 (5)
Te10.10820 (7)0.52512 (19)0.16455 (15)0.0081 (3)
Te20.05011 (7)0.0246 (2)0.17800 (14)0.0091 (3)
O10.0998 (7)0.1557 (19)0.3050 (14)0.015 (3)*
O20.2040 (8)0.3491 (18)0.2785 (14)0.017 (3)*
O30.0218 (7)0.2152 (19)0.3350 (14)0.013 (3)*
O40.1423 (7)0.2229 (19)0.0869 (14)0.018 (3)*
O50.0964 (7)0.7088 (19)0.3320 (14)0.017 (3)*
O60.1651 (7)0.7327 (19)0.0690 (14)0.014 (3)*
O70.1881 (7)0.4343 (18)0.5881 (13)0.017 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0090 (8)0.0107 (11)0.0086 (10)0.0015 (8)0.0013 (7)0.0017 (9)
Sr20.0108 (13)0.006 (2)0.0134 (14)0.0000.0063 (10)0.000
Sr30.0055 (8)0.0035 (13)0.0127 (10)0.0001 (7)0.0036 (6)0.0012 (9)
Te10.0066 (6)0.0084 (8)0.0087 (6)0.0003 (6)0.0014 (4)0.0000 (6)
Te20.0092 (6)0.0062 (7)0.0126 (7)0.0013 (7)0.0041 (4)0.0024 (8)
Geometric parameters (Å, º) top
Sr1—O72.430 (12)Sr3—O22.507 (11)
Sr1—O5i2.476 (12)Sr3—O4vi2.517 (11)
Sr1—O1ii2.593 (12)Sr3—O6i2.536 (11)
Sr1—O32.596 (11)Sr3—O6vii2.590 (12)
Sr1—O2iii2.616 (12)Sr3—O4viii2.644 (11)
Sr1—O7iii2.700 (11)Sr3—O1ix2.666 (11)
Sr1—O22.852 (12)Te1—O61.865 (11)
Sr2—O32.510 (11)Te1—O21.871 (11)
Sr2—O3ii2.510 (11)Te1—O51.890 (12)
Sr2—O1iv2.624 (12)Te2—O41.858 (11)
Sr2—O1v2.624 (11)Te2—O31.882 (11)
Sr2—O52.633 (12)Te2—O11.886 (11)
Sr2—O5ii2.633 (12)O7—O1iv3.063 (11)
Sr2—O7ii2.960 (11)O7—O22.893 (12)
Sr2—O72.960 (11)O7—O2x2.991 (11)
Sr3—O7iii2.393 (11)O7—O52.808 (12)
O7—Sr1—O5i156.1 (4)O2—Sr3—O6i104.7 (4)
O7—Sr1—O1ii102.8 (4)O4vi—Sr3—O6i74.3 (3)
O5i—Sr1—O1ii81.8 (4)O7iii—Sr3—O6vii144.4 (4)
O7—Sr1—O379.0 (4)O2—Sr3—O6vii114.8 (4)
O5i—Sr1—O377.4 (4)O4vi—Sr3—O6vii78.7 (4)
O1ii—Sr1—O392.7 (4)O6i—Sr3—O6vii118.4 (3)
O7—Sr1—O2iii98.7 (4)O7iii—Sr3—O4viii142.3 (4)
O5i—Sr1—O2iii105.0 (4)O2—Sr3—O4viii76.6 (4)
O1ii—Sr1—O2iii72.8 (4)O4vi—Sr3—O4viii117.8 (3)
O3—Sr1—O2iii164.5 (4)O6i—Sr3—O4viii74.4 (3)
O7—Sr1—O7iii105.5 (3)O6vii—Sr3—O4viii71.3 (3)
O5i—Sr1—O7iii87.0 (4)O7iii—Sr3—O1ix74.3 (4)
O1ii—Sr1—O7iii132.6 (4)O2—Sr3—O1ix73.4 (4)
O3—Sr1—O7iii129.5 (4)O4vi—Sr3—O1ix102.8 (3)
O2iii—Sr1—O7iii65.9 (4)O6i—Sr3—O1ix163.2 (4)
O7—Sr1—O265.9 (4)O6vii—Sr3—O1ix76.3 (3)
O5i—Sr1—O2103.2 (4)O4viii—Sr3—O1ix120.2 (3)
O1ii—Sr1—O2162.2 (4)O6—Te1—O299.4 (4)
O3—Sr1—O272.1 (3)O6—Te1—O5100.3 (5)
O2iii—Sr1—O2121.1 (2)O2—Te1—O598.0 (5)
O7iii—Sr1—O265.2 (3)O4—Te2—O3101.1 (5)
O3—Sr2—O3ii80.0 (5)O4—Te2—O1100.3 (5)
O3—Sr2—O1iv136.6 (4)O3—Te2—O198.8 (5)
O3ii—Sr2—O1iv106.2 (3)Te2—O1—Sr1ii121.0 (5)
O3—Sr2—O1v106.2 (3)Te2—O1—Sr2i118.5 (5)
O3ii—Sr2—O1v136.6 (4)Sr1ii—O1—Sr2i97.7 (4)
O1iv—Sr2—O1v98.0 (5)Te2—O1—Sr3xi114.2 (5)
O3—Sr2—O574.2 (3)Sr1ii—O1—Sr3xi102.3 (4)
O3ii—Sr2—O5144.8 (4)Sr2i—O1—Sr3xi99.6 (4)
O1iv—Sr2—O578.3 (4)Te1—O2—Sr3121.2 (6)
O1v—Sr2—O574.7 (3)Te1—O2—Sr1x120.9 (5)
O3—Sr2—O5ii144.8 (4)Sr3—O2—Sr1x106.2 (4)
O3ii—Sr2—O5ii74.2 (3)Te1—O2—Sr1114.9 (5)
O1iv—Sr2—O5ii74.7 (3)Sr3—O2—Sr196.6 (3)
O1v—Sr2—O5ii78.3 (4)Sr1x—O2—Sr190.5 (4)
O5—Sr2—O5ii138.3 (5)Te2—O3—Sr2136.3 (5)
O3—Sr2—O7ii89.3 (3)Te2—O3—Sr1115.9 (5)
O3ii—Sr2—O7ii71.0 (3)Sr2—O3—Sr1103.9 (4)
O1iv—Sr2—O7ii133.8 (3)Te2—O4—Sr3xii142.8 (6)
O1v—Sr2—O7ii66.2 (3)Te2—O4—Sr3viii117.9 (5)
O5—Sr2—O7ii131.1 (3)Sr3xii—O4—Sr3viii94.8 (4)
O5ii—Sr2—O7ii60.0 (3)Te1—O5—Sr1v139.9 (6)
O3—Sr2—O771.0 (3)Te1—O5—Sr2117.8 (5)
O3ii—Sr2—O789.3 (3)Sr1v—O5—Sr2100.5 (4)
O1iv—Sr2—O766.2 (3)Te1—O6—Sr3v139.1 (6)
O1v—Sr2—O7133.8 (3)Te1—O6—Sr3xiii115.9 (5)
O5—Sr2—O760.0 (3)Sr3v—O6—Sr3xiii95.7 (4)
O5ii—Sr2—O7131.1 (3)Sr3x—O7—Sr1126.0 (5)
O7ii—Sr2—O7154.5 (4)Sr3x—O7—Sr1x103.7 (4)
O7iii—Sr3—O275.2 (4)Sr1—O7—Sr1x98.5 (4)
O7iii—Sr3—O4vi88.5 (4)Sr3x—O7—Sr297.4 (4)
O2—Sr3—O4vi163.7 (4)Sr1—O7—Sr296.0 (4)
O7iii—Sr3—O6i89.0 (4)Sr1x—O7—Sr2139.9 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x+1/2, y1/2, z; (vii) x+1/2, y1/2, z; (viii) x, y, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1; (xi) x1/2, y1/2, z; (xii) x1/2, y+1/2, z; (xiii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å) top
D—H···AD···A
O7···O52.808 (12)
O7···O22.893 (12)
O7···O2x2.991 (11)
O7···O1iv3.063 (11)
Symmetry codes: (iv) x, y+1, z+1; (x) x+1/2, y+1/2, z+1.
Results of the bond-valance-sum (BVS) analysis top
AtomBVSΔ to expected value
Sr12.070.07
Sr21.910.09
Sr32.230.23
Te13.940.06
Te23.930.07
O12.040.04
O22.080.08
O31.910.09
O41.960.04
O51.890.11
O61.950.05
O71.210.79
BVS parameters of Brown & Altermatt (1985) were used for all bonds.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationBarrier, N., Malo, S., Hernandez, O., Hervieu, M. & Raveau, B. (2006). J. Solid State Chem. 179, 3484–3488.  Web of Science CrossRef CAS Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurckhardt, H.-G. & Trömel, M. (1983). Acta Cryst. C39, 1322–1323.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545.  Web of Science CrossRef CAS Google Scholar
First citationDityatiev, O. A., Berdonosov, P. S., Dolgikh, V. A., Aldous, D. W. & Lightfoot, P. (2006). Solid State Sci. 8, 830–835.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationDytyatyev, O. A. & Dolgikh, V. A. (1999). Mater. Res. Bull. 34, 733–740.  Web of Science CrossRef CAS Google Scholar
First citationElerman, Y. & Koçak, M. (1986). J. Appl. Cryst. 19, 410.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGorbenko, V. M., Kudzin, A. Yu. & Sadovskaya, L. Ya. (1983). Inorg. Mater. (Engl. Transl.), 19, 267–300.  Google Scholar
First citationICDD (2015). PDF-4+ 2015 Database, edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.  Google Scholar
First citationICSD (2016). Inorganic Crystal Structure Database. FIZ–Karlsruhe, Germany. https://www.fiz-karlsruhe. de/icsd. html  Google Scholar
First citationKülcü, N., Burckhardt, H. G. & Trömel, M. (1984). J. Solid State Chem. 2, 243–244.  Google Scholar
First citationLindqvist, O. (1968). Acta Chem. Scand. 22, 977–982.  CrossRef CAS Web of Science Google Scholar
First citationRedman, M. J., Chen, J. H., Binnie, W. P. & Mallio, W. J. (1970). J. Am. Ceram. Soc. 53, 645–648.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöger, B. & Weil, M. (2013). Miner. Petrol. 107, 253–263.  Google Scholar
First citationStöger, B., Weil, M., Baran, E. J., González-Baró, A. C., Malo, S., Rueff, J. M., Petit, S., Lepetit, M. B., Raveau, B. & Barrier, N. (2011). Dalton Trans. 40, 5538–5548.  Web of Science PubMed Google Scholar
First citationWeil, M. (2015). Acta Cryst. C71, 712–716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Shirkanlou, M. (2015). Z. Anorg. Allg. Chem. 641, 1459–1466.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. & Stöger, B. (2007). Acta Cryst. E63, i116–i118.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007a). Acta Cryst. E63, i75–i76.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007b). Acta Cryst. E63, i111–i112.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007c). Acta Cryst. E63, i151.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2008). Acta Cryst. E63, i52.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds