research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two cadmium coordination polymers with bridging acetate and phenyl­enedi­amine ligands that exhibit two-dimensional layered structures

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by T. J. Prior, University of Hull, England (Received 20 October 2016; accepted 28 October 2016; online 4 November 2016)

Poly[tetra-μ2-acetato-κ8O:O′-bis­(μ2-benzene-1,2-di­amine-κ2N:N′)dicadmium], [Cd2(CH3COO)4(C6H8N2)2]n, (I), and poly[[(μ2-acetato-κ2O:O′)(acetato-κ2O,O′)(μ2-benzene-1,3-di­amine-κ2N:N′)cadmium] hemihydrate], {[Cd(CH3COO)2(C6H8N2)]·0.5H2O}n, (II), have two-dimensional polymeric structures in which monomeric units are joined by bridging acetate and benzenedi­amine ligands. Each of the CdII ions has an O4N2 coordination environment. The coordination geometries of the symmetry-independent CdII ions are distorted octa­hedral and distorted trigonal anti­prismatic in (I) and distorted anti­prismatic in (II). Both compounds exhibit an intra­layer hydrogen-bonding network. In addition, the water of hydration in (II) is involved in inter­layer hydrogen bonding.

1. Chemical context

CdII is able to substitute for ZnII in the active sites of zinc-containing enzymes and to inter­fere with the metabolism of CaII, which are the primary reasons for its toxicity (Borsari, 2014[Borsari, M. (2014). Cadmium: Coordination Chemistry in Encyclopedia of Inorganic and Bioinorganic Chemistry, pp. 1-16 New York: Wiley.]). In addition, the substitution of CdII for spectroscopically silent ZnII provides a means of exploring zinc-containing biomolecules using 111Cd and 113Cd NMR spectroscopies (Kimblin & Parkin, 1996[Kimblin, C. & Parkin, G. (1996). Inorg. Chem. 35, 6912-6913.]; Henehan et al., 1993[Henehan, C. J., Pountney, D. L., Vašák, M. & Zerbe, O. (1993). Protein Sci. 2, 1756-1764.]; Jalilehvand et al., 2009[Jalilehvand, F., Leung, B. O. & Mah, V. (2009). Inorg. Chem. 48, 5758-5771.], 2012[Jalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. 51, 10619-10630.]). Thus, the coordination chemistry of cadmium is of inter­est.

Metal–organic frameworks (MOFs) have received much attention because of their many potential applications including gas storage, catalysis, chemical sensors and mol­ecular separation (Dey et al., 2014[Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3-10.]; Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]; Farha & Hupp, 2010[Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166-1175.]). Our previous efforts in the area of coordination polymers have focused on compounds based on phenyl­enedi­amine and acetate ligands incorporating ZnII (Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]) and PbII (Geiger et al., 2014[Geiger, D. K., Parsons, D. E. & Zick, P. L. (2014). Acta Cryst. E70, 566-572.]). We have extended this work to include Cd and report the structural analyses of two Cd compounds herein. Although acetate ligands adopt a myriad of different metal-binding modes, only the μ2-acetato-κ2O:O′ mode is observed in (I)[link]. Both acetato-κ2O,O′ and μ2-acetato-κ2O:O′ modes are found in (II)[link].

Numerous examples of structures with benzene-1,2-di­amines exhibiting monodentate and/or bidentate coordination modes have been reported (Narayanan & Bhadbhade, 1996[Narayanan, B. & Bhadbhade, M. M. (1996). Acta Cryst. C52, 3049-3051.]; Ovalle-Marroquín et al., 2002[Ovalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269-m271.]; Ariyananda & Norman, 2005[Ariyananda, W. G. P. & Norman, R. E. (2005). Acta Cryst. E61, m187-m189.]; Chen et al., 2006[Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1296-m1297.]; Maxcy et al., 2000[Maxcy, K. R., Smith, R., Willett, R. D. & Vij, A. (2000). Acta Cryst. C56, e454.]; Qian et al., 2007[Qian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.]; Dickman, 2000[Dickman, M. H. (2000). Acta Cryst. C56, 58-60.]; Mei et al., 2009[Mei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871-873.]; Djebli et al., 2012[Djebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411-m1412.]; Zick & Geiger, 2016[Zick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037-1042.]; Geiger et al., 2014[Geiger, D. K., Parsons, D. E. & Zick, P. L. (2014). Acta Cryst. E70, 566-572.]; Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]; Geiger, 2012[Geiger, D. K. (2012). Acta Cryst. E68, m1040.]). Examples of benzene-1,4-di­amine metal-complex structures have also been reported (Batten et al., 2001[Batten, S. R., McKenzie, C. J. & Nielsen, L. P. (2001). Acta Cryst. C57, 156-157.]; Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]). Few examples of bridging benzene-1,2-di­amine-κ2N:N′ (Liang & Qu, 2008[Liang, W.-X. & Qu, Z.-R. (2008). Acta Cryst. E64, m1254.]; Duff, 1968[Duff, E. J. (1968). J. Chem. Soc. A, pp. 434-437.]), 1,3-di­amine-κ2N:N′ (Chemli et al., 2013[Chemli, R., Kamoun, S. & Roisnel, T. (2013). Acta Cryst. E69, m670-m671.]), or benzene-1,4-di­amine-κ2N:N′ (Liu et al., 2012[Liu, J.-Q., Zhang, Y., Lü, Y.-J. & Jiang, Z.-J. (2012). Acta Cryst. E68, m430.]) ligands have been reported. Compounds (I)[link] and (II)[link] are two new examples of coordination polymers in which benzenedi­amine ligands bridge two metal atoms.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], (I)[link] has two symmetry-independent CdII ions. Cd1 sits on a crystallographically imposed inversion center and Cd2 resides on a crystallographically imposed twofold rotation axis. Each of the CdII ions exhibits an O4N2 coordination sphere composed of four bridging κ2O:O′ acetate ligands and two bridging κ2N:N′ benzene-1,2-di­amine ligands. For the coordination sphere of Cd1, the twist angles (Muetterties & Guggenberger, 1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]; Dymock & Palenik, 1975[Dymock, K. R. & Palenik, G. J. (1975). Inorg. Chem. 14, 1220-1222.]) defined employing the triangular face centroids N1O1O3 and N1iiiO3iiiO1iii (see Fig. 2[link]) are 52.26 (12), 66.27 (15) and 56.47 (9)°, giving an average value of 60 (5)°. Perfect Oh or D3d trigonal anti­prismatic structures have a twist angle of 60°, whereas a D3h trigonal prismatic structure has a twist angle of 0°. The coordination sphere of Cd2 exhibits twist angles of 35.49 (8), 45.92 (17) and 45.92 (17)° [average 42 (6)°] using opposite triangular faces O2O4iN2iv and N2iiO4ivO2vii (see Fig. 2[link]). The coordination geometry is best described as distorted octa­hedral with the two nitro­gen donor atoms trans for Cd1 and distorted trigonal anti­prismatic for Cd2 with O2N trigonal faces. Selected geometrical parameters are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Cd1—O3 2.323 (3) Cd2—O4i 2.365 (3)
Cd1—O1 2.332 (3) Cd2—O2 2.260 (3)
Cd1—N1 2.325 (4) Cd2—N2ii 2.416 (4)
       
O3—Cd1—N1 84.79 (12) O4i—Cd2—O4iv 80.73 (15)
O3—Cd1—O1 82.98 (11) O2iii—Cd2—N2ii 79.40 (12)
N1—Cd1—O1 84.38 (12) O2—Cd2—N2ii 115.81 (12)
O2iii—Cd2—O2 99.65 (17) O4i—Cd2—N2ii 76.91 (12)
O2iii—Cd2—O4i 156.01 (10) O4iv—Cd2—N2ii 85.97 (11)
O2—Cd2—O4i 93.98 (12) N2ii—Cd2—N2v 157.5 (2)
Symmetry codes: (i) -x+1, -y+3, -z+2; (ii) x, y+1, z; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [x, -y+3, z-{\script{1\over 2}}]; (v) [-x+1, y+1, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The atom-labeling scheme for (I)[link]. Anisotropic displacement parameters for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (i) −x + 1, −y + 3, −z + 2; (ii) x, y + 1, z; (iii) −x + 1, −y + 2, −z + 2; (iv) x, −y + 3, z − [{1\over 2}]; (v) x, y − 1, z; (vi) −x + 1, y + 1, −z + [{3\over 2}]; (vii) −x + 1, y, −z + [{3\over 2}].]
[Figure 2]
Figure 2
Representations of the CdII coordination environments observed in (I)[link] and (II)[link]. Symmetry identifiers are those used in Figs. 1[link] and 3[link].

The N2O4 coordination geometry of (II)[link] can be described as severely distorted trigonal anti­prismatic with bidentate acetate oxygen atoms and a κ2N:N′ benzene-1,3-di­amine nitro­gen atom (O1O2N2i) forming one of the trigonal faces and two κ2O:O′ acetate ligand oxygen atoms and a nitro­gen atom from a κ2N:N′ benzene-1,3-di­amine (O3O4iiN1) forming the other trigonal face (see Fig. 2[link]). The atom-labeling scheme is shown in Fig. 3[link]. The twist angles are 53.71 (11), 22.56 (8) and 45.38 (13)° [average = 41 (16)°]. As seen in Table 2[link], the Cd—O bond lengths associated with the bidentate acetate ligand are shorter than those of the bridging, monodentate acetate ligands, as has been observed in other cadmium complexes (Wang et al., 2011[Wang, J., Tao, J.-Q. & Xu, X.-J. (2011). Acta Cryst. C67, m173-m175.], 2013[Wang, P., Zhao, Y., Chen, Y. & Kou, X.-Y. (2013). Acta Cryst. C69, 1340-1343.]).

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cd1—O3 2.275 (3) Cd1—O1 2.374 (4)
Cd1—O4i 2.301 (3) Cd1—N2ii 2.388 (4)
Cd1—N1 2.324 (4) Cd1—O2 2.443 (4)
       
O3—Cd1—O4i 79.37 (11) N1—Cd1—N2ii 101.86 (14)
O3—Cd1—N1 107.45 (13) O1—Cd1—N2ii 84.00 (13)
O4i—Cd1—N1 99.25 (13) O3—Cd1—O2 168.71 (11)
O3—Cd1—O1 114.63 (11) O4i—Cd1—O2 98.78 (12)
O4i—Cd1—O1 85.82 (12) N1—Cd1—O2 83.83 (13)
N1—Cd1—O1 137.80 (13) O1—Cd1—O2 54.09 (11)
O3—Cd1—N2ii 86.63 (14) N2ii—Cd1—O2 91.49 (13)
O4i—Cd1—N2ii 157.39 (13)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The atom-labeling scheme for (II)[link]. Anisotropic displacement parameters for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}].]

3. Supra­molecular features

As seen in Fig. 4[link], the supra­molecular architecture of (I)[link] exhibits independent layers in the bc plane, which are repeated in the [100] direction. Extensive N—H⋯O hydrogen-bonding inter­actions exist (see Table 3[link]), but none of them extend between the layers. Based on an analysis of the extended structure using the SOLV routine of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the unit cell contains no solvent-accessible voids.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2iii 0.86 (2) 2.34 (2) 3.175 (5) 163 (4)
N1—H1B⋯O4vi 0.91 (2) 2.21 (3) 3.003 (5) 146 (4)
N1—H1B⋯O4vii 0.91 (2) 2.38 (4) 3.029 (5) 128 (4)
N2—H2A⋯O3viii 0.86 (2) 2.30 (2) 3.111 (5) 158 (4)
N2—H2B⋯O3vi 0.86 (2) 2.64 (2) 3.458 (5) 161 (4)
N2—H2B⋯O4vi 0.86 (2) 2.55 (4) 2.973 (5) 111 (3)
Symmetry codes: (iii) [-x+1, y, -z+{\script{3\over 2}}]; (vi) -x+1, -y+2, -z+2; (vii) [x, -y+2, z-{\script{1\over 2}}]; (viii) x, y-1, z.
[Figure 4]
Figure 4
Packing diagram for (I)[link] showing the two-dimensional network parallel to (100). All H atoms have been omitted for clarity.

Compound (II)[link] also exhibits a two-dimensional extended structure. Layers parallel to the bc plane and repeated in the [100] direction are observed as seen in Fig. 5[link]. N—H⋯O(acetate) hydrogen bonds (Table 4[link]) are present within the layers. The water of hydration sits on a crystallographically imposed twofold rotation axis and, as seen in Fig. 6[link], is involved in O—H⋯O and N—H⋯O hydrogen-bonding inter­actions (Table 4[link]) that link adjacent layers.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.81 (2) 2.06 (4) 2.788 (5) 149 (7)
N1—HN1A⋯O5 0.86 (2) 2.34 (2) 3.183 (4) 166 (4)
N1—HN1B⋯O3iii 0.89 (2) 2.12 (2) 2.991 (5) 166 (5)
N2—HN2A⋯O4iv 0.87 (2) 2.32 (4) 3.012 (6) 137 (4)
N2—HN2B⋯O1iii 0.88 (2) 2.17 (3) 2.994 (5) 156 (5)
Symmetry codes: (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
Packing diagram for (II)[link] showing the layers parallel to (100). H atoms have been omitted for clarity.
[Figure 6]
Figure 6
Partial packing diagram for (II)[link] showing the hydrogen-bonded network. Only H atoms involved in the hydrogen-bonded network are shown. [Symmetry codes: (i) −x + 1, y, −z + [{3\over 2}]; (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (iii)x, −y + 1, z − [{1\over 2}].]

4. Database survey

Examples of cadmium coordination polymers with carboxyl­ate ligands and that exhibit two-dimensional sheet structures have been reported (Li et al., 2014[Li, Q., Wang, H.-T. & Ye, Q. (2014). Acta Cryst. C70, 992-997.]; Gao et al., 2004[Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1875-m1877.]; Chen & Zhang, 2014[Chen, H.-R. & Zhang, W.-W. (2014). Acta Cryst. C70, 1079-1082.]; Zhang et al., 2007[Zhang, X.-F., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m1314-m1316.]; Liu & Xu, 2005[Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m1218-m1220.]; Song et al., 2006[Song, W.-D., Gu, C.-S., Liu, J.-W. & Hao, X.-M. (2006). Acta Cryst. E62, m2397-m2399.]; Kong et al., 2008a[Kong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008a). Acta Cryst. C64, m333-m335.],b[Kong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008b). Acta Cryst. C64, m365-m368.]; Xu et al., 2013[Xu, X.-J., Miao, J.-Y. & Wang, J. (2013). Acta Cryst. C69, 620-623.]; Zhuo et al., 2006[Zhuo, X., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Acta Cryst. E62, m785-m787.]). Cadmium is commonly observed with a trigonal–prismatic or trigonal–anti­prismatic coordination geometry, often with one or two capping ligands (Bygott et al., 2007[Bygott, A. M. T., Geue, R. J., Ralph, S. F., Sargeson, A. M. & Willis, A. C. (2007). Dalton Trans. pp. 4778-4748.]; Cherni et al., 2012[Cherni, S. N., Cherni, A. & Driss, A. (2012). X-ray Struct. Anal. Online, 28, 13-14.]; Uçar et al., 2004[Uçar, İ., Yeşilel, O. Z., Bulut, A., İçbudak, H., Ölmez, H. & Kazak, C. (2004). Acta Cryst. C60, m392-m394.]; Banerjee et al., 2005[Banerjee, S., Ghosh, A., Wu, B., Lassahn, P.-G. & Janiak, C. (2005). Polyhedron, 24, 593-599.]; Keypour et al., 2000[Keypour, H., Salehzadeh, S., Pritchard, R. G. & Parish, R. V. (2000). Polyhedron, 19, 1633-1637.]). Coordination polymers with bridging benzene-1,2-di­amine ligands (Liang & Qu, 2008[Liang, W.-X. & Qu, Z.-R. (2008). Acta Cryst. E64, m1254.]; Duff, 1968[Duff, E. J. (1968). J. Chem. Soc. A, pp. 434-437.]), bridging benzene-1,3-di­amine ligands (Chemli et al., 2013[Chemli, R., Kamoun, S. & Roisnel, T. (2013). Acta Cryst. E69, m670-m671.]), and bridging benzene-1,4-di­amine ligands (Liu et al., 2012[Liu, J.-Q., Zhang, Y., Lü, Y.-J. & Jiang, Z.-J. (2012). Acta Cryst. E68, m430.]) have been reported

5. Synthesis and crystallization

5.1. Preparation of (I)

213 mg (0.924 mmole) cadmium acetate hydrate were dissolved in 10 mL of ethanol. With stirring, 204 mg (1.89 mmol) of benzene-1,2-di­amine were added and the resulting solution was refluxed for 2 h. A white precipitate formed, which was isolated by filtration and dried under vacuum. The yield was qu­anti­tative (310 mg). Selected IR bands (diamond anvil, cm−1): 3278 (w), 1532 (s), 1504 (s), 1405 (s). 1H NMR (400 MHz, dmso-d6, p.p.m.): 1.87 (s, 6H), 6.35 (m, 2H), 6.35 (m, 2H).

Single crystals were obtained by heating some of the product in N,N′-di­methyl­formamide and allowing the solution to slowly cool to room temperature. The crystal used for data collection was obtained by cutting a piece from a larger plate.

5.2. Preparation of (II)

230 mg (1.00 mmol) cadmium acetate hydrate were dissolved in 10 mL of ethanol. 217 mg (2.01 mmol) benzene-1,3-di­amine were added with stirring. The solution was gently refluxed for 2 h. After chilling the reaction mixture in an ice bath, the precipitate was filtered and dried under vacuum. A yield of 248 mg (71%) was obtained. Selected IR bands (diamond anvil, cm−1): 3425 (b), 3329 (s) 3328 (b), 3137 (m), 1520 (s), 1505 (s), 1400 (s). 1H NMR (400 MHz, dmso-d6, p.p.m.): 1.83 (s, 6H), 5.78 (m, 3H), 6.64 (t, 1H). 13C NMR (dmso-d6, p.p.m.): 22.1, 100.5, 103.6, 129.6, 149.5, 178.0.

Clear, brown needles suitable for X-ray analysis were obtained upon slow evaporation of an ethano­lic solution of the product. The crystals exhibit a melting range of 441–443 K with decomposition.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both (I)[link] and (II)[link], all hydrogen atoms were located in difference Fourier maps. The hydrogen atoms were refined using a riding model with a C—H distance of 0.98 Å for the methyl groups and 0.95 Å for the phenyl carbon atoms. The methyl hydrogen atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(C). All other C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The N—H bond lengths were restrained to 0.88 Å in (I)[link] and (II)[link]. The O—H bond length of the water of hydration in (II)[link] was restrained to 0.84 Å and the H—O—H angle was restrained to 105°. Uiso(H) was refined freely for the amine and water hydrogen atoms, except that for (II)[link] the isotropic displacement parameters of the hydrogen atoms associated with N2 were restrained to be the same.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Cd2(C2H3O2)4(C6H8N2)2] [Cd(C2H3O2)2(C6H8N2)]·0.5H2O
Mr 338.63 695.28
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 200 200
a, b, c (Å) 23.283 (3), 7.2399 (9), 14.2744 (16) 20.777 (6), 8.2374 (18), 15.002 (4)
β (°) 96.887 (4) 102.583 (9)
V3) 2388.8 (5) 2505.9 (11)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.83 1.75
Crystal size (mm) 0.40 × 0.40 × 0.05 0.40 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.53, 0.91 0.69, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 14588, 2263, 1633 8942, 2443, 1859
Rint 0.089 0.057
(sin θ/λ)max−1) 0.610 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.05 0.037, 0.095, 0.99
No. of reflections 2263 2443
No. of parameters 174 180
No. of restraints 4 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.14, −1.17 0.86, −1.02
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Poly[tetra-µ2-acetato-κ8O:O'-bis(µ2-benzene-1,2-diamine-κ2N:N')dicadmium] top
Crystal data top
[Cd2(C2H3O2)4(C6H8N2)2]F(000) = 1344
Mr = 338.63Dx = 1.883 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.283 (3) ÅCell parameters from 120 reflections
b = 7.2399 (9) Åθ = 3.5–24.0°
c = 14.2744 (16) ŵ = 1.83 mm1
β = 96.887 (4)°T = 200 K
V = 2388.8 (5) Å3Plate, clear colourless
Z = 80.40 × 0.40 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2263 independent reflections
Radiation source: sealed microfocus tube1633 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.089
Detector resolution: 8.3330 pixels mm-1θmax = 25.7°, θmin = 2.9°
ω scansh = 2827
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.53, Tmax = 0.91l = 1716
14588 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.5909P]
where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 1.14 e Å3
4 restraintsΔρmin = 1.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.51.01.00.02022 (18)
Cd20.51.48311 (6)0.750.02246 (18)
O10.53894 (13)1.2329 (4)0.91404 (19)0.0280 (7)
O20.57421 (14)1.2817 (4)0.7785 (2)0.0341 (8)
O30.43034 (13)1.2226 (4)1.01819 (19)0.0287 (8)
O40.44787 (12)1.2680 (4)1.17354 (18)0.0275 (7)
N10.44368 (16)0.9351 (5)0.8581 (2)0.0220 (8)
H1A0.4354 (19)1.040 (4)0.831 (3)0.033 (14)*
H1B0.4683 (16)0.875 (6)0.824 (3)0.045 (15)*
N20.44711 (17)0.5481 (6)0.8818 (2)0.0226 (8)
H2A0.438 (2)0.445 (4)0.905 (3)0.040 (15)*
H2B0.4719 (16)0.612 (6)0.917 (3)0.044 (15)*
C10.39101 (18)0.8316 (6)0.8544 (3)0.0232 (10)
C20.39284 (18)0.6415 (6)0.8678 (3)0.0213 (10)
C30.3425 (2)0.5424 (7)0.8632 (3)0.0315 (12)
H30.3440.41180.86970.038*
C40.2890 (2)0.6318 (8)0.8489 (3)0.0409 (13)
H40.25410.56290.84670.049*
C50.2872 (2)0.8209 (8)0.8380 (3)0.0403 (13)
H50.2510.88240.8290.048*
C60.3376 (2)0.9219 (7)0.8400 (3)0.0326 (11)
H60.3361.0520.83160.039*
C70.57788 (19)1.2169 (6)0.8615 (3)0.0267 (11)
C80.6357 (3)1.1326 (10)0.8978 (4)0.0650 (18)
H8A0.66481.23040.90890.098*
H8B0.64731.04540.85110.098*
H8C0.63241.06730.95710.098*
C90.41522 (19)1.2753 (6)1.0965 (3)0.0248 (10)
C100.3540 (2)1.3437 (8)1.0964 (3)0.0450 (14)
H10A0.34411.34621.16120.067*
H10B0.32741.26091.05810.067*
H10C0.35071.46861.06970.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0250 (3)0.0215 (3)0.0140 (3)0.00045 (16)0.0019 (2)0.00028 (16)
Cd20.0275 (3)0.0228 (3)0.0180 (3)00.0066 (2)0
O10.0330 (18)0.0259 (18)0.0270 (16)0.0015 (14)0.0107 (14)0.0053 (14)
O20.047 (2)0.034 (2)0.0226 (18)0.0065 (16)0.0110 (14)0.0081 (15)
O30.0396 (18)0.0311 (19)0.0166 (16)0.0122 (15)0.0083 (13)0.0014 (14)
O40.0324 (18)0.0324 (19)0.0173 (16)0.0035 (15)0.0010 (14)0.0029 (14)
N10.030 (2)0.018 (2)0.017 (2)0.0000 (18)0.0014 (16)0.0001 (17)
N20.032 (2)0.021 (2)0.016 (2)0.0048 (19)0.0047 (17)0.0002 (18)
C10.032 (3)0.028 (3)0.010 (2)0.001 (2)0.0050 (18)0.0021 (18)
C20.028 (2)0.023 (2)0.012 (2)0.0015 (19)0.0038 (18)0.0012 (18)
C30.039 (3)0.030 (3)0.026 (3)0.008 (2)0.007 (2)0.004 (2)
C40.033 (3)0.051 (4)0.038 (3)0.006 (3)0.004 (2)0.001 (3)
C50.030 (3)0.049 (4)0.041 (3)0.011 (3)0.004 (2)0.003 (3)
C60.032 (3)0.035 (3)0.029 (3)0.006 (2)0.000 (2)0.002 (2)
C70.029 (3)0.023 (3)0.028 (3)0.003 (2)0.004 (2)0.001 (2)
C80.065 (4)0.066 (5)0.065 (4)0.004 (4)0.013 (3)0.002 (4)
C90.030 (2)0.017 (2)0.028 (3)0.0014 (19)0.009 (2)0.000 (2)
C100.036 (3)0.063 (4)0.036 (3)0.016 (3)0.006 (2)0.004 (3)
Geometric parameters (Å, º) top
C1—C61.398 (6)Cd1—O1i2.332 (3)
C1—C21.390 (6)Cd1—N12.325 (4)
C10—H10C0.98Cd1—N1i2.325 (4)
C10—H10B0.98Cd2—O4ii2.365 (3)
C10—H10A0.98Cd2—O4iii2.365 (3)
C2—C31.369 (6)Cd2—O2iv2.260 (3)
C3—H30.95Cd2—O22.260 (3)
C3—C41.398 (7)Cd2—N2v2.416 (4)
C4—H40.95Cd2—N2vi2.416 (4)
C4—C51.378 (7)N1—H1B0.907 (19)
C5—H50.95N1—H1A0.864 (19)
C5—C61.378 (7)N1—C11.432 (5)
C6—H60.95N2—H2B0.857 (19)
C7—C81.512 (7)N2—H2A0.86 (2)
C8—H8C0.98N2—Cd2vii2.415 (4)
C8—H8B0.98N2—C21.426 (6)
C8—H8A0.98O1—C71.250 (5)
C9—C101.509 (6)O2—C71.267 (5)
Cd1—O3i2.323 (3)O3—C91.270 (5)
Cd1—O32.323 (3)O4—Cd2ii2.365 (3)
Cd1—O12.332 (3)O4—C91.261 (5)
O3i—Cd1—O3180.00 (13)C2—N2—H2A102 (3)
O3i—Cd1—N195.21 (12)Cd2vii—N2—H2A108 (3)
O3—Cd1—N184.79 (12)C2—N2—H2B110 (4)
O3i—Cd1—N1i84.79 (12)Cd2vii—N2—H2B101 (3)
O3—Cd1—N1i95.21 (12)H2A—N2—H2B115 (4)
N1—Cd1—N1i180.0C2—C1—C6119.7 (4)
O3i—Cd1—O197.02 (11)C2—C1—N1120.1 (4)
O3—Cd1—O182.98 (11)C6—C1—N1120.2 (4)
N1—Cd1—O184.38 (12)C3—C2—C1120.1 (4)
N1i—Cd1—O195.62 (12)C3—C2—N2119.8 (4)
O3i—Cd1—O1i82.98 (11)C1—C2—N2120.1 (4)
O3—Cd1—O1i97.02 (11)C2—C3—C4120.5 (5)
N1—Cd1—O1i95.62 (12)C2—C3—H3119.8
N1i—Cd1—O1i84.38 (12)C4—C3—H3119.8
O1—Cd1—O1i180.0C5—C4—C3119.4 (5)
O2iv—Cd2—O299.65 (17)C5—C4—H4120.3
O2iv—Cd2—O4ii156.01 (10)C3—C4—H4120.3
O2—Cd2—O4ii93.98 (12)C4—C5—C6120.7 (5)
O2iv—Cd2—O4iii93.98 (11)C4—C5—H5119.6
O2—Cd2—O4iii156.01 (10)C6—C5—H5119.6
O4ii—Cd2—O4iii80.73 (15)C5—C6—C1119.6 (5)
O2iv—Cd2—N2v79.40 (12)C5—C6—H6120.2
O2—Cd2—N2v115.81 (12)C1—C6—H6120.2
O4ii—Cd2—N2v76.91 (12)O1—C7—O2123.6 (4)
O4iii—Cd2—N2v85.97 (11)O1—C7—C8120.8 (4)
O2iv—Cd2—N2vi115.81 (12)O2—C7—C8115.3 (4)
O2—Cd2—N2vi79.40 (12)C7—C8—H8A109.5
O4ii—Cd2—N2vi85.97 (12)C7—C8—H8B109.5
O4iii—Cd2—N2vi76.91 (12)H8A—C8—H8B109.5
N2v—Cd2—N2vi157.5 (2)C7—C8—H8C109.5
C7—O1—Cd1127.2 (3)H8A—C8—H8C109.5
C7—O2—Cd2111.8 (3)H8B—C8—H8C109.5
C9—O3—Cd1125.3 (3)O4—C9—O3123.6 (4)
C9—O4—Cd2ii126.4 (3)O4—C9—C10119.1 (4)
C1—N1—Cd1121.9 (2)O3—C9—C10117.3 (4)
C1—N1—H1A107 (3)C9—C10—H10A109.5
Cd1—N1—H1A107 (3)C9—C10—H10B109.5
C1—N1—H1B109 (3)H10A—C10—H10B109.5
Cd1—N1—H1B104 (3)C9—C10—H10C109.5
H1A—N1—H1B107 (4)H10A—C10—H10C109.5
C2—N2—Cd2vii120.6 (2)H10B—C10—H10C109.5
Cd1—N1—C1—C275.0 (4)C4—C5—C6—C10.8 (7)
Cd1—N1—C1—C6103.1 (4)C2—C1—C6—C50.9 (6)
C6—C1—C2—C32.6 (6)N1—C1—C6—C5179.0 (4)
N1—C1—C2—C3179.3 (4)Cd1—O1—C7—O2131.3 (4)
C6—C1—C2—N2179.5 (4)Cd1—O1—C7—C854.7 (6)
N1—C1—C2—N22.4 (6)Cd2—O2—C7—O113.3 (6)
Cd2vii—N2—C2—C399.3 (4)Cd2—O2—C7—C8160.9 (4)
Cd2vii—N2—C2—C177.6 (5)Cd2ii—O4—C9—O3100.8 (5)
C1—C2—C3—C42.7 (6)Cd2ii—O4—C9—C1081.4 (5)
N2—C2—C3—C4179.6 (4)Cd1—O3—C9—O426.7 (6)
C2—C3—C4—C51.0 (7)Cd1—O3—C9—C10151.1 (4)
C3—C4—C5—C60.8 (7)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+3, z+2; (iii) x, y+3, z1/2; (iv) x+1, y, z+3/2; (v) x, y+1, z; (vi) x+1, y+1, z+3/2; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iv0.86 (2)2.34 (2)3.175 (5)163 (4)
N1—H1B···O4i0.91 (2)2.21 (3)3.003 (5)146 (4)
N1—H1B···O4viii0.91 (2)2.38 (4)3.029 (5)128 (4)
N2—H2A···O3vii0.86 (2)2.30 (2)3.111 (5)158 (4)
N2—H2B···O3i0.86 (2)2.64 (2)3.458 (5)161 (4)
N2—H2B···O4i0.86 (2)2.55 (4)2.973 (5)111 (3)
C8—H8C···O3i0.982.613.295 (7)127
Symmetry codes: (i) x+1, y+2, z+2; (iv) x+1, y, z+3/2; (vii) x, y1, z; (viii) x, y+2, z1/2.
(II) Poly[[(µ2-acetato-κ2O:O')(acetato-κ2O,O')(µ2-benzene-1,3-diamine-κ2N:N')cadmium] hemihydrate] top
Crystal data top
[Cd(C2H3O2)2(C6H8N2)]·0.5H2OF(000) = 1384
Mr = 695.28Dx = 1.843 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.777 (6) ÅCell parameters from 2588 reflections
b = 8.2374 (18) Åθ = 2.7–23.5°
c = 15.002 (4) ŵ = 1.75 mm1
β = 102.583 (9)°T = 200 K
V = 2505.9 (11) Å3Needle, clear brown
Z = 40.40 × 0.08 × 0.08 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2443 independent reflections
Radiation source: sealed microfocus tube1859 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.057
Detector resolution: 8.3330 pixels mm-1θmax = 26.0°, θmin = 2.7°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 910
Tmin = 0.69, Tmax = 0.87l = 1811
8942 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0489P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2443 reflectionsΔρmax = 0.86 e Å3
180 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.69991 (2)0.34064 (4)0.80989 (2)0.02831 (14)
O10.68026 (16)0.1764 (4)0.9313 (2)0.0381 (9)
O20.59435 (17)0.3087 (4)0.8546 (2)0.0436 (9)
O30.80578 (15)0.3370 (3)0.7917 (3)0.0357 (8)
O40.79978 (15)0.6013 (4)0.7691 (2)0.0375 (8)
O50.50.5121 (7)0.750.0581 (16)
H50.517 (3)0.455 (4)0.792 (2)0.09 (2)*
N10.63907 (19)0.5002 (5)0.6938 (3)0.0281 (9)
HN1A0.6021 (14)0.522 (5)0.708 (3)0.039 (15)*
HN1B0.649 (2)0.605 (3)0.701 (3)0.039 (14)*
N20.7361 (2)0.4639 (5)0.4277 (3)0.0328 (9)
HN2A0.750 (2)0.394 (5)0.393 (3)0.044 (11)*
HN2B0.7682 (17)0.526 (5)0.457 (3)0.044 (11)*
C10.6204 (2)0.2190 (6)0.9196 (3)0.0316 (11)
C20.5810 (3)0.1613 (6)0.9855 (4)0.0553 (16)
H2A0.57640.24961.02750.083*
H2B0.60340.06921.02040.083*
H2C0.53720.12720.9520.083*
C30.8315 (2)0.4712 (5)0.7778 (3)0.0283 (10)
C40.9037 (2)0.4701 (6)0.7760 (4)0.0423 (13)
H4A0.90930.50440.71560.064*
H4B0.92130.36020.78880.064*
H4C0.92750.54510.82240.064*
C50.6364 (2)0.4410 (5)0.6031 (3)0.0276 (10)
C60.6875 (2)0.4739 (5)0.5613 (3)0.0292 (11)
H60.72380.53750.59210.035*
C70.6866 (2)0.4152 (5)0.4748 (3)0.0314 (11)
C80.6335 (3)0.3195 (6)0.4305 (4)0.0463 (14)
H80.63270.27690.37140.056*
C90.5833 (3)0.2881 (7)0.4720 (4)0.0573 (17)
H90.54730.22370.44130.069*
C100.5832 (3)0.3481 (5)0.5588 (4)0.0436 (14)
H100.54750.32580.58710.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0331 (2)0.0280 (2)0.0254 (2)0.00293 (14)0.00988 (14)0.00140 (14)
O10.0347 (19)0.045 (2)0.036 (2)0.0083 (15)0.0105 (16)0.0041 (15)
O20.043 (2)0.049 (2)0.038 (2)0.0063 (16)0.0066 (17)0.0087 (16)
O30.0333 (17)0.0217 (17)0.056 (2)0.0019 (13)0.0175 (17)0.0015 (15)
O40.0414 (19)0.0292 (17)0.047 (2)0.0059 (15)0.0204 (17)0.0114 (15)
O50.044 (3)0.065 (4)0.058 (4)00.004 (3)0
N10.032 (2)0.029 (2)0.026 (2)0.0001 (19)0.0113 (17)0.0008 (17)
N20.041 (2)0.036 (2)0.024 (2)0.0003 (19)0.0143 (18)0.0007 (18)
C10.033 (3)0.035 (3)0.028 (3)0.006 (2)0.011 (2)0.005 (2)
C20.041 (3)0.073 (4)0.054 (4)0.004 (3)0.014 (3)0.014 (3)
C30.033 (2)0.033 (3)0.021 (2)0.001 (2)0.0095 (19)0.0018 (18)
C40.036 (3)0.045 (3)0.045 (3)0.006 (2)0.007 (2)0.004 (2)
C50.034 (2)0.025 (2)0.022 (2)0.0006 (19)0.002 (2)0.0044 (17)
C60.029 (2)0.030 (2)0.027 (2)0.0059 (19)0.002 (2)0.0020 (19)
C70.041 (3)0.025 (2)0.029 (3)0.004 (2)0.011 (2)0.0054 (19)
C80.070 (4)0.043 (3)0.027 (3)0.020 (3)0.013 (3)0.008 (2)
C90.070 (4)0.064 (4)0.037 (3)0.041 (3)0.009 (3)0.014 (3)
C100.044 (3)0.052 (3)0.035 (3)0.025 (2)0.012 (2)0.001 (2)
Geometric parameters (Å, º) top
Cd1—O32.275 (3)C1—C21.492 (8)
Cd1—O4i2.301 (3)C2—H2A0.98
Cd1—N12.324 (4)C2—H2B0.98
Cd1—O12.374 (4)C2—H2C0.98
Cd1—N2ii2.388 (4)C3—C41.506 (6)
Cd1—O22.443 (4)C4—H4A0.98
O1—C11.268 (5)C4—H4B0.98
O2—C11.249 (5)C4—H4C0.98
O3—C31.265 (5)C5—C61.374 (6)
O4—C31.250 (5)C5—C101.388 (6)
O4—Cd1iii2.301 (3)C6—C71.381 (6)
O5—H50.808 (18)C6—H60.95
N1—C51.435 (6)C7—C81.401 (6)
N1—HN1A0.859 (19)C8—C91.350 (8)
N1—HN1B0.886 (19)C8—H80.95
N2—C71.425 (6)C9—C101.394 (8)
N2—Cd1iv2.388 (4)C9—H90.95
N2—HN2A0.870 (19)C10—H100.95
N2—HN2B0.877 (19)
O3—Cd1—O4i79.37 (11)C1—C2—H2A109.5
O3—Cd1—N1107.45 (13)C1—C2—H2B109.5
O4i—Cd1—N199.25 (13)H2A—C2—H2B109.5
O3—Cd1—O1114.63 (11)C1—C2—H2C109.5
O4i—Cd1—O185.82 (12)H2A—C2—H2C109.5
N1—Cd1—O1137.80 (13)H2B—C2—H2C109.5
O3—Cd1—N2ii86.63 (14)O4—C3—O3122.3 (4)
O4i—Cd1—N2ii157.39 (13)O4—C3—C4120.5 (4)
N1—Cd1—N2ii101.86 (14)O3—C3—C4117.1 (4)
O1—Cd1—N2ii84.00 (13)C3—C4—H4A109.5
O3—Cd1—O2168.71 (11)C3—C4—H4B109.5
O4i—Cd1—O298.78 (12)H4A—C4—H4B109.5
N1—Cd1—O283.83 (13)C3—C4—H4C109.5
O1—Cd1—O254.09 (11)H4A—C4—H4C109.5
N2ii—Cd1—O291.49 (13)H4B—C4—H4C109.5
C1—O1—Cd193.7 (3)C6—C5—C10120.3 (5)
C1—O2—Cd191.0 (3)C6—C5—N1119.4 (4)
C3—O3—Cd1117.6 (3)C10—C5—N1120.3 (5)
C3—O4—Cd1iii136.7 (3)C5—C6—C7120.4 (4)
C5—N1—Cd1114.9 (3)C5—C6—H6119.8
C5—N1—HN1A117 (3)C7—C6—H6119.8
Cd1—N1—HN1A108 (3)C6—C7—C8119.4 (5)
C5—N1—HN1B114 (3)C6—C7—N2120.2 (4)
Cd1—N1—HN1B113 (3)C8—C7—N2120.1 (5)
HN1A—N1—HN1B88 (4)C9—C8—C7119.8 (5)
C7—N2—Cd1iv114.3 (3)C9—C8—H8120.1
C7—N2—HN2A119 (3)C7—C8—H8120.1
Cd1iv—N2—HN2A96 (3)C8—C9—C10121.4 (5)
C7—N2—HN2B118 (4)C8—C9—H9119.3
Cd1iv—N2—HN2B94 (3)C10—C9—H9119.3
HN2A—N2—HN2B111 (5)C5—C10—C9118.7 (5)
O2—C1—O1121.0 (5)C5—C10—H10120.6
O2—C1—C2120.0 (4)C9—C10—H10120.6
O1—C1—C2119.0 (4)
Cd1—O2—C1—O14.6 (4)N1—C5—C6—C7178.6 (4)
Cd1—O2—C1—C2174.9 (4)C5—C6—C7—C81.0 (7)
Cd1—O1—C1—O24.8 (5)C5—C6—C7—N2173.2 (4)
Cd1—O1—C1—C2174.8 (4)Cd1iv—N2—C7—C6103.9 (4)
Cd1iii—O4—C3—O3148.4 (4)Cd1iv—N2—C7—C870.2 (5)
Cd1iii—O4—C3—C434.3 (6)C6—C7—C8—C91.1 (8)
Cd1—O3—C3—O43.8 (6)N2—C7—C8—C9173.1 (5)
Cd1—O3—C3—C4173.5 (3)C7—C8—C9—C100.4 (9)
Cd1—N1—C5—C682.6 (4)C6—C5—C10—C90.6 (7)
Cd1—N1—C5—C1095.9 (4)N1—C5—C10—C9177.9 (5)
C10—C5—C6—C70.1 (6)C8—C9—C10—C50.5 (9)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.81 (2)2.06 (4)2.788 (5)149 (7)
N1—HN1A···O50.86 (2)2.34 (2)3.183 (4)166 (4)
N1—HN1B···O3iii0.89 (2)2.12 (2)2.991 (5)166 (5)
N2—HN2A···O4iv0.87 (2)2.32 (4)3.012 (6)137 (4)
N2—HN2B···O1iii0.88 (2)2.17 (3)2.994 (5)156 (5)
C6—H6···O1iii0.952.393.195 (5)142
Symmetry codes: (iii) x+3/2, y+1/2, z+3/2; (iv) x, y+1, z1/2.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationAriyananda, W. G. P. & Norman, R. E. (2005). Acta Cryst. E61, m187–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanerjee, S., Ghosh, A., Wu, B., Lassahn, P.-G. & Janiak, C. (2005). Polyhedron, 24, 593–599.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R., McKenzie, C. J. & Nielsen, L. P. (2001). Acta Cryst. C57, 156–157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBorsari, M. (2014). Cadmium: Coordination Chemistry in Encyclopedia of Inorganic and Bioinorganic Chemistry, pp. 1–16 New York: Wiley.  Google Scholar
First citationBruker (2013). APEX2, SAINT, SADABS, and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBygott, A. M. T., Geue, R. J., Ralph, S. F., Sargeson, A. M. & Willis, A. C. (2007). Dalton Trans. pp. 4778–4748.  Web of Science CSD CrossRef Google Scholar
First citationChemli, R., Kamoun, S. & Roisnel, T. (2013). Acta Cryst. E69, m670–m671.  CSD CrossRef IUCr Journals Google Scholar
First citationChen, H.-R. & Zhang, W.-W. (2014). Acta Cryst. C70, 1079–1082.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1296–m1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCherni, S. N., Cherni, A. & Driss, A. (2012). X-ray Struct. Anal. Online, 28, 13–14.  CSD CrossRef CAS Google Scholar
First citationDey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDickman, M. H. (2000). Acta Cryst. C56, 58–60.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDjebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411–m1412.  CSD CrossRef IUCr Journals Google Scholar
First citationDuff, E. J. (1968). J. Chem. Soc. A, pp. 434–437.  CrossRef Web of Science Google Scholar
First citationDymock, K. R. & Palenik, G. J. (1975). Inorg. Chem. 14, 1220–1222.  CrossRef CAS Web of Science Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166–1175.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1875–m1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. (2012). Acta Cryst. E68, m1040.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247–m248.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K., Parsons, D. E. & Zick, P. L. (2014). Acta Cryst. E70, 566–572.  CSD CrossRef IUCr Journals Google Scholar
First citationHenehan, C. J., Pountney, D. L., Vašák, M. & Zerbe, O. (1993). Protein Sci. 2, 1756–1764.  CrossRef CAS PubMed Google Scholar
First citationJalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. 51, 10619–10630.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJalilehvand, F., Leung, B. O. & Mah, V. (2009). Inorg. Chem. 48, 5758–5771.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeypour, H., Salehzadeh, S., Pritchard, R. G. & Parish, R. V. (2000). Polyhedron, 19, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationKimblin, C. & Parkin, G. (1996). Inorg. Chem. 35, 6912–6913.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008a). Acta Cryst. C64, m333–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008b). Acta Cryst. C64, m365–m368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Q., Wang, H.-T. & Ye, Q. (2014). Acta Cryst. C70, 992–997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, W.-X. & Qu, Z.-R. (2008). Acta Cryst. E64, m1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m1218–m1220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-Q., Zhang, Y., Lü, Y.-J. & Jiang, Z.-J. (2012). Acta Cryst. E68, m430.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaxcy, K. R., Smith, R., Willett, R. D. & Vij, A. (2000). Acta Cryst. C56, e454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871–873.  Web of Science CrossRef CAS Google Scholar
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.  CrossRef CAS Web of Science Google Scholar
First citationNarayanan, B. & Bhadbhade, M. M. (1996). Acta Cryst. C52, 3049–3051.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOvalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269–m271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Liu, J.-W. & Hao, X.-M. (2006). Acta Cryst. E62, m2397–m2399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUçar, İ., Yeşilel, O. Z., Bulut, A., İçbudak, H., Ölmez, H. & Kazak, C. (2004). Acta Cryst. C60, m392–m394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J., Tao, J.-Q. & Xu, X.-J. (2011). Acta Cryst. C67, m173–m175.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Zhao, Y., Chen, Y. & Kou, X.-Y. (2013). Acta Cryst. C69, 1340–1343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X.-J., Miao, J.-Y. & Wang, J. (2013). Acta Cryst. C69, 620–623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-F., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m1314–m1316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhuo, X., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Acta Cryst. E62, m785–m787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037–1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds