research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three phenanthroline–metal complexes with topologically similar but geometrically different conformations

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de la Patagonia S.J.B., Sede Trelew, 9100 Trelew, Chubut, Argentina, bCenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, cDepartamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and dDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: lauaye@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 21 September 2016; accepted 10 October 2016; online 18 October 2016)

The structures of three related complexes of general formula M(pds)(nab)2 [pds is the peroxodi­sulfate anion and nab is an nitro­gen-containing aromatic base], viz. bis(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)(peroxodi­sulfato-κ2O,O′)cadmium, [Cd(S2O8)(C14H12N2)2], (V), bis­(3,4,7,8-tetra­methy-1,10-phenanthroline-κ2N,N′)(peroxodi­sulfato-κ2O,O′)zinc, [Zn(S2O8)(C16H16N2)2], (VI), and bis­(3,4,7,8-tetra­methy-1,10-phenanthroline-κ2N,N′)(peroxodi­sulfato-κ2O,O′)cadmium, [Cd(S2O8)(C16H16N2)2], (VII), present the same topological coordination, with three chelating ligands in an MN4O2 polyhedron. The main difference resides in the fact that the first two complexes are bis­ected by a crystallographic twofold axis, thus providing a symmetrical environment to the cation, while in the third one this symmetry is disrupted into a clearly unsymmetrical disposition, probably by way of an unusually strong intra­molecular C—H⋯O hydrogen bond. The situation is compared with similar inter­actions in the literature. The structure of (V) is based on a redetermination in the correct space group C2/c of the structure originally described in the Cc space group [Harvey et al. (2001). Aust. J. Chem. 54, 307–311; Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]). Acta Cryst. B60, 252–253].

1. Chemical context

In the last fifteen years we have made several contributions to the structural chemistry of group XII divalent cations, in particular Cd and Zn, complexed by the peroxodi­sulfate anion S2O82− (pds) and several nitrogen-containing aromatic bases (nab). In all these cases, the basic general formula appeared to be M(pds)(nab)2, plus the possible inclusion of some water mol­ecules, either coordinating or as a solvate (details of these complexes, including the ones to be described in the present work, are summarized in Fig. 1[link]). Even if too few structures are reported to make any confident statistical analysis, the results suggest some kind of a trend between the identity of the nitrogen-containing base and the way the pds anion performs in coordination. Thus, for the smallest one, nab = 2,2′-bi­pyridine (Bpy), the structures obtained [(I) and (II)] show two coordinating pds units in a bridging –O—S—O– mode. For the inter­mediate nab = 1,10-phenanthroline (Phen), one of these pds appears to be replaced by a (smaller) coord­inating water mol­ecule, while the bound pds acts as a pendant monocoordinating ligand [(III) and (IV)]. Finally, at the beginning of this work we had at hand only one single example of a relatively larger nab species, represented by nab = 2,9-dimethyl-1,10-phenanthroline, [DMPhen, (V)], where the single coordinating pds folds into itself to bind through both ends, acting in a chelating fashion. Furthermore, in both compounds of each pair of homologues (I)–(II) and (III)–(IV), the anion displays very similar conformations, defined by selected dihedral angles (Harvey et al., 2011[Harvey, M. A., Díaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717-1721.]).

[Scheme 1]
[Figure 1]
Figure 1
The different coordination modes in the M(pds)(nab)2 family. (I): {[Cd(pds)(Bpy)2}n, P[\overline{1}] (Harvey et al., 2001a[Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2001a). Aust. J. Chem. 54, 711-716.]); (II): {[Hg(pds)(Bpy)2}n, P21/n (Díaz de Vivar et al., 2005[Díaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. & Baggio, R. (2005). Acta Cryst. C61, m240-m244.]); (III): Cd(pds)(Phen)2(H2O) P[\overline{1}] (Harvey et al., 2001b[Harvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307-311.]); (IV): Zn(pds)(Phen)2(H2O), P[\overline{1}] (Harvey et al., 2011[Harvey, M. A., Díaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717-1721.]); (V)[link]: Cd(pds)(DMPhen)2, C2/c (Harvey et al., 2001b[Harvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307-311.]; Marsh, 2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.], and this work); (VI)[link]: Zn(pds)(TMPhen)2, P[\overline{1}] (this work); (VII)[link]: Cd(pds)(TMPhen)2, Pbcn (this work). Ligand code: Bpy = 2,2′-bi­pyridine; Phen = 1,10-phenanthroline, DMPhen = 2,9-dimethyl-1,10-phenanthroline, TMPhen = 3,4,7,8-tetra­methyl-1,10-phenanthroline.

In order to go further in this analysis we synthesized two new complexes of this sort, with M = Zn (VI)[link] and M = Cd (VII)[link], and with a common, tetra-methyl­ated nab ligand, 3,4,7,8-tetra­methyl-1,10-phenanthroline (TMPhen). We shall see that they present the same topology as compound (V)[link], but with subtle, inter­esting differences regarding intra­molecular inter­actions which will be discussed in detail. Unlike what happens in the (I)–(II) and (III)–(IV) homologues, in (VI)[link] and (VII)[link] the anion displays remarkably different conformations (Harvey et al., 2011[Harvey, M. A., Díaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717-1721.]). Since a comparison with the DMPhen structure (V)[link] will be an important part of the discussion, and taking into account that the available data in the correct space group C2/c [as disclosed by Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.])] come from an averaging process (without further refinement) of previous results in Cc by our team (Harvey et al., 2001b[Harvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307-311.]), we indulge in including herein, for completeness, a fresh refinement in C2/c based on the original data for this structure, in addition to the synthesis and crystal structure of the two new complexes, (VI)[link] and (VII)[link]. Even though we shall restrict this discussion to the pds anion, it is pertinent to state that the tetra­thio­nate anion (S4O62−) behaves in a rather similar way, and that the tetra­thio­nate Zn and Cd complexes with nab = DMBpy = 4,4′-dimethyl-2,2′-bi­pyridine (Harvey et al., 2013[Harvey, M. A., Suarez, S., Doctorovich, F. & Baggio, R. (2013). Acta Cryst. C69, 745-749.]) have a similar coordination disposition to (V)[link], (VI)[link] and (VII)[link].

2. Structural commentary

The Zn complex (VI)[link] crystallizes in space group Pbca, and the complete molecule is bis­ected by a twofold symmetry axis, hence only half of the mol­ecule is independent (Z′ = 1/2); even if in a different space group, these properties are shared by structure (V)[link]. The Cd counterpart (VII)[link], in turn, crystallizes in space group P[\overline{1}] with a full mol­ecule in the asymmetric unit.

All three compounds present a topologically similar mol­ecular configuration (Fig. 2[link]), consisting in a central cation to which three bidentate chelating ligands bind, viz. two N,N′-nab and one O,O′-pds units. In particular, the `close' character of the pds anion is in line with the trend so far observed, that methyl­ated bases favour the chelating behaviour of pds.

[Figure 2]
Figure 2
Ellipsoid plots of (V)[link], (VI)[link] and (VII)[link], drawn at the 50% probability level. Only the H atoms involved in intra­molecular hydrogen bonds (dashed lines) are shown. Symmetry code for (V)[link] and (VI)[link]: (i) −x, y, [{1\over 2}] − z.

Coordination distances in all three compounds are basically featureless, and agree with the expected values for each cation–ligand pair. However, a difference arises in the asymmetric way in which the ligands bind in (VII)[link], contrasting dramatically with the twofold arrangement in (V)[link] and (VI)[link].

The chelating character of the ligands involved induces highly distorted coordination polyhedra. Proof of this is presented in Table 1[link], which shows the departure of the `trans' angles in (V)[link], (VI)[link] and (VII)[link] from their expected values of 180° for a regular octa­hedron. This makes the polyhedra difficult to classify, and impairs the description of coordination in terms of any regular model. In this regard, all three compounds are suitable for the analysis via the Vectorial Bond Valence Model (VBVM) suggested by Harvey et al. (2006[Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.]), an approach tending to a simpler description of multidentate binding, in which the action of each ligand is integrated into a single inter­action vector, or VBV (Vectorial Bond Valence), derived from the individual bond valences of the coordinating atoms. VBVM predicts a nil resultant of the vectorial sum of all the VBV vectors and, as a consequence, in this particular case of three-ligand coordination geometry, their disposition in a planar array. The first condition is complied satisfactorily with a very short resultant for the Bond Valence Vectors [0.08, 0.03 and 0.08 valence units for (V)[link], (VI)[link] and (VII)[link], respectively]. The second requirement (planar array of vectors), applies sensu stricto in (V)[link] and (VI)[link], due to the intrinsic twofold symmetry around the cation, and it falls well within experimental error in (VII)[link], where the calculated angles between Bond Valence Vectors add up to 359.5 (3)° and the plane defined by their extremes leave the CdII atom only 0.09 (2) Å aside.

Table 1
Selected geometric parameters (Å, °) for (V)[link], (VI)[link] and (VII)

(V)      
Cd1—N2 2.307 (2) N1—Cd1—N1i 171.15 (10)
Cd1—O1 2.314 (2) O1—Cd1—N2i 161.06 (8)
Cd1—N1 2.409 (3) O1i—Cd1—N2 161.06 (8)
       
(VI)      
Zn1—N1 2.0950 (14) N1—Zn1—N1i 168.3 (2)
Zn1—O1 2.1476 (13) N2—Zn1—O1i 167.8 (2)
Zn1—N2 2.1853 (14) N2i—Zn1—O1 167.8 (2)
       
(VII)      
Cd1—N1 2.3075 (19) O8—Cd1—N2 158.5 (2)
Cd1—N2 2.3278 (19) N1—Cd1—N21 152.0 (2)
Cd1—O8 2.3232 (18) N22–Cd1—O1 142.4 (2)
Cd1—N22 2.3304 (19)    
Cd1—N21 2.327 (2)    
Cd1—O1 2.3371 (19)    
Symmetry code for (V)[link] and (VI)[link]: (i) −x, y, −z + [{1\over 2}].

As an unwitting bonus of this description, these planes appear as a natural reference frame for describing ligand orientations in the polyhedra, evidencing in (V)[link] and (VI)[link] their adherence to twofold symmetry and in (VII)[link] significant departures from a symmetric arrangement. This can be visualized in Fig. 3[link], where a schematic representation (with an exaggerated perspective) is made of the ligand bites (open bonds) as well as the VBV representing their joint effect as a ligand (solid lines). At the left, the explanation of a group of angles helping to describe the orientation of the coordination planes is provided: angles labeled α give account of the angular separation in the plane between vectors, while those labeled ω measure the out-of-plane rotation of the coordination planes around the corresponding VBV vectors. It is apparent, either by visual inspection of Fig. 3[link] or through the analysis of the ω values (Table 2[link]), that the coordination polyhedron in (VII)[link] is abnormally distorted. Since this could be the result of packing strain (inter­molecular inter­actions) or just due to genuine intra­molecular forces, we shall analyze and compare the three packing arrangements for (V)[link], (VI)[link] and (VII)[link].

Table 2
Distortion angles as defined in Fig. 3[link] (°)

Angle (V) (VI) (VII)
α1 111.1 116.7 119.0
α2 111.1 116.7 111.0
α3 137.9 126.6 129.4
ω1 49.0 67.5 71.1
ω2 55.9 55.8 27.0
ω3 55.9 55.8 84.7
[Figure 3]
Figure 3
Schematic representation of the ligand distortion. In open bonds, the chelating ligands, (drawn as connected to each other, for clarity); in solid lines, the VBV vectors, representing the integrated action of each ligand. Angle codes are explained in the text.

3. Supra­molecular features

The most relevant, non-covalent inter­actions involved are presented in Table 3[link] (hydrogen bonds) and Table 4[link] (ππ contacts). The second column includes a code, which labels each inter­action for easy reference; in the last column, the role the inter­action plays in packing is listed.

Table 3
Hydrogen-bond geometry (Å, °) for (V)[link], (VI)[link] and (VII)

Cg1, Cg3, Cg4 and Cg6 are the centroids of the N1/C1–C4/C12, C4–C7/C11/C12, N21/C21–C24/C32 and C24–C27/C31/C32 rings, respectively.

Structure Label D—H⋯A D—H H⋯A DA D—H⋯A Character
(V)              
  #1a C3—H3⋯O3ii 0.93 2.54 3.228 (5) 131 Inter­chain
  #2a C14—H14B⋯O2iii 0.96 2.45 3.397 (5) 167 Inter­chain
  #3a C14—H14C⋯O2iv 0.96 2.54 3.331 (5) 140 Inter­chain
  #4a C13—H13⋯O1 0.96 2.71 3.099 (2) 105 Intra­molecular
  #5a C13—H13⋯O2 0.96 2.78 3.667 (2) 155 Intra­molecular
(VI)              
  #1b C1—H1⋯O1i 0.93 2.53 3.117 (2) 121 Intra­molecular
  #2b C1—H1⋯O2i 0.93 2.45 3.286 (2) 150 Intra­molecular
  #3b C15—H15B⋯O3ii 0.96 2.51 3.451 (2) 166 Inter­chain
  #4b C13—H13B⋯O2iii 0.96 2.59 3.324 (2) 133 Inter­chain
  #5b C16—H16B⋯O2iv 0.96 2.59 3.543 (3) 172 Inter­chain
  #6b C13—H13ACg3v 0.96 2.73 3.9857 127 Inter­chain
(VII)              
  #1c C1—H1⋯O7 0.93 2.37 3.296 (3) 171 Intra­molecular
  #2c C26—H26⋯O2i 0.93 2.29 3.204 (3) 165 Intra­chain
  #3c C15—H15BCg1iv 0.96 2.89 3.578 (4) 129 Intra­chain
  #4c C34—H34CCg4i 0.96 2.88 3.599 (3) 133 Intra­chain
  #5c C36—H36B⋯O6ii 0.96 2.47 3.165 (4) 130 Inter­chain
  #6c C13—H13ACg1iii 0.96 2.93 3.607 (4) 128 Inter­chain
  #7c C35—H35CCg6v 0.96 2.69 3.604 (4) 158 Inter­chain
Symmetry codes for (V)[link]: (ii) [{1\over 2}] − x, −[{1\over 2}] − y, 1 − z; (iii) −x, −y, −z; (iv) x, 1 + y, z. Symmetry codes for (VI)[link]: (i) −x, y, −z + [{1\over 2}]; (ii) x, y − 1, z; (iii) x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x − [{1\over 2}], y − [{1\over 2}], z; (v) −x + [{1\over 2}], y + [{1\over 2}], z. Symmetry codes for (VII)[link]: (i) −x + 1, −y + 1, −z + 2; (ii) x + 1, y, z; (iii) −x + 1, −y, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 2, −y + 1, −z + 2.

Table 4
π–π contacts (Å, °) for (V)[link], (VI)[link] and (VII)

ccd: centroid-to-centroid distance; da: dihedral angle between planes, sa: slippage angle (average angle subtended by the inter­centroid vector to the plane normal), ipd: inter­planar distance (average distance from one plane to the neighbouring centroid); for details, see Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). Cg1, Cg2, Cg3, Cg4 and Cg6 are the centroids of the N1/C1–C4/C12, N2/C7–C11, C4–C7/C11/C12, N21/C21–C24/C32 and C24–C27/C31/C32 rings, respectively.

Structure Label CgCg ccd da sa ipd Character
(V)              
  #6a Cg1⋯Cg3v 3.823 (3) 0.95 (14) 15.0(1.6) 3.69 (3) Intra­chain
(VI)              
  #7b Cg2⋯Cg3vi 3.8101 (10) 2.34 (8) 25.5 (7) 3.44 (2) Intra­chain
(VII)              
  #8c Cg2⋯Cg3v 3.737 (3) 0.9 (2) 21.3 (7) 3.48 (2) Intra­chain
  #9c Cg3⋯Cg3v 3.717 (3) 0 21.5 3.4577 (9) Intra­chain
  #10c Cg4⋯Cg6vi 3.700 (2) 0.6 (2) 21.8 (3) 3.43 (2) Intra­chain
  #11c Cg6⋯Cg6vi 3.669 (2) 0 20.9 3.4269 (9) Intra­chain
Symmetry code for (V)[link]: (v) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z. Symmetry code for (VI)[link]: (vi) −x, −y, −z. Symmetry codes for (VII)[link]: (v) 1 − x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, 2 − z.

Fig. 4[link] presents packing views of all three structures: it is apparent that in spite of crystallizing in different space groups, with different symmetry environments, the leitmotifs are strictly the same, viz. ππ bound chains running along [10[\overline{1}]] in (V)[link] and [001] in (VI)[link] and (VII)[link], the link being the stacking inter­action appearing in Table 4[link], which in all cases connect inversion-related moieties. Except for the rather strong #2c in (VII)[link], the remaining inter­molecular inter­actions are weak and serve either to strengthen the link within the chains (marked as `intra­chain' in the tables) or to weakly connect parallel chains with each other (`inter­chain') to end up defining weakly bound three-dimensional structures. This description is valid for all three structures, and there is nothing special about the packing inter­actions in (VII)[link] so as to ascribe to them the responsibility for the coordination `anomaly'. In fact, inter­action #2c, which due to its outstanding character might be thought of as a candidate to blame, involves the `well behaved' N21,N22-TMPhen and not the one departing from geom­etrical regularity (N1,N2-TMPhen). This fact can be clearly appreciated in Fig. 4[link] (bottom).

[Figure 4]
Figure 4
The π-bonded one-dimensional leitmotifs in all three structures. Stacking inter­actions labeled as in Table 4[link]. H atoms have been omitted for clarity.

As far as intra­molecular inter­actions are concerned, the symmetric cases (V)[link] and (VI)[link] present different behaviours regarding these contacts. Methyl groups at the 2,9 positions inhibit structure (V)[link] from entering into any significant (C—H)arom⋯Opds intra­molecular contact, as suggested in Fig. 2[link] and disclosed in Table 3[link], where only weak, inter­molecular inter­actions are to be found. Structure (VI)[link], in turn, having sites 2 and 9 free, is amenable of a closer approach of (C—H)arom donors and Opds acceptors, and in fact a pair of weak bonds set up (#1b and #2b, Fig. 2[link] and Table 3[link]). However, it is in structure (VII)[link] where things depart from normal, with a second unusually short and almost straight C—H⋯O bond inter­nally linking the `offending' N1,N2-TMPhen ligand and the pds anion in the same coordination sphere (inter­action #1c in Table 3[link]). In order to evaluate, at least in comparative terms the real significance of this bond (and, by extension, the similar #2c), we made some CSD (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) data mining and statistical comparisons.

When comparing inter­action #1c with its peers in the database, we looked for (C—H)arom⋯O intra­molecular bonds with almost no restrictions (viz. 2 Å < H⋯O < 3.0 Å; 120° < C—H⋯O < 180°). The results (from ca 30000 entries analysed) are quoted in Fig. 5[link], where the distance (a) and angle (b) histograms, as well as the combined scatterplot (c) are presented. The two hydrogen bonds in (VI)[link], marked in cyan, appear to be absolutely average, as are their structural consequences. The one in (VII)[link] (marked in red), instead appears endowed with a rather unique character, in particular its nearly straight C—H⋯O configuration. We tried to evaluate how frequent this kind of disrupting behaviour was (in terms of mol­ecular distortions) among comparable C—H⋯O inter­actions. Inspection of the occurrences found showed that they tended to appear either in monocoordinating ligands or pendant groups, in all cases with free rotations at some point in the chain, which made the C—H⋯O contact almost irrelevant in terms of configurational energy. What makes the case in (VII)[link] unusual is the chelating character of the ligands involved, with the concomitant deformation of the coordination polyhedron.

[Figure 5]
Figure 5
Statistical analysis of intra­molecular (C—H)arom⋯O bonds as found in the literature. In cyan, those found in (VI)[link]; in red, the one in (VII)[link].

Summarizing, there are in principle two possible reasons for the mol­ecular geometry in (VII)[link]: either the (packing-assisted) asymmetry with which ligand (N1,N2)TMPhen binds Cd1 is the reason allowing for an unusual closeness between C1—H1 and O7, giving room to a strong hydrogen bond, or (the other way round) it is this hydrogen bond that is the cause, and the asymmetric coordination its concomitant consequence. The lack of significant inter­molecular packing inter­actions which may justify the distortion in (VII)[link], in addition to the outstanding character of the #1c C—H⋯O bond seem to sustain the latter hypothesis, viz. that it is the presence of this hydrogen bond (`weak' among `strong' but `strong' among `weak') which disrupts the expected symmetrical geometry in the Cd(pds)(TMPhen)2 unit, constituting thus a rare case of a non-conventional C—H⋯O bond being responsible for a surprising mol­ecular configuration.

4. Synthesis and crystallization

Compounds (VI)[link] and (VII)[link] were synthesized in a similar fashion: a solution (4 ml) containing 0.050 mmol (13.5 mg) of potassium peroxodi­sulfate and 0.100 mmol (23.6 mg) of 3,4,7,8-tetra­methyl-1,10- phenanthroline (in a 3:1 v/v methanol:water mixture) were added to 0.050 mmol of the corres­ponding metal acetate [Zn(OAc)2: 11.0 mg; Cd(OAc)2: 13.3 mg). An initial precipitate of extremely small needles was readily digested, but in a few days a crop of single crystals suitable for X-ray diffraction were obtained, in the form of colorless blocks. For the synthesis of (V)[link], see Harvey et al. (2001b[Harvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307-311.]).

5. Refinement details

Data collection details and refinement results for (V)[link], (VI)[link] and (VII)[link] are summarized in Table 5[link]. The data set for (V)[link] is the same used in the original publication (Harvey et al., 2001b[Harvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307-311.]) reporting the structure refined in the Cc space group. All hydrogen atoms were found in a difference Fourier map, but further idealized and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. For (V)[link], a soft restraint in displacement factors was applied (RIGU in SHELXL2014).

Table 5
Experimental details

  (V) (VI) (VII)
Crystal data
Chemical formula [Cd(S2O8)(C14H12N2)] [Zn(S2O8)(C16H16N2)2] [Cd(S2O8)(C16H16N2)2]
Mr 721.03 730.10 777.13
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbcn Triclinic, P[\overline{1}]
Temperature (K) 296 294 294
a, b, c (Å) 22.233 (12), 9.566 (5), 16.017 (8) 15.6244 (2), 10.8803 (2), 17.9446 (3) 8.601 (3), 11.063 (4), 16.932 (5)
α, β, γ (°) 90, 123.78 (3), 90 90, 90, 90 98.788 (5), 97.713 (5), 97.943 (5)
V3) 2831 (3) 3050.55 (9) 1557.0 (9)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.98 1.00 0.90
Crystal size (mm) 0.80 × 0.30 × 0.15 0.35 × 0.20 × 0.16 0.28 × 0.16 × 0.14
 
Data collection
Diffractometer Siemens R3m Oxford Diffraction Gemini CCD S Ultra Oxford Diffraction Gemini CCD S Ultra
Absorption correction ψ scan (P3/P4-PC; Siemens, 1991[Siemens (1991). P3/P4-PC Diffractometer Program. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.70, 0.88 0.76, 0.84 0.76, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 2562, 2495, 2300 63344, 3988, 3341 41025, 7888, 6692
Rint 0.040 0.049 0.057
(sin θ/λ)max−1) 0.595 0.688 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.11 0.033, 0.092, 1.04 0.033, 0.071, 1.07
No. of reflections 2495 3988 7888
No. of parameters 197 217 432
No. of restraints 195 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.41 0.47, −0.53 0.54, −0.57
Computer programs: P3/P4-PC (Siemens, 1991[Siemens (1991). P3/P4-PC Diffractometer Program. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: P3/P4-PC (Siemens, 1991) for (V); CrysAlis PRO (Oxford Diffraction, 2009) for (VI), (VII). Cell refinement: P3/P4-PC (Siemens, 1991) for (V); CrysAlis PRO (Oxford Diffraction, 2009) for (VI), (VII). Data reduction: P3/P4-PC (Siemens, 1991) for (V); CrysAlis PRO (Oxford Diffraction, 2009) for (VI), (VII). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(V) Bis(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(peroxodisulfato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(S2O8)(C14H12N2)]F(000) = 1456
Mr = 721.03Dx = 1.691 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.233 (12) ÅCell parameters from 40 reflections
b = 9.566 (5) Åθ = 7.5–15°
c = 16.017 (8) ŵ = 0.98 mm1
β = 123.78 (3)°T = 296 K
V = 2831 (3) Å3Block, colourless
Z = 40.80 × 0.30 × 0.15 mm
Data collection top
Siemens R3m
diffractometer
2300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 026
Absorption correction: ψ scan
(P3/P4-PC; Siemens, 1991)
k = 011
Tmin = 0.70, Tmax = 0.88l = 1915
2562 measured reflections2 standard reflections every 98 reflections
2495 independent reflections intensity decay: 2%
Refinement top
Refinement on F2195 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.2422P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2495 reflectionsΔρmax = 0.47 e Å3
197 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.00000.08973 (3)0.25000.02566 (11)
S10.07113 (5)0.23114 (8)0.22102 (7)0.0491 (2)
O10.04563 (12)0.0900 (2)0.20412 (17)0.0433 (5)
O20.04309 (19)0.3067 (3)0.1303 (2)0.0819 (9)
O30.14664 (16)0.2448 (4)0.2948 (2)0.0944 (10)
O40.04040 (15)0.3065 (3)0.2828 (2)0.0699 (8)
N10.11739 (11)0.0703 (2)0.40497 (16)0.0289 (4)
N20.08013 (11)0.2280 (2)0.23846 (16)0.0278 (4)
C10.13651 (16)0.0027 (3)0.4888 (2)0.0378 (6)
C20.20758 (18)0.0459 (4)0.5553 (2)0.0518 (8)
H20.21920.09600.61220.062*
C30.25910 (17)0.0202 (4)0.5371 (2)0.0504 (7)
H30.30570.05490.58010.060*
C40.24159 (15)0.0594 (3)0.4528 (2)0.0376 (6)
C50.29429 (16)0.0998 (3)0.4334 (3)0.0451 (7)
H50.34170.06860.47580.054*
C60.27702 (15)0.1821 (3)0.3550 (2)0.0460 (7)
H60.31250.20760.34430.055*
C70.20481 (14)0.2306 (3)0.2885 (2)0.0360 (6)
C80.18446 (17)0.3241 (3)0.2091 (3)0.0473 (7)
H80.21880.35520.19740.057*
C90.11524 (18)0.3689 (3)0.1499 (3)0.0479 (7)
H90.10250.43340.09910.057*
C100.06267 (15)0.3185 (3)0.1647 (2)0.0344 (6)
C110.15031 (13)0.1874 (3)0.30242 (19)0.0267 (5)
C120.16911 (14)0.1021 (3)0.3876 (2)0.0282 (5)
C130.08122 (18)0.0186 (4)0.5129 (2)0.0529 (8)
H13A0.04320.04900.47730.079*
H13B0.10350.00750.58380.079*
H13C0.06140.11100.49310.079*
C140.01427 (16)0.3639 (3)0.0986 (2)0.0431 (7)
H14A0.04360.30850.11260.065*
H14B0.03060.35190.02950.065*
H14C0.01810.46070.11090.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02103 (15)0.02505 (15)0.03202 (16)0.0000.01544 (12)0.000
S10.0680 (5)0.0367 (4)0.0609 (5)0.0191 (4)0.0471 (4)0.0096 (3)
O10.0568 (13)0.0337 (10)0.0519 (12)0.0094 (8)0.0380 (11)0.0020 (8)
O20.139 (3)0.0502 (14)0.0877 (16)0.0057 (16)0.0822 (17)0.0174 (13)
O30.0681 (14)0.120 (3)0.0945 (19)0.0418 (15)0.0448 (13)0.0377 (18)
O40.0990 (19)0.0534 (14)0.0872 (19)0.0259 (13)0.0703 (17)0.0269 (13)
N10.0253 (9)0.0300 (11)0.0295 (9)0.0008 (8)0.0141 (8)0.0000 (8)
N20.0260 (9)0.0255 (10)0.0333 (10)0.0022 (7)0.0174 (8)0.0011 (8)
C10.0420 (13)0.0373 (14)0.0302 (11)0.0003 (10)0.0176 (10)0.0023 (10)
C20.0444 (13)0.0607 (19)0.0385 (15)0.0076 (12)0.0158 (11)0.0121 (14)
C30.0363 (14)0.0574 (18)0.0426 (14)0.0092 (13)0.0127 (12)0.0083 (13)
C40.0254 (11)0.0390 (14)0.0390 (12)0.0040 (9)0.0121 (9)0.0051 (10)
C50.0246 (12)0.0519 (17)0.0529 (15)0.0008 (11)0.0180 (12)0.0072 (12)
C60.0285 (12)0.0529 (16)0.0584 (15)0.0030 (11)0.0252 (11)0.0071 (12)
C70.0308 (11)0.0348 (13)0.0496 (13)0.0071 (9)0.0270 (10)0.0071 (11)
C80.0467 (14)0.0466 (16)0.0616 (16)0.0057 (12)0.0382 (13)0.0037 (13)
C90.0499 (13)0.0442 (16)0.0602 (18)0.0026 (11)0.0372 (13)0.0136 (14)
C100.0387 (12)0.0275 (12)0.0384 (12)0.0024 (9)0.0224 (10)0.0036 (10)
C110.0241 (10)0.0243 (11)0.0324 (11)0.0032 (8)0.0161 (8)0.0065 (9)
C120.0252 (10)0.0259 (11)0.0321 (11)0.0014 (8)0.0150 (9)0.0056 (9)
C130.0528 (17)0.069 (2)0.0405 (17)0.0018 (16)0.0284 (15)0.0095 (16)
C140.0409 (14)0.0390 (15)0.0449 (16)0.0026 (11)0.0211 (12)0.0121 (13)
Geometric parameters (Å, º) top
Cd—N22.307 (2)C4—C121.408 (4)
Cd—N2i2.308 (2)C4—C51.422 (4)
Cd—O1i2.314 (2)C5—C61.344 (5)
Cd—O12.314 (2)C5—H50.9300
Cd—N12.409 (3)C6—C71.423 (4)
Cd—N1i2.409 (3)C6—H60.9300
S1—O21.419 (3)C7—C81.407 (4)
S1—O31.423 (3)C7—C111.411 (4)
S1—O11.431 (2)C8—C91.352 (5)
S1—O41.648 (3)C8—H80.9300
O4—O4i1.494 (6)C9—C101.402 (4)
N1—C11.329 (3)C9—H90.9300
N1—C121.359 (4)C10—C141.491 (4)
N2—C101.336 (3)C11—C121.438 (4)
N2—C111.363 (3)C13—H13A0.9600
C1—C21.405 (4)C13—H13B0.9600
C1—C131.494 (4)C13—H13C0.9600
C2—C31.352 (5)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.404 (4)C14—H14C0.9600
C3—H30.9300
N2—Cd—N2i110.03 (11)C3—C4—C5122.4 (3)
N2—Cd—O1i161.06 (8)C12—C4—C5120.1 (3)
N2i—Cd—O1i84.62 (8)C6—C5—C4121.4 (3)
N2—Cd—O184.62 (8)C6—C5—H5119.3
N2i—Cd—O1161.06 (8)C4—C5—H5119.3
O1i—Cd—O184.03 (11)C5—C6—C7120.5 (3)
N2—Cd—N171.60 (8)C5—C6—H6119.7
N2i—Cd—N1113.83 (8)C7—C6—H6119.7
O1i—Cd—N191.75 (8)C8—C7—C11117.1 (3)
O1—Cd—N181.65 (8)C8—C7—C6123.1 (3)
N2—Cd—N1i113.83 (8)C11—C7—C6119.7 (3)
N2i—Cd—N1i71.61 (8)C9—C8—C7120.3 (3)
O1i—Cd—N1i81.65 (8)C9—C8—H8119.8
O1—Cd—N1i91.75 (8)C7—C8—H8119.8
N1—Cd—N1i171.15 (10)C8—C9—C10120.2 (3)
O2—S1—O3116.6 (2)C8—C9—H9119.9
O2—S1—O1112.62 (17)C10—C9—H9119.9
O3—S1—O1113.85 (19)N2—C10—C9120.9 (3)
O2—S1—O4107.39 (17)N2—C10—C14118.2 (2)
O3—S1—O498.78 (18)C9—C10—C14121.0 (3)
O1—S1—O4105.86 (13)N2—C11—C7121.5 (2)
S1—O1—Cd146.99 (14)N2—C11—C12118.8 (2)
O4i—O4—S1108.4 (2)C7—C11—C12119.6 (2)
C1—N1—C12118.9 (2)N1—C12—C4122.2 (3)
C1—N1—Cd129.28 (18)N1—C12—C11119.2 (2)
C12—N1—Cd109.09 (17)C4—C12—C11118.5 (2)
C10—N2—C11119.8 (2)C1—C13—H13A109.5
C10—N2—Cd125.77 (17)C1—C13—H13B109.5
C11—N2—Cd112.87 (16)H13A—C13—H13B109.5
N1—C1—C2121.3 (3)C1—C13—H13C109.5
N1—C1—C13118.7 (3)H13A—C13—H13C109.5
C2—C1—C13119.9 (3)H13B—C13—H13C109.5
C3—C2—C1120.4 (3)C10—C14—H14A109.5
C3—C2—H2119.8C10—C14—H14B109.5
C1—C2—H2119.8H14A—C14—H14B109.5
C2—C3—C4119.4 (3)C10—C14—H14C109.5
C2—C3—H3120.3H14A—C14—H14C109.5
C4—C3—H3120.3H14B—C14—H14C109.5
C3—C4—C12117.5 (3)
O2—S1—O1—Cd135.8 (3)C11—N2—C10—C14178.0 (2)
O3—S1—O1—Cd88.7 (3)Cd—N2—C10—C1417.2 (4)
O4—S1—O1—Cd18.7 (3)C8—C9—C10—N21.4 (5)
O2—S1—O4—O4i57.55 (19)C8—C9—C10—C14178.5 (3)
O3—S1—O4—O4i179.04 (19)C10—N2—C11—C74.8 (4)
O1—S1—O4—O4i62.98 (17)Cd—N2—C11—C7161.95 (19)
C12—N1—C1—C25.1 (4)C10—N2—C11—C12173.3 (2)
Cd—N1—C1—C2154.1 (2)Cd—N2—C11—C1219.9 (3)
C12—N1—C1—C13173.6 (3)C8—C7—C11—N23.7 (4)
Cd—N1—C1—C1327.3 (4)C6—C7—C11—N2177.9 (3)
N1—C1—C2—C32.4 (5)C8—C7—C11—C12174.4 (2)
C13—C1—C2—C3176.2 (3)C6—C7—C11—C124.0 (4)
C1—C2—C3—C42.0 (5)C1—N1—C12—C43.4 (4)
C2—C3—C4—C123.5 (5)Cd—N1—C12—C4159.6 (2)
C2—C3—C4—C5174.9 (3)C1—N1—C12—C11173.7 (2)
C3—C4—C5—C6176.5 (3)Cd—N1—C12—C1123.2 (3)
C12—C4—C5—C61.9 (5)C3—C4—C12—N10.9 (4)
C4—C5—C6—C70.4 (5)C5—C4—C12—N1177.6 (3)
C5—C6—C7—C8175.8 (3)C3—C4—C12—C11178.0 (3)
C5—C6—C7—C112.5 (5)C5—C4—C12—C110.4 (4)
C11—C7—C8—C90.1 (5)N2—C11—C12—N13.4 (3)
C6—C7—C8—C9178.4 (3)C7—C11—C12—N1174.7 (2)
C7—C8—C9—C102.4 (5)N2—C11—C12—C4179.4 (2)
C11—N2—C10—C92.2 (4)C7—C11—C12—C42.5 (4)
Cd—N2—C10—C9162.7 (2)
Symmetry code: (i) x, y, z+1/2.
(VI) Bis(3,4,7,8-tetramethy-1,10-phenanthroline-κ2N,N')(peroxodisulfato-κ2O,O')zinc(II) top
Crystal data top
[Zn(S2O8)(C16H16N2)2]Dx = 1.590 Mg m3
Mr = 730.10Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3997 reflections
a = 15.6244 (2) Åθ = 4.0–28.1°
b = 10.8803 (2) ŵ = 1.00 mm1
c = 17.9446 (3) ÅT = 294 K
V = 3050.55 (9) Å3Blocks, colorless
Z = 40.35 × 0.20 × 0.16 mm
F(000) = 1512
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
3341 reflections with I > 2σ(I)
ω scans, thick slicesRint = 0.049
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
θmax = 29.3°, θmin = 3.8°
Tmin = 0.76, Tmax = 0.84h = 2121
63344 measured reflectionsk = 1414
3988 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0436P)2 + 2.8456P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3988 reflectionsΔρmax = 0.47 e Å3
217 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.15234 (2)0.25000.01734 (9)
S10.07734 (3)0.42233 (4)0.17271 (2)0.02274 (11)
O10.05400 (9)0.29339 (12)0.18073 (7)0.0249 (3)
O20.15306 (9)0.45546 (14)0.21252 (9)0.0374 (4)
O30.06987 (11)0.46565 (14)0.09785 (8)0.0389 (4)
O40.00284 (9)0.50125 (14)0.20933 (8)0.0313 (3)
N10.11590 (9)0.13279 (13)0.19251 (8)0.0190 (3)
N20.03181 (10)0.01731 (13)0.16421 (8)0.0191 (3)
C10.18924 (11)0.18781 (16)0.20877 (10)0.0217 (3)
H10.18870.24770.24580.026*
C20.26765 (11)0.16206 (16)0.17409 (10)0.0211 (4)
C30.26914 (11)0.07603 (16)0.11707 (10)0.0223 (4)
C40.19057 (11)0.01752 (16)0.09742 (10)0.0210 (3)
C50.18323 (13)0.07255 (17)0.03903 (10)0.0262 (4)
H50.23140.09190.01090.031*
C60.10858 (13)0.12971 (17)0.02393 (10)0.0253 (4)
H60.10670.18730.01430.030*
C70.03198 (12)0.10420 (16)0.06522 (10)0.0208 (3)
C80.04694 (13)0.16591 (16)0.05399 (10)0.0226 (4)
C90.11588 (12)0.13397 (17)0.09853 (10)0.0242 (4)
C100.10495 (12)0.04113 (16)0.15199 (10)0.0227 (4)
H100.15210.01920.18070.027*
C110.03636 (11)0.01425 (15)0.12169 (9)0.0186 (3)
C120.11614 (11)0.04729 (15)0.13729 (9)0.0182 (3)
C130.34554 (12)0.22736 (18)0.20309 (11)0.0265 (4)
H13A0.38350.24540.16240.040*
H13B0.37440.17580.23850.040*
H13C0.32860.30260.22680.040*
C140.35083 (13)0.0417 (2)0.07834 (12)0.0320 (4)
H14A0.39460.10000.09090.048*
H14B0.34190.04200.02540.048*
H14C0.36830.03890.09400.048*
C150.05618 (14)0.26544 (18)0.00342 (11)0.0301 (4)
H15A0.11140.25930.02660.045*
H15B0.05070.34430.02020.045*
H15C0.01230.25640.04050.045*
C160.20162 (13)0.1962 (2)0.09203 (12)0.0350 (5)
H16A0.22410.18370.04280.052*
H16B0.24030.16200.12800.052*
H16C0.19510.28270.10110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01923 (15)0.01694 (15)0.01584 (15)0.0000.00453 (10)0.000
S10.0253 (2)0.0201 (2)0.0228 (2)0.00006 (16)0.00201 (17)0.00241 (16)
O10.0321 (7)0.0201 (6)0.0225 (6)0.0026 (5)0.0000 (5)0.0021 (5)
O20.0297 (8)0.0318 (8)0.0506 (10)0.0035 (6)0.0052 (7)0.0070 (7)
O30.0524 (10)0.0348 (8)0.0294 (8)0.0018 (7)0.0063 (7)0.0121 (6)
O40.0350 (7)0.0312 (7)0.0276 (8)0.0083 (6)0.0022 (6)0.0049 (6)
N10.0217 (7)0.0183 (7)0.0170 (7)0.0003 (6)0.0040 (6)0.0000 (5)
N20.0221 (7)0.0172 (7)0.0179 (7)0.0002 (6)0.0029 (6)0.0003 (5)
C10.0242 (9)0.0183 (8)0.0226 (9)0.0003 (7)0.0050 (7)0.0015 (6)
C20.0211 (9)0.0194 (8)0.0228 (8)0.0002 (6)0.0039 (7)0.0037 (6)
C30.0234 (9)0.0207 (8)0.0226 (8)0.0042 (7)0.0052 (7)0.0037 (7)
C40.0238 (8)0.0191 (8)0.0200 (8)0.0037 (7)0.0050 (7)0.0011 (6)
C50.0309 (10)0.0252 (9)0.0226 (9)0.0058 (8)0.0084 (7)0.0039 (7)
C60.0336 (10)0.0221 (9)0.0203 (9)0.0046 (7)0.0050 (7)0.0044 (7)
C70.0284 (9)0.0169 (8)0.0170 (8)0.0028 (7)0.0011 (7)0.0014 (6)
C80.0322 (10)0.0171 (8)0.0185 (8)0.0002 (7)0.0020 (7)0.0006 (6)
C90.0287 (9)0.0226 (9)0.0212 (9)0.0028 (7)0.0014 (7)0.0000 (7)
C100.0234 (8)0.0227 (8)0.0220 (8)0.0007 (7)0.0030 (7)0.0013 (7)
C110.0233 (8)0.0163 (8)0.0161 (8)0.0021 (6)0.0017 (6)0.0015 (6)
C120.0236 (8)0.0154 (7)0.0156 (7)0.0022 (6)0.0031 (6)0.0026 (6)
C130.0233 (9)0.0252 (9)0.0310 (10)0.0019 (7)0.0045 (7)0.0011 (7)
C140.0245 (9)0.0356 (11)0.0357 (11)0.0023 (8)0.0088 (8)0.0079 (9)
C150.0402 (11)0.0245 (9)0.0257 (9)0.0019 (8)0.0026 (8)0.0061 (7)
C160.0317 (10)0.0402 (12)0.0330 (11)0.0102 (9)0.0006 (9)0.0098 (9)
Geometric parameters (Å, º) top
Zn1—N12.0950 (14)C5—H50.9300
Zn1—N1i2.0951 (14)C6—C71.435 (3)
Zn1—O1i2.1476 (13)C6—H60.9300
Zn1—O12.1476 (13)C7—C111.410 (2)
Zn1—N2i2.1853 (14)C7—C81.418 (3)
Zn1—N22.1853 (14)C8—C91.385 (3)
S1—O21.4281 (15)C8—C151.502 (2)
S1—O31.4285 (15)C9—C101.404 (3)
S1—O11.4567 (13)C9—C161.506 (3)
S1—O41.6548 (15)C10—H100.9300
O4—O4i1.462 (3)C11—C121.442 (2)
N1—C11.325 (2)C13—H13A0.9600
N1—C121.359 (2)C13—H13B0.9600
N2—C101.326 (2)C13—H13C0.9600
N2—C111.354 (2)C14—H14A0.9600
C1—C21.402 (2)C14—H14B0.9600
C1—H10.9300C14—H14C0.9600
C2—C31.387 (3)C15—H15A0.9600
C2—C131.502 (3)C15—H15B0.9600
C3—C41.427 (3)C15—H15C0.9600
C3—C141.500 (2)C16—H16A0.9600
C4—C121.403 (2)C16—H16B0.9600
C4—C51.439 (2)C16—H16C0.9600
C5—C61.349 (3)
N1—Zn1—N1i168.35 (8)C5—C6—H6119.1
N1—Zn1—O1i91.03 (5)C7—C6—H6119.1
N1i—Zn1—O1i97.30 (5)C11—C7—C8118.20 (16)
N1—Zn1—O197.30 (5)C11—C7—C6117.70 (17)
N1i—Zn1—O191.03 (5)C8—C7—C6124.08 (16)
N1i—Zn1—N2i77.38 (6)C9—C8—C7118.38 (16)
O1—Zn1—O1i88.78 (7)C9—C8—C15120.13 (17)
N1—Zn1—N2i94.71 (6)C7—C8—C15121.49 (17)
O1i—Zn1—N2i89.04 (5)C8—C9—C10118.70 (17)
O1—Zn1—N2i167.83 (5)C8—C9—C16122.29 (17)
N1—Zn1—N277.37 (6)C10—C9—C16119.01 (17)
N1i—Zn1—N294.71 (6)N2—C10—C9124.26 (17)
O1i—Zn1—N2167.83 (5)N2—C10—H10117.9
O1—Zn1—N289.04 (5)C9—C10—H10117.9
N2i—Zn1—N295.52 (8)N2—C11—C7122.86 (16)
O2—S1—O3117.05 (10)N2—C11—C12116.90 (15)
O2—S1—O1113.65 (9)C7—C11—C12120.23 (16)
O3—S1—O1112.97 (9)N1—C12—C4122.13 (16)
O2—S1—O4107.31 (9)N1—C12—C11117.19 (15)
O3—S1—O498.06 (9)C4—C12—C11120.67 (15)
O1—S1—O4105.72 (8)C2—C13—H13A109.5
S1—O1—Zn1147.54 (8)C2—C13—H13B109.5
O4i—O4—S1110.51 (12)H13A—C13—H13B109.5
C1—N1—C12117.87 (15)C2—C13—H13C109.5
C1—N1—Zn1126.37 (12)H13A—C13—H13C109.5
C12—N1—Zn1115.52 (11)H13B—C13—H13C109.5
C10—N2—C11117.58 (15)C3—C14—H14A109.5
C10—N2—Zn1129.41 (12)C3—C14—H14B109.5
C11—N2—Zn1112.86 (11)H14A—C14—H14B109.5
N1—C1—C2124.57 (16)C3—C14—H14C109.5
N1—C1—H1117.7H14A—C14—H14C109.5
C2—C1—H1117.7H14B—C14—H14C109.5
C3—C2—C1118.48 (17)C8—C15—H15A109.5
C3—C2—C13124.13 (16)C8—C15—H15B109.5
C1—C2—C13117.36 (16)H15A—C15—H15B109.5
C2—C3—C4117.96 (16)C8—C15—H15C109.5
C2—C3—C14121.60 (17)H15A—C15—H15C109.5
C4—C3—C14120.41 (16)H15B—C15—H15C109.5
C12—C4—C3118.95 (16)C9—C16—H16A109.5
C12—C4—C5117.53 (16)C9—C16—H16B109.5
C3—C4—C5123.52 (16)H16A—C16—H16B109.5
C6—C5—C4121.94 (17)C9—C16—H16C109.5
C6—C5—H5119.0H16A—C16—H16C109.5
C4—C5—H5119.0H16B—C16—H16C109.5
C5—C6—C7121.88 (17)
O2—S1—O1—Zn175.62 (18)C15—C8—C9—C10179.58 (17)
O3—S1—O1—Zn1147.93 (15)C7—C8—C9—C16178.56 (18)
O4—S1—O1—Zn141.81 (18)C15—C8—C9—C160.2 (3)
O2—S1—O4—O4i43.02 (11)C11—N2—C10—C90.6 (3)
O3—S1—O4—O4i164.71 (10)Zn1—N2—C10—C9174.53 (13)
O1—S1—O4—O4i78.59 (10)C8—C9—C10—N21.5 (3)
C12—N1—C1—C21.5 (3)C16—C9—C10—N2177.88 (18)
Zn1—N1—C1—C2172.58 (13)C10—N2—C11—C70.9 (2)
N1—C1—C2—C32.1 (3)Zn1—N2—C11—C7176.86 (13)
N1—C1—C2—C13176.01 (17)C10—N2—C11—C12178.04 (15)
C1—C2—C3—C40.6 (3)Zn1—N2—C11—C122.09 (18)
C13—C2—C3—C4177.41 (16)C8—C7—C11—N21.5 (3)
C1—C2—C3—C14178.75 (17)C6—C7—C11—N2179.96 (16)
C13—C2—C3—C140.7 (3)C8—C7—C11—C12177.39 (15)
C2—C3—C4—C121.3 (2)C6—C7—C11—C121.0 (2)
C14—C3—C4—C12176.83 (17)C1—N1—C12—C40.7 (2)
C2—C3—C4—C5179.53 (17)Zn1—N1—C12—C4175.37 (13)
C14—C3—C4—C52.3 (3)C1—N1—C12—C11178.29 (15)
C12—C4—C5—C61.9 (3)Zn1—N1—C12—C113.58 (19)
C3—C4—C5—C6177.26 (18)C3—C4—C12—N12.1 (3)
C4—C5—C6—C70.0 (3)C5—C4—C12—N1178.75 (16)
C5—C6—C7—C111.5 (3)C3—C4—C12—C11176.87 (15)
C5—C6—C7—C8176.81 (18)C5—C4—C12—C112.3 (2)
C11—C7—C8—C90.6 (2)N2—C11—C12—N10.9 (2)
C6—C7—C8—C9178.92 (17)C7—C11—C12—N1179.87 (15)
C11—C7—C8—C15178.16 (16)N2—C11—C12—C4178.08 (15)
C6—C7—C8—C150.2 (3)C7—C11—C12—C40.9 (2)
C7—C8—C9—C100.8 (3)
Symmetry code: (i) x, y, z+1/2.
(VII) Bis(3,4,7,8-tetramethy-1,10-phenanthroline-κ2N,N')(peroxodisulfato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(S2O8)(C16H16N2)2]Z = 2
Mr = 777.13F(000) = 792
Triclinic, P1Dx = 1.658 Mg m3
a = 8.601 (3) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.063 (4) ÅCell parameters from 6894 reflections
c = 16.932 (5) Åθ = 3.8–27.7°
α = 98.788 (5)°µ = 0.90 mm1
β = 97.713 (5)°T = 294 K
γ = 97.943 (5)°Blocks, colorless
V = 1557.0 (9) Å30.28 × 0.16 × 0.14 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
6692 reflections with I > 2σ(I)
ω scans, thick slicesRint = 0.057
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
θmax = 29.6°, θmin = 3.7°
Tmin = 0.76, Tmax = 0.84h = 1111
41025 measured reflectionsk = 1514
7888 independent reflectionsl = 2223
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.357P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
7888 reflectionsΔρmax = 0.54 e Å3
432 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.47097 (2)0.33533 (2)0.72920 (2)0.01922 (6)
S10.05625 (7)0.35870 (6)0.71408 (3)0.02590 (13)
S20.20697 (7)0.06721 (6)0.75623 (4)0.02696 (13)
O10.21331 (18)0.37290 (16)0.69045 (10)0.0286 (4)
O20.0350 (2)0.45715 (18)0.77528 (10)0.0423 (5)
O30.06850 (19)0.31860 (17)0.64709 (10)0.0334 (4)
O40.0523 (2)0.24624 (17)0.76875 (10)0.0345 (4)
O50.06436 (19)0.13190 (16)0.71331 (10)0.0338 (4)
O60.1605 (2)0.03554 (17)0.82923 (10)0.0362 (4)
O70.2034 (2)0.03378 (16)0.69173 (11)0.0402 (4)
O80.34975 (18)0.15938 (15)0.77001 (11)0.0322 (4)
N10.4486 (2)0.23623 (17)0.59702 (11)0.0217 (4)
N20.6357 (2)0.45495 (17)0.66216 (11)0.0202 (4)
C10.3553 (3)0.1293 (2)0.56479 (14)0.0260 (5)
H10.30230.08680.59920.031*
C20.3309 (3)0.0759 (2)0.48279 (15)0.0287 (5)
C30.4100 (3)0.1376 (2)0.43121 (14)0.0292 (5)
C40.5109 (3)0.2525 (2)0.46361 (13)0.0261 (5)
C50.5991 (3)0.3243 (3)0.41633 (14)0.0319 (6)
H50.59110.29500.36120.038*
C60.6933 (3)0.4328 (3)0.44856 (15)0.0316 (6)
H60.74660.47700.41500.038*
C70.7140 (3)0.4823 (2)0.53374 (14)0.0244 (5)
C80.8184 (3)0.5928 (2)0.57091 (15)0.0280 (5)
C90.8314 (3)0.6286 (2)0.65367 (16)0.0297 (6)
C100.7359 (3)0.5573 (2)0.69553 (14)0.0255 (5)
H100.74320.58370.75090.031*
C110.6269 (2)0.4147 (2)0.58217 (13)0.0201 (5)
C120.5256 (2)0.2986 (2)0.54680 (13)0.0205 (5)
C130.2189 (3)0.0455 (3)0.45618 (17)0.0414 (7)
H13A0.27220.10550.42820.062*
H13B0.12760.03360.42070.062*
H13C0.18560.07470.50280.062*
C140.3930 (4)0.0845 (3)0.34201 (16)0.0467 (7)
H14A0.30780.01530.32820.070*
H14B0.49030.05750.33070.070*
H14C0.37000.14700.31060.070*
C150.9139 (3)0.6671 (3)0.52125 (17)0.0409 (7)
H15A0.97160.74170.55510.061*
H15B0.84360.68790.47820.061*
H15C0.98740.61900.49880.061*
C160.9451 (3)0.7398 (3)0.70052 (18)0.0469 (8)
H16A0.92660.81180.67770.070*
H16B1.05230.72640.69780.070*
H16C0.92890.75220.75600.070*
N210.4943 (2)0.51270 (17)0.82643 (10)0.0198 (4)
N220.6494 (2)0.31779 (18)0.84169 (11)0.0219 (4)
C210.4298 (3)0.6120 (2)0.81585 (14)0.0242 (5)
H210.35980.60730.76820.029*
C220.4590 (3)0.7236 (2)0.87092 (14)0.0253 (5)
C230.5539 (3)0.7279 (2)0.94438 (14)0.0252 (5)
C240.6237 (2)0.6230 (2)0.95815 (13)0.0230 (5)
C250.7238 (3)0.6180 (2)1.03197 (14)0.0283 (5)
H250.74140.68531.07420.034*
C260.7930 (3)0.5181 (2)1.04171 (14)0.0290 (6)
H260.85670.51821.09070.035*
C270.7714 (3)0.4113 (2)0.97874 (14)0.0254 (5)
C280.8425 (3)0.3054 (3)0.98739 (15)0.0289 (6)
C290.8136 (3)0.2077 (2)0.92287 (16)0.0302 (6)
C300.7184 (3)0.2201 (2)0.85173 (15)0.0282 (5)
H300.70250.15500.80820.034*
C310.6738 (2)0.4133 (2)0.90545 (13)0.0204 (5)
C320.5953 (2)0.5188 (2)0.89612 (12)0.0192 (5)
C330.3872 (3)0.8322 (2)0.84782 (17)0.0366 (6)
H33A0.32360.85970.88730.055*
H33B0.32160.80770.79570.055*
H33C0.47040.89850.84570.055*
C340.5838 (3)0.8423 (2)1.00842 (16)0.0383 (6)
H34A0.52730.90390.98940.058*
H34B0.69560.87401.02000.058*
H34C0.54760.82201.05670.058*
C350.9459 (3)0.3000 (3)1.06551 (16)0.0418 (7)
H35A0.97090.21791.06440.063*
H35B0.89030.32041.11000.063*
H35C1.04230.35821.07190.063*
C360.8790 (3)0.0884 (3)0.92540 (19)0.0466 (7)
H36A0.85250.05500.97190.070*
H36B0.99250.10450.92880.070*
H36C0.83370.02990.87720.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02200 (9)0.01855 (9)0.01524 (9)0.00058 (6)0.00083 (6)0.00144 (6)
S10.0251 (3)0.0305 (3)0.0203 (3)0.0087 (2)0.0032 (2)0.0011 (2)
S20.0275 (3)0.0217 (3)0.0298 (3)0.0027 (2)0.0021 (2)0.0066 (3)
O10.0237 (8)0.0303 (10)0.0302 (9)0.0031 (7)0.0029 (7)0.0073 (7)
O20.0526 (12)0.0470 (12)0.0256 (10)0.0267 (10)0.0045 (8)0.0061 (8)
O30.0268 (9)0.0404 (11)0.0285 (9)0.0075 (8)0.0071 (7)0.0006 (8)
O40.0375 (10)0.0416 (12)0.0276 (9)0.0128 (8)0.0068 (8)0.0085 (8)
O50.0339 (9)0.0285 (10)0.0333 (10)0.0021 (8)0.0063 (8)0.0036 (8)
O60.0416 (10)0.0378 (11)0.0325 (10)0.0050 (8)0.0091 (8)0.0145 (8)
O70.0562 (12)0.0229 (10)0.0384 (11)0.0037 (8)0.0110 (9)0.0014 (8)
O80.0249 (8)0.0239 (9)0.0449 (11)0.0048 (7)0.0021 (8)0.0118 (8)
N10.0247 (10)0.0216 (10)0.0182 (9)0.0033 (8)0.0032 (8)0.0023 (8)
N20.0184 (9)0.0222 (10)0.0197 (9)0.0035 (7)0.0004 (7)0.0051 (8)
C10.0308 (13)0.0234 (13)0.0219 (12)0.0020 (10)0.0030 (10)0.0009 (10)
C20.0312 (13)0.0239 (13)0.0273 (13)0.0086 (10)0.0034 (10)0.0033 (10)
C30.0337 (13)0.0335 (15)0.0197 (12)0.0161 (11)0.0003 (10)0.0031 (10)
C40.0292 (12)0.0339 (14)0.0179 (11)0.0151 (10)0.0032 (9)0.0046 (10)
C50.0388 (14)0.0442 (17)0.0176 (12)0.0176 (12)0.0087 (10)0.0073 (11)
C60.0338 (14)0.0438 (17)0.0261 (13)0.0148 (12)0.0120 (11)0.0192 (12)
C70.0197 (11)0.0321 (14)0.0264 (12)0.0101 (10)0.0055 (9)0.0138 (10)
C80.0181 (11)0.0359 (15)0.0363 (14)0.0088 (10)0.0053 (10)0.0208 (12)
C90.0207 (12)0.0295 (14)0.0380 (15)0.0008 (10)0.0004 (10)0.0117 (11)
C100.0192 (11)0.0324 (14)0.0223 (12)0.0003 (10)0.0022 (9)0.0055 (10)
C110.0179 (10)0.0264 (13)0.0192 (11)0.0092 (9)0.0029 (9)0.0089 (9)
C120.0196 (11)0.0244 (12)0.0188 (11)0.0090 (9)0.0018 (9)0.0038 (9)
C130.0487 (17)0.0294 (15)0.0359 (15)0.0007 (12)0.0062 (13)0.0086 (12)
C140.0608 (19)0.052 (2)0.0227 (14)0.0156 (15)0.0005 (13)0.0085 (13)
C150.0316 (14)0.0490 (18)0.0494 (17)0.0053 (12)0.0117 (13)0.0283 (15)
C160.0359 (15)0.0462 (19)0.0509 (18)0.0166 (13)0.0026 (13)0.0140 (15)
N210.0197 (9)0.0229 (10)0.0166 (9)0.0025 (8)0.0021 (7)0.0040 (8)
N220.0216 (9)0.0223 (10)0.0221 (10)0.0027 (8)0.0038 (8)0.0055 (8)
C210.0245 (12)0.0265 (13)0.0215 (12)0.0044 (10)0.0033 (9)0.0039 (10)
C220.0254 (12)0.0225 (13)0.0276 (13)0.0005 (9)0.0077 (10)0.0043 (10)
C230.0263 (12)0.0230 (13)0.0240 (12)0.0041 (9)0.0092 (10)0.0005 (10)
C240.0200 (11)0.0293 (13)0.0167 (11)0.0045 (9)0.0045 (9)0.0011 (9)
C250.0272 (12)0.0361 (15)0.0166 (11)0.0052 (11)0.0020 (9)0.0004 (10)
C260.0238 (12)0.0446 (16)0.0151 (11)0.0036 (11)0.0018 (9)0.0070 (11)
C270.0180 (11)0.0386 (15)0.0205 (12)0.0006 (10)0.0043 (9)0.0102 (10)
C280.0171 (11)0.0443 (16)0.0290 (13)0.0045 (10)0.0065 (10)0.0163 (12)
C290.0224 (12)0.0385 (16)0.0369 (14)0.0115 (11)0.0101 (11)0.0185 (12)
C300.0266 (12)0.0297 (14)0.0301 (13)0.0070 (10)0.0067 (10)0.0063 (11)
C310.0160 (10)0.0253 (12)0.0188 (11)0.0020 (9)0.0039 (8)0.0042 (9)
C320.0159 (10)0.0246 (12)0.0160 (11)0.0019 (9)0.0039 (8)0.0037 (9)
C330.0435 (15)0.0251 (14)0.0403 (16)0.0055 (12)0.0034 (12)0.0056 (12)
C340.0467 (16)0.0282 (15)0.0338 (15)0.0008 (12)0.0056 (12)0.0073 (11)
C350.0306 (14)0.065 (2)0.0366 (15)0.0123 (13)0.0039 (12)0.0256 (15)
C360.0467 (17)0.0494 (19)0.0535 (19)0.0232 (14)0.0117 (14)0.0223 (15)
Geometric parameters (Å, º) top
Cd1—N12.3075 (19)C14—H14C0.9600
Cd1—O82.3232 (18)C15—H15A0.9600
Cd1—N212.327 (2)C15—H15B0.9600
Cd1—N22.3278 (19)C15—H15C0.9600
Cd1—N222.3304 (19)C16—H16A0.9600
Cd1—O12.3371 (19)C16—H16B0.9600
S1—O31.4222 (17)C16—H16C0.9600
S1—O21.4333 (19)N21—C211.322 (3)
S1—O11.4544 (18)N21—C321.355 (3)
S1—O41.6597 (19)N22—C301.325 (3)
S2—O61.4272 (18)N22—C311.362 (3)
S2—O71.4320 (19)C21—C221.399 (3)
S2—O81.4514 (17)C21—H210.9300
S2—O51.6454 (18)C22—C231.384 (3)
O4—O51.480 (2)C22—C331.504 (3)
N1—C11.328 (3)C23—C241.414 (3)
N1—C121.357 (3)C23—C341.503 (3)
N2—C101.322 (3)C24—C321.405 (3)
N2—C111.348 (3)C24—C251.432 (3)
C1—C21.399 (3)C25—C261.347 (4)
C1—H10.9300C25—H250.9300
C2—C31.380 (3)C26—C271.438 (3)
C2—C131.509 (4)C26—H260.9300
C3—C41.423 (4)C27—C311.407 (3)
C3—C141.515 (3)C27—C281.412 (3)
C4—C121.406 (3)C28—C291.384 (4)
C4—C51.428 (3)C28—C351.506 (3)
C5—C61.344 (4)C29—C301.399 (3)
C5—H50.9300C29—C361.509 (4)
C6—C71.440 (3)C30—H300.9300
C6—H60.9300C31—C321.445 (3)
C7—C111.411 (3)C33—H33A0.9600
C7—C81.417 (4)C33—H33B0.9600
C8—C91.382 (4)C33—H33C0.9600
C8—C151.505 (3)C34—H34A0.9600
C9—C101.395 (3)C34—H34B0.9600
C9—C161.503 (4)C34—H34C0.9600
C10—H100.9300C35—H35A0.9600
C11—C121.443 (3)C35—H35B0.9600
C13—H13A0.9600C35—H35C0.9600
C13—H13B0.9600C36—H36A0.9600
C13—H13C0.9600C36—H36B0.9600
C14—H14A0.9600C36—H36C0.9600
C14—H14B0.9600
N1—Cd1—O892.85 (7)C3—C14—H14C109.5
N1—Cd1—N21152.02 (7)H14A—C14—H14C109.5
O8—Cd1—N21112.40 (7)H14B—C14—H14C109.5
N1—Cd1—N271.27 (7)C8—C15—H15A109.5
O8—Cd1—N2158.54 (6)C8—C15—H15B109.5
N21—Cd1—N286.65 (7)H15A—C15—H15B109.5
N1—Cd1—N22128.61 (7)C8—C15—H15C109.5
O8—Cd1—N2277.30 (6)H15A—C15—H15C109.5
N21—Cd1—N2271.29 (7)H15B—C15—H15C109.5
N2—Cd1—N22101.00 (7)C9—C16—H16A109.5
N1—Cd1—O185.06 (6)C9—C16—H16B109.5
O8—Cd1—O185.92 (6)H16A—C16—H16B109.5
N21—Cd1—O184.94 (6)C9—C16—H16C109.5
N2—Cd1—O1106.32 (7)H16A—C16—H16C109.5
N22—Cd1—O1142.43 (6)H16B—C16—H16C109.5
O3—S1—O2117.21 (11)C21—N21—C32117.7 (2)
O3—S1—O1113.08 (11)C21—N21—Cd1125.21 (15)
O2—S1—O1113.93 (12)C32—N21—Cd1116.69 (14)
O3—S1—O4106.56 (11)C30—N22—C31117.3 (2)
O2—S1—O498.35 (11)C30—N22—Cd1126.18 (16)
O1—S1—O4105.54 (9)C31—N22—Cd1116.25 (14)
O6—S2—O7116.46 (11)N21—C21—C22125.0 (2)
O6—S2—O8113.18 (11)N21—C21—H21117.5
O7—S2—O8114.04 (11)C22—C21—H21117.5
O6—S2—O5107.04 (10)C23—C22—C21117.6 (2)
O7—S2—O598.35 (11)C23—C22—C33123.4 (2)
O8—S2—O5105.77 (10)C21—C22—C33119.0 (2)
S1—O1—Cd1141.34 (10)C22—C23—C24118.9 (2)
O5—O4—S1106.47 (12)C22—C23—C34120.8 (2)
O4—O5—S2108.11 (12)C24—C23—C34120.4 (2)
S2—O8—Cd1144.53 (10)C32—C24—C23118.6 (2)
C1—N1—C12117.72 (19)C32—C24—C25118.2 (2)
C1—N1—Cd1125.25 (15)C23—C24—C25123.2 (2)
C12—N1—Cd1116.71 (15)C26—C25—C24121.5 (2)
C10—N2—C11117.90 (19)C26—C25—H25119.2
C10—N2—Cd1125.90 (15)C24—C25—H25119.2
C11—N2—Cd1116.20 (15)C25—C26—C27122.0 (2)
N1—C1—C2124.8 (2)C25—C26—H26119.0
N1—C1—H1117.6C27—C26—H26119.0
C2—C1—H1117.6C31—C27—C28119.0 (2)
C3—C2—C1118.1 (2)C31—C27—C26117.9 (2)
C3—C2—C13124.0 (2)C28—C27—C26123.2 (2)
C1—C2—C13117.8 (2)C29—C28—C27118.4 (2)
C2—C3—C4118.7 (2)C29—C28—C35121.5 (2)
C2—C3—C14121.3 (2)C27—C28—C35120.2 (2)
C4—C3—C14120.0 (2)C28—C29—C30118.3 (2)
C12—C4—C3118.6 (2)C28—C29—C36123.4 (2)
C12—C4—C5117.7 (2)C30—C29—C36118.3 (3)
C3—C4—C5123.7 (2)N22—C30—C29124.9 (2)
C6—C5—C4122.4 (2)N22—C30—H30117.5
C6—C5—H5118.8C29—C30—H30117.5
C4—C5—H5118.8N22—C31—C27122.1 (2)
C5—C6—C7121.7 (2)N22—C31—C32117.88 (19)
C5—C6—H6119.1C27—C31—C32120.0 (2)
C7—C6—H6119.1N21—C32—C24122.0 (2)
C11—C7—C8119.0 (2)N21—C32—C31117.77 (19)
C11—C7—C6117.5 (2)C24—C32—C31120.3 (2)
C8—C7—C6123.6 (2)C22—C33—H33A109.5
C9—C8—C7118.0 (2)C22—C33—H33B109.5
C9—C8—C15121.5 (2)H33A—C33—H33B109.5
C7—C8—C15120.5 (2)C22—C33—H33C109.5
C8—C9—C10118.4 (2)H33A—C33—H33C109.5
C8—C9—C16122.9 (2)H33B—C33—H33C109.5
C10—C9—C16118.7 (2)C23—C34—H34A109.5
N2—C10—C9124.8 (2)C23—C34—H34B109.5
N2—C10—H10117.6H34A—C34—H34B109.5
C9—C10—H10117.6C23—C34—H34C109.5
N2—C11—C7121.8 (2)H34A—C34—H34C109.5
N2—C11—C12117.89 (19)H34B—C34—H34C109.5
C7—C11—C12120.3 (2)C28—C35—H35A109.5
N1—C12—C4122.1 (2)C28—C35—H35B109.5
N1—C12—C11117.48 (19)H35A—C35—H35B109.5
C4—C12—C11120.4 (2)C28—C35—H35C109.5
C2—C13—H13A109.5H35A—C35—H35C109.5
C2—C13—H13B109.5H35B—C35—H35C109.5
H13A—C13—H13B109.5C29—C36—H36A109.5
C2—C13—H13C109.5C29—C36—H36B109.5
H13A—C13—H13C109.5H36A—C36—H36B109.5
H13B—C13—H13C109.5C29—C36—H36C109.5
C3—C14—H14A109.5H36A—C36—H36C109.5
C3—C14—H14B109.5H36B—C36—H36C109.5
H14A—C14—H14B109.5
O3—S1—O1—Cd1139.00 (15)C3—C4—C12—C11179.9 (2)
O2—S1—O1—Cd183.87 (18)C5—C4—C12—C110.0 (3)
O4—S1—O1—Cd122.89 (19)N2—C11—C12—N11.5 (3)
O3—S1—O4—O555.31 (14)C7—C11—C12—N1178.08 (19)
O2—S1—O4—O5177.03 (13)N2—C11—C12—C4179.56 (19)
O1—S1—O4—O565.17 (14)C7—C11—C12—C40.9 (3)
S1—O4—O5—S2129.36 (11)C32—N21—C21—C220.6 (3)
O6—S2—O5—O462.22 (15)Cd1—N21—C21—C22172.20 (16)
O7—S2—O5—O4176.72 (13)N21—C21—C22—C234.6 (3)
O8—S2—O5—O458.73 (15)N21—C21—C22—C33175.2 (2)
O6—S2—O8—Cd1139.60 (18)C21—C22—C23—C243.7 (3)
O7—S2—O8—Cd184.2 (2)C33—C22—C23—C24176.1 (2)
O5—S2—O8—Cd122.7 (2)C21—C22—C23—C34176.8 (2)
C12—N1—C1—C20.2 (3)C33—C22—C23—C343.4 (3)
Cd1—N1—C1—C2173.51 (17)C22—C23—C24—C320.8 (3)
N1—C1—C2—C30.6 (4)C34—C23—C24—C32178.8 (2)
N1—C1—C2—C13179.2 (2)C22—C23—C24—C25180.0 (2)
C1—C2—C3—C40.6 (3)C34—C23—C24—C250.4 (3)
C13—C2—C3—C4179.2 (2)C32—C24—C25—C261.7 (3)
C1—C2—C3—C14178.5 (2)C23—C24—C25—C26177.4 (2)
C13—C2—C3—C141.8 (4)C24—C25—C26—C270.4 (3)
C2—C3—C4—C120.2 (3)C25—C26—C27—C310.3 (3)
C14—C3—C4—C12179.3 (2)C25—C26—C27—C28179.9 (2)
C2—C3—C4—C5179.7 (2)C31—C27—C28—C290.3 (3)
C14—C3—C4—C50.6 (4)C26—C27—C28—C29179.9 (2)
C12—C4—C5—C60.2 (3)C31—C27—C28—C35179.2 (2)
C3—C4—C5—C6179.8 (2)C26—C27—C28—C350.4 (3)
C4—C5—C6—C71.4 (4)C27—C28—C29—C301.5 (3)
C5—C6—C7—C112.2 (3)C35—C28—C29—C30179.0 (2)
C5—C6—C7—C8176.6 (2)C27—C28—C29—C36178.4 (2)
C11—C7—C8—C90.7 (3)C35—C28—C29—C361.2 (4)
C6—C7—C8—C9178.0 (2)C31—N22—C30—C290.4 (3)
C11—C7—C8—C15179.7 (2)Cd1—N22—C30—C29173.78 (17)
C6—C7—C8—C151.0 (3)C28—C29—C30—N221.9 (4)
C7—C8—C9—C102.9 (3)C36—C29—C30—N22177.9 (2)
C15—C8—C9—C10178.1 (2)C30—N22—C31—C271.6 (3)
C7—C8—C9—C16176.4 (2)Cd1—N22—C31—C27176.34 (15)
C15—C8—C9—C162.6 (4)C30—N22—C31—C32178.18 (19)
C11—N2—C10—C91.4 (3)Cd1—N22—C31—C323.5 (2)
Cd1—N2—C10—C9178.82 (17)C28—C27—C31—N222.0 (3)
C8—C9—C10—N21.9 (4)C26—C27—C31—N22178.40 (19)
C16—C9—C10—N2177.3 (2)C28—C27—C31—C32177.83 (19)
C10—N2—C11—C73.7 (3)C26—C27—C31—C321.8 (3)
Cd1—N2—C11—C7176.52 (15)C21—N21—C32—C244.3 (3)
C10—N2—C11—C12175.92 (19)Cd1—N21—C32—C24177.72 (15)
Cd1—N2—C11—C123.9 (2)C21—N21—C32—C31176.02 (18)
C8—C7—C11—N22.7 (3)Cd1—N21—C32—C312.6 (2)
C6—C7—C11—N2178.5 (2)C23—C24—C32—N215.0 (3)
C8—C7—C11—C12176.92 (19)C25—C24—C32—N21175.79 (19)
C6—C7—C11—C121.9 (3)C23—C24—C32—C31175.35 (19)
C1—N1—C12—C41.0 (3)C25—C24—C32—C313.9 (3)
Cd1—N1—C12—C4174.88 (16)N22—C31—C32—N214.1 (3)
C1—N1—C12—C11179.93 (19)C27—C31—C32—N21175.70 (18)
Cd1—N1—C12—C116.2 (2)N22—C31—C32—C24176.24 (18)
C3—C4—C12—N11.0 (3)C27—C31—C32—C244.0 (3)
C5—C4—C12—N1178.9 (2)
Selected geometric parameters (Å, °) for (V), (VI) and (VII) top
(V)
Cd1—N22.307 (2)N1—Cd1—N1i171.15 (10)
Cd1—O12.314 (2)O1—Cd1—N2i161.06 (8)
Cd1—N12.409 (3)O1i—Cd1—N2161.06 (8)
(VI)
Zn1—N12.0950 (14)N1—Zn1—N1i168.3 (2)
Zn1—O12.1476 (13)N2—Zn1—O1i167.8 (2)
Zn1—N22.1853 (14)N2i—Zn1—O1167.8 (2)
(VII)
Cd1—N12.3075 (19)O8—Cd1—N2158.5 (2)
Cd1—N22.3278 (19)N1—Cd1—N21152.0 (2)
Cd1—O82.3232 (18)N22–Cd1—O1142.4 (2)
Cd1—N222.3304 (19)
Cd1—N212.327 (2)
Cd1—O12.3371 (19)
Symmetry code for (V) and (VI): (i) -x, y, -z+1/2.
Distortion angles as defined in Fig 3 (°) top
Angle(V)(VI)(VII)
α1111.1116.7119.0
α2111.1116.7111.0
α3137.9126.6129.4
ω149.067.571.1
ω255.955.827.0
ω355.955.884.7
Hydrogen-bond geometry (Å, °) for (V), (VI) and (VII) top
Cg1, Cg2, Cg3, Cg4, Cg5, and Cg6 are the centroids of the N1/C1–C4/C12, N2/C7–C11, C4–C7/C11/C12, N21/C21–C24/C32, N22/C27–C31 and C24–C27/C31/C32 rings, respectively.
StructureLabelD—H···AD—HH···AD···AD—H···ACharacter
(V)
#1aC3—H3···O3ii0.932.543.228 (5)131Interchain
#2aC14—H14B···O2iii0.962.453.397 (5)167Interchain
#3aC14—H14C···O2iv0.962.543.331 (5)140Interchain
#4aC13—H13···O10.962.713.099 (2)105Intramolecular
#5aC13—H13···O20.962.783.667 (2)155Intramolecular
(VI)
#1bC1—H1···O1i0.932.533.117 (2)121Intramolecular
#2bC1—H1···O2i0.932.453.286 (2)150Intramolecular
#3bC15—H15B···O3ii0.962.513.451 (2)166Interchain
#4bC13—H13B···O2iii0.962.593.324 (2)133Interchain
#5bC16—H16B···O2iv0.962.593.543 (3)172Interchain
#6bC13—H13A···Cg3v0.962.733.9857127Interchain
(VII)
#1cC1—H1···O70.932.373.296 (3)171Intramolecular
#2cC26—H26···O2i0.932.293.204 (3)165Intrachain
#3cC15—H15B···Cg1iv0.962.893.578 (4)129Intrachain
#4cC34—H34C···Cg4i0.962.883.599 (3)133Intrachain
#5cC36—H36B···O6ii0.962.473.165 (4)130Interchain
#6cC13—H13A···Cg1iii0.962.933.607 (4)128Interchain
#7cC35—H35C···Cg6v0.962.693.604 (4)158Interchain
Symmetry codes for (V): (ii) 1/2 - x, -1/2 - y, 1 - z; (iii) -x, -y, -z; (iv) x, 1 + y, z.

Symmetry codes for (VI): (i) -x, y, -z + 1/2; (ii) x, y - 1, z; (iii) x + 1/2, y - 1/2, -z + 1/2; (iv) -x - 1/2, y - 1/2, z; (v) -x + 1/2, y + 1/2, z.

Symmetry codes for (VII): (i) -x + 1, -y + 1, -z + 2; (ii) x+ 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, -y + 1, -z + 2.
ππ contacts (Å, °) for (V), (VI) and (VII) top
ccd: centroid-to-centroid distance; da: dihedral angle between planes, sa: slippage angle (average angle subtended by the intercentroid vector to the plane normal), ipd: interplanar distance (average distance from one plane to the neighbouring centroid); for details, see Janiak (2000). Cg1, Cg2, Cg3, Cg4, Cg5, and Cg6 are the centroids of the N1/C1–C4/C12, N2/C7–C11, C4–C7/C11/C12, N21/C21–C24/C32, N22/C27–C31 and C24–C27/C31/C32 rings, respectively.
StructureLabelCg···CgccddasaipdCharacter
(V)
#6aCg1···Cg3v3.823 (3)0.95 (14)15.0(1.6)3.69 (3)Intrachain
(VI)
#7bCg2···Cg3vi3.8101 (10)2.34 (8)25.5 (7)3.44 (2)Intrachain
(VII)
#8cCg2···Cg3v3.737 (3)0.9 (2)21.3 (7)3.48 (2)Intrachain
#9cCg3···Cg3v3.717 (3)021.53.4577 (9)Intrachain
#10cCg4···Cg6vi3.700 (2)0.6 (2)21.8 (3)3.43 (2)Intrachain
#11cCg6···Cg6vi3.669 (2)020.93.4269 (9)Intrachain
Symmetry code for (V): (v) 1/2 - x, 1/2 - y, 1 - z.

Symmetry code for (VI): (vi) -x, -y, -z.

Symmetry codes for (VII): (v) 1 - x, 1 - y, 1 - z; (vi) 1 - x, 1 - y, 2 - z.
 

Acknowledgements

The authors acknowledge the ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer. 

References

First citationDíaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. & Baggio, R. (2005). Acta Cryst. C61, m240–m244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2001a). Aust. J. Chem. 54, 711–716.  CSD CrossRef CAS Google Scholar
First citationHarvey, M. A., Baggio, S., Garland, M. T., Burton, G. & Baggio, R. (2001b). Aust. J. Chem. 54, 307–311.  CSD CrossRef CAS Google Scholar
First citationHarvey, M. A., Díaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717–1721.  CSD CrossRef CAS Google Scholar
First citationHarvey, M. A., Suarez, S., Doctorovich, F. & Baggio, R. (2013). Acta Cryst. C69, 745–749.  CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1991). P3/P4-PC Diffractometer Program. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds