research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen bonds and van der Waals forces as tools for the construction of a herringbone pattern in the crystal structure of hexane-1,6-diaminium hexane-1,6-diyl bis­­(hydrogen phospho­nate)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 November 2016; accepted 13 December 2016; online 1 January 2017)

The asymmetric unit of the title salt, [H3N(CH2)6NH3][(HO)O2P(CH2)6PO2(OH)], consists of one half of a hexane-1,6-diaminium dication and one half of a hexane-1,6-diyl bis­(hydrogen phospho­nate) dianion. Both are located around different centres of inversion (Wyckoff sites: 2a and 2d) of the space group P21/c. The shape of the hexane-1,6-diaminium cation is best described as a double hook. Both aminium groups as well as the two attached CH2 groups are turned out from the plane of the central four C atoms. In contrast, all six C atoms of the dianion are almost in a plane. The hydrogen phospho­nate (–PO3H) groups of the anions and the aminium groups of the cations form two-dimensional O—H⋯ and O—H⋯N hydrogen-bonded networks parallel to the ac plane, built up from ten-membered and twelve-membered ring motifs with graph-set descriptors R33(10) and R54(12), respectively. These networks are linked by the alkyl­ene chains of the anions and cations. The resulting three-dimensional network shows a herringbone pattern, which resembles the parent structures 1,6-di­amino­hexane and hexane-1,6-di­phospho­nic acid.

1. Chemical context

Salts which comprise organo­phospho­nate anions and organic cations, e.g. protonated primary (Mahmoudkhani & Langer, 2002a[Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21-25.],b[Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97-108.],c[Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus Sulfur Silicon Relat. Elem. 177, 2941-2951.]), secondary (Wheatley et al., 2001[Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95-102.]) or tertiary amines (Kan & Ma, 2011[Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73-74.]) are of growing inter­est in supra­molecular chemistry and crystal engineering. Compounds of this type possess inter­esting topologies and an extended structural diversity. Furthermore, they seem to be feasible model systems for metal phospho­nates as they exhibit similar structural characteristics. Most of these salt-type solids show extended hydrogen-bonded networks which are characterized by a rich diversity of strong charge-supported hydrogen bonds (Aakeröy & Seddon, 1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]; Białek et al., 2013[Białek, M. J., Zaręba, J. K., Janczak, J. & Zoń, J. (2013). Cryst. Growth Des. 13, 4039-4050.]) besides some weaker inter­molecular inter­actions (van Megen et al., 2016a[Megen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574-3584.],b[Megen, M. van, Reiss, G. J. & Frank, W. (2016b). Acta Cryst. E72, 1456-1459.]).

A search in the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded more than 180 entries for the hexane-1,6-diaminium dication (H16AH). At this point it is not our aim to review all these structures, but we think it is worth highlighting some important classes of compounds and applications. The structures and properties of many simple salts of H16AH, like halides (van Blerk & Kruger, 2008[Blerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, o537-o542.]), acetates (Paul & Kubicki, 2009[Paul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238-244.]) and salts with more complex inorganic anions such as hexa­fluorido­silcate (Ouasri et al., 2014[Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o92-o93.]), tetra­iodide (Reiss & van Megen, 2012[Reiss, G. J. & van Megen, M. (2012). Z. Naturforsch. Teil B, 67, 447-451.]) or di­hydrogen arsenate (Wilkinson & Harrison, 2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902-m904.]) have been extensively studied. Moreover, the H16AH dication is well known for its use in crystal engin­eering of hydrogen-bonded solids which contain unstable species (Frank & Reiss, 1997[Frank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593-4595.]), in supra­molecular chemistry (Assaf & Nau, 2015[Assaf, K. I. & Nau, W. M. (2015). Chem. Soc. Rev. 44, 394-418.]), as a tecton for the construction of layered materials (Bujoli-Doeuff et al., 2012[Bujoli-Doeuff, M., Dessapt, R., Deniard, P. & Jobic, S. (2012). Inorg. Chem. 51, 142-149.]), or as a cationic template for novel complex systems (Holtby et al., 2007[Holtby, A. S., Harrison, W. T. A., Yilmaz, V. T. & Büyükgüngör, O. (2007). Solid State Sci. 9, 149-154.]). Finally, it should be stressed out that the H16AH cation is applied in the context of nylon-based hybride materials (Boncel et al., 2014[Boncel, S., Górka, J., Shaffer, M. S. P. & Koziol, K. K. K. (2014). Polym. Compos. 35, 523-529.]).

[Scheme 1]

This contribution is part of an ongoing study regarding the structural chemistry of alkane-α,ω-di­phospho­nic acids (van Megen et al., 2015[Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485-494.]) and their organic aminium salts (van Megen et al., 2016a[Megen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574-3584.],b[Megen, M. van, Reiss, G. J. & Frank, W. (2016b). Acta Cryst. E72, 1456-1459.]).

2. Structural commentary

The asymmetric unit of [H3N(CH2)6NH3][(HO)O2P(CH2)6PO2(OH)] consists of one half of an H16AH dication and one half of a hexane-1,6-diyl bis(hydrogen phospho­nate) dianion (16PHOS). Both ions are located around different inversion centres of space group type P21/c (Wyckoff sites 2a and 2d, respectively). Bond lengths and angles in the dication as well as in the dianion are in the expected ranges (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

P1—O3 1.4977 (13) P1—O1 1.5817 (14)
P1—O2 1.5112 (13)    
       
O3—P1—O2 114.23 (8) O3—P1—C4 111.37 (9)
O3—P1—O1 111.27 (8) O2—P1—C4 109.71 (8)
O2—P1—O1 105.83 (8) O1—P1—C4 103.79 (8)
       
N1—C1—C2—C3 69.9 (3) P1—C4—C5—C6 −177.99 (15)
C1—C2—C3—C3i 174.2 (3) C4—C5—C6—C6ii 178.7 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z.

As shown in Fig. 1[link], the cation has a conformation best described as a double hook. In detail, atom C1 is turned out from the plane of the central four carbon atoms by about 6° (Table 1[link]), whereas atom N1 is turned out significantly from the plane defined by the central four carbon atoms [N1—C1—C2—C3 = 69.9 (3)°]. The individual conformation of the cationic diaminium tecton seems to be a compromise between an effort to form the most stable conformation on the one hand, and inter­molecular inter­actions, namely hydrogen bonding and van der Waals inter­actions, on the other hand (Frank & Reiss, 1996[Frank, W. & Reiss, G. J. (1996). Chem. Ber. 129, 1355-1359.], 1997[Frank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593-4595.]).

[Figure 1]
Figure 1
The H16AH cation and the 16PHOS anion are shown together with their hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are drawn as spheres with arbitrary radii. [Symmetry codes: (′) −x, −y, −z; (′′) 1 − x, 1 − y, 1 − z.]

The conformation of the anion is that of the energetically most stable all-transoid conformation of the hexane-1,6-diyl moiety (r.m.s. of the six carbon atoms and two phospho­rus atoms: 0.2643 Å), also expressed by the almost perfect anti-periplanar arrangement of each CH2 group (cf. the torsion angles in Table 1[link]). A detailed view of the hydrogen phospho­nate groups shows the P—OH distance of 1.5817 (14) Å to be greater than the two other P—O distances [1.4977 (13) and 1.5112 (13) Å].

3. Supra­molecular features

Within the crystal of the title compound, the aminium groups of the cations as well as the hydrogen phospho­nate groups of the anions form hydrogen bonds with adjacent ions. In detail, each hydrogen atom of the NH3 group and the OH group of the hydrogen phospho­nate moiety donates a single hydrogen bond to a phosphoryl oxygen atom (Fig. 1[link]), whereby each phosphoryl oxygen atom accepts two hydrogen bonds.

Anions and cations are connected by medium strong to strong, charge-supported N—H⋯O and O—H⋯O hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]; Table 2[link]). The hydrogen-bonding inter­actions help to construct a two-dimensional network which propagates parallel to the ac plane (Fig. 2[link]). This network contains two characteristic types of meshes (Fig. 2[link]), which can be classified as ten-membered and twelve-membered hydrogen-bonded ring motifs with the first level graph-set descriptors R33(10) and R54(12), respectively (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). It is remarkable that the structure of NH4C10H21PO2OH (Boczula et al., 2012[Boczula, D., Cały, A., Dobrzyńska, D., Janczak, J. & Zoń, J. (2012). J. Mol. Struct. 1007, 220-226.]) possesses layers with a very similar topology [R33(10) and R55(12)].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O3 0.89 (2) 1.90 (2) 2.782 (2) 168 (2)
N1—H12⋯O3 0.87 (3) 2.05 (3) 2.905 (2) 165 (2)
N1—H13⋯O2′′ 0.90 (2) 1.94 (2) 2.828 (2) 170 (2)
O1—H1⋯O2 0.81 (3) 1.76 (3) 2.5546 (19) 168 (3)
Symmetry codes: (′) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (′′) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The two-dimensional hydrogen-bonded network composed of aminium and hydrogen phospho­nate groups parallel to the ac plane. The R33(10) graph-set motif is indicated by green bonds and the R54(12) motif with blue bonds. [Symmetry codes: (′) x, −y + [1\over2], z − [1\over2]; (′′) x − 1, −y + [1\over2], z − [1\over2].]

Along the b axis of the unit cell, these hydrogen-bonded networks are linked by the alkyl­ene chains of the anions as well as the cations, forming a three-dimensional network with a typical herringbone pattern.

We have already shown that α,ω-diaminiumalkane tectons support the formation of salts with tailored, linear polyiodides (Reiss & Engel, 2002[Reiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155-161.]) showing a herringbone pattern with alternating cations and anions. Thus, the title structure is a further example for both the robustness of the herringbone motif and the structure-directing properties of α,ω-functionalized alkylene tectons.

A comparison with the `parent' structures, namely those of 1,6-di­amino­hexane (Thalladi et al., 2000[Thalladi, V. R., Boese, R. & Weiss, H.-C. (2000). Angew. Chem. Int. Ed. 39, 918-922.]) and hexane-1,6-di­phospho­nic acid (van Megen et al., 2015[Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485-494.]) seems useful. A characteristic feature of each herringbone motif is the angle of the fishbones to each other. It is not surprising, then, that this angle in the title crystal structure is almost the average of those found for the parent structures (Fig. 3[link]), which is another proof of the usefulness of α,ω-diaminiumalkane tectons in crystal engineering.

[Figure 3]
Figure 3
Comparison of the herringbone pattern of 1,6-di­amino­hexane (upper part), 1,6-hexane-di­phospho­nic acid (lower part), and the title compound (middle part).

4. Related structures

For related hydrogen phospho­nates, phospho­nates and bis(phospho­nates), see: Boczula et al. (2012[Boczula, D., Cały, A., Dobrzyńska, D., Janczak, J. & Zoń, J. (2012). J. Mol. Struct. 1007, 220-226.]); Ferguson et al. (1998[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129-138.]); Fu et al. (2004[Fu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855-861.]); Fuller & Heimer (1995[Fuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129-136.]); Glidewell et al. (2000[Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855-858.]); Kan & Ma (2011[Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73-74.]); Mahmoudkhani & Langer (2002a[Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21-25.],b[Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97-108.],c[Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus Sulfur Silicon Relat. Elem. 177, 2941-2951.]); Plabst et al. (2009[Plabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049-5060.]); van Megen et al. (2016a[Megen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574-3584.],b[Megen, M. van, Reiss, G. J. & Frank, W. (2016b). Acta Cryst. E72, 1456-1459.]); Wheatley et al. (2001[Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95-102.]).

For related hexane-1,6-diaminium salts, see: Assaf & Nau (2015[Assaf, K. I. & Nau, W. M. (2015). Chem. Soc. Rev. 44, 394-418.]); Boncel et al. (2014[Boncel, S., Górka, J., Shaffer, M. S. P. & Koziol, K. K. K. (2014). Polym. Compos. 35, 523-529.]); Bujoli-Doeuff et al. (2012[Bujoli-Doeuff, M., Dessapt, R., Deniard, P. & Jobic, S. (2012). Inorg. Chem. 51, 142-149.]); Blerk & Kruger (2008[Blerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, o537-o542.]); Frank & Reiss (1997[Frank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593-4595.]); Holtby et al. (2007[Holtby, A. S., Harrison, W. T. A., Yilmaz, V. T. & Büyükgüngör, O. (2007). Solid State Sci. 9, 149-154.]); Wilkinson & Harrison (2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902-m904.]); van Megen et al. (2015[Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485-494.]).

For closely related hydrogen-bonded compounds with a herringbone pattern, see: Thalladi et al. (2000[Thalladi, V. R., Boese, R. & Weiss, H.-C. (2000). Angew. Chem. Int. Ed. 39, 918-922.]); van Megen et al. (2016a[Megen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574-3584.]).

5. Synthesis and crystallization

For the preparation of the title compound, equimolar qu­an­ti­ties (0.5 mmol) of hexane-1,6-di­amine (58.1 mg) and hexane-1,6-bis­phospho­nic acid (123.1 mg) were dissolved in methanol, separately. The solutions were mixed and the resulting white precipitate was then dissolved in distilled water. Within several days, colourless crystals were obtained in an open petri dish by slow evaporation of the solvent. Hexane-1,6-di­amine was purchased from commercial sources and hexane-1,6-bis­phospho­nic acid was synthesized according to the literature (Schwarzenbach & Zurc, 1950[Schwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202-212.]; Moedritzer & Irani, 1961[Moedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297-304.]; Griffith et al., 1998[Griffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317-4323.]).

Elemental analysis: C12H32N2O6P2 (362.33): calculated C 39.8, H 8.9, N 7.7; found C 39.8, H 9.7, N 8.4., m.p.: 501 K.

6. IR and Raman spectra

The IR and Raman spectra of the title compound are shown in Fig. 4[link]. The vibration spectra of the title compound are in excellent accord with those of NH4C10H21PO2OH (Boczula et al., 2012[Boczula, D., Cały, A., Dobrzyńska, D., Janczak, J. & Zoń, J. (2012). J. Mol. Struct. 1007, 220-226.]). This is not particularly surprising as both structures are closely related, including the hydrogen-bonding schemes. Since Boczula et al. presented a detailed discussion of the spectra, we do not include a repeated discussion. An additional, often neglected feature of such IR spectra are the broad bands associated with the O—H stretching vibration indicating strong hydrogen bonds (Hadži, 1965[Hadži, D. (1965). Pure Appl. Chem. 11, 435-445.]; Baran et al., 1989[Baran, J., Lis, T. & Ratajczak, H. (1989). J. Mol. Struct. 195, 159-174.]). A detailed discussion has also been reported very recently (van Megen et al., 2016a[Megen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574-3584.]) for this feature. In the IR spectrum of the title compound, the maxima of the so called A, B and C bands can be estimated to be at 2750, 2200 and 1600 cm−1.

[Figure 4]
Figure 4
The IR (blue) and Raman (red) spectra of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms bound to either nitro­gen or oxygen atoms were identified in difference syntheses and refined without any geometric constraints or restraints with individual Uiso(H) values. Carbon-bound hydrogen atoms were included using a riding model (AFIX 23 option of the SHELX program for the methyl­ene groups and AFIX 43 option for the methine groups).

Table 3
Experimental details

Crystal data
Chemical formula C6H18N22+·C6H14O6P22−
Mr 362.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 292
a, b, c (Å) 5.88242 (16), 20.2162 (5), 7.7574 (2)
β (°) 98.090 (3)
V3) 913.33 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.40 × 0.20 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.898, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14194, 2779, 2339
Rint 0.022
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.098, 1.02
No. of reflections 2779
No. of parameters 116
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.28
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexane-1,6-diaminium hexane-1,6-diyl bis(hydrogen phosphonate) top
Crystal data top
C6H18N22+·C6H14O6P22Dx = 1.318 Mg m3
Mr = 362.33Melting point: 501 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.88242 (16) ÅCell parameters from 8526 reflections
b = 20.2162 (5) Åθ = 3.0–33.9°
c = 7.7574 (2) ŵ = 0.27 mm1
β = 98.090 (3)°T = 292 K
V = 913.33 (4) Å3Block, colorless
Z = 20.40 × 0.20 × 0.12 mm
F(000) = 392
Data collection top
Oxford Diffraction Xcalibur with Eos detector
diffractometer
2779 independent reflections
Radiation source: (Mo) X-ray Source2339 reflections with I > 2σ(I)
Detector resolution: 16.2711 pixels mm-1Rint = 0.022
ω scansθmax = 30.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 88
Tmin = 0.898, Tmax = 1.000k = 2828
14194 measured reflectionsl = 1110
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.018P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2779 reflectionsΔρmax = 0.64 e Å3
116 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0383 (3)0.18730 (8)0.0899 (2)0.0330 (3)
H110.005 (4)0.2266 (12)0.135 (3)0.043 (6)*
H120.024 (4)0.1833 (11)0.006 (3)0.047 (7)*
H130.190 (4)0.1883 (11)0.054 (3)0.043 (6)*
C10.0201 (4)0.13413 (10)0.2199 (3)0.0446 (5)
H1A0.04070.14590.32570.053*
H1B0.18580.13150.24780.053*
C20.0708 (4)0.06670 (10)0.1609 (3)0.0501 (5)
H2A0.05290.03730.26070.060*
H2B0.23380.07060.12010.060*
C30.0423 (4)0.03569 (11)0.0201 (4)0.0532 (6)
H3A0.20720.03520.05520.064*
H3B0.01070.06220.08480.064*
P10.40040 (8)0.30335 (2)0.30797 (6)0.02754 (11)
O10.5147 (2)0.23351 (7)0.28712 (19)0.0388 (3)
H10.490 (4)0.2187 (12)0.190 (3)0.051 (7)*
O20.4820 (2)0.32500 (6)0.49279 (16)0.0357 (3)
O30.1446 (2)0.29998 (6)0.26262 (18)0.0359 (3)
C40.5251 (3)0.35522 (9)0.1593 (2)0.0367 (4)
H4A0.68980.35680.19520.044*
H4B0.49880.33510.04470.044*
C50.4345 (4)0.42525 (9)0.1453 (3)0.0411 (4)
H5A0.46650.44670.25800.049*
H5B0.26930.42430.11200.049*
C60.5441 (4)0.46516 (10)0.0111 (3)0.0457 (5)
H6A0.70890.46640.04620.055*
H6B0.51550.44270.10040.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0291 (7)0.0326 (8)0.0383 (9)0.0038 (6)0.0077 (6)0.0065 (6)
C10.0472 (11)0.0334 (10)0.0519 (12)0.0008 (8)0.0029 (9)0.0008 (9)
C20.0533 (12)0.0333 (10)0.0656 (15)0.0034 (9)0.0151 (11)0.0004 (10)
C30.0521 (13)0.0383 (11)0.0710 (16)0.0045 (10)0.0152 (12)0.0072 (11)
P10.0292 (2)0.0280 (2)0.0258 (2)0.00367 (16)0.00522 (15)0.00149 (16)
O10.0460 (8)0.0380 (7)0.0322 (7)0.0093 (6)0.0050 (6)0.0007 (6)
O20.0410 (7)0.0384 (7)0.0277 (6)0.0069 (5)0.0052 (5)0.0010 (5)
O30.0297 (6)0.0351 (7)0.0425 (7)0.0028 (5)0.0042 (5)0.0021 (6)
C40.0428 (10)0.0372 (9)0.0321 (9)0.0055 (8)0.0119 (8)0.0024 (7)
C50.0538 (12)0.0339 (9)0.0381 (10)0.0053 (8)0.0151 (9)0.0054 (8)
C60.0619 (13)0.0365 (10)0.0412 (11)0.0099 (9)0.0165 (10)0.0066 (8)
Geometric parameters (Å, º) top
N1—C11.481 (3)P1—O21.5112 (13)
N1—H110.89 (2)P1—O11.5817 (14)
N1—H120.87 (3)P1—C41.7907 (18)
N1—H130.90 (2)O1—H10.81 (3)
C1—C21.511 (3)C4—C51.511 (3)
C1—H1A0.9700C4—H4A0.9700
C1—H1B0.9700C4—H4B0.9700
C2—C31.494 (3)C5—C61.529 (3)
C2—H2A0.9700C5—H5A0.9700
C2—H2B0.9700C5—H5B0.9700
C3—C3i1.544 (4)C6—C6ii1.503 (4)
C3—H3A0.9700C6—H6A0.9700
C3—H3B0.9700C6—H6B0.9700
P1—O31.4977 (13)
C1—N1—H11110.7 (14)O3—P1—O1111.27 (8)
C1—N1—H12115.2 (15)O2—P1—O1105.83 (8)
H11—N1—H12107 (2)O3—P1—C4111.37 (9)
C1—N1—H13110.5 (14)O2—P1—C4109.71 (8)
H11—N1—H13108.3 (19)O1—P1—C4103.79 (8)
H12—N1—H13105 (2)P1—O1—H1113.8 (18)
N1—C1—C2114.23 (18)C5—C4—P1115.00 (13)
N1—C1—H1A108.7C5—C4—H4A108.5
C2—C1—H1A108.7P1—C4—H4A108.5
N1—C1—H1B108.7C5—C4—H4B108.5
C2—C1—H1B108.7P1—C4—H4B108.5
H1A—C1—H1B107.6H4A—C4—H4B107.5
C3—C2—C1115.14 (19)C4—C5—C6111.41 (17)
C3—C2—H2A108.5C4—C5—H5A109.3
C1—C2—H2A108.5C6—C5—H5A109.3
C3—C2—H2B108.5C4—C5—H5B109.3
C1—C2—H2B108.5C6—C5—H5B109.3
H2A—C2—H2B107.5H5A—C5—H5B108.0
C2—C3—C3i112.1 (2)C6ii—C6—C5113.6 (2)
C2—C3—H3A109.2C6ii—C6—H6A108.8
C3i—C3—H3A109.2C5—C6—H6A108.8
C2—C3—H3B109.2C6ii—C6—H6B108.8
C3i—C3—H3B109.2C5—C6—H6B108.8
H3A—C3—H3B107.9H6A—C6—H6B107.7
O3—P1—O2114.23 (8)
N1—C1—C2—C369.9 (3)O1—P1—C4—C5176.71 (15)
C1—C2—C3—C3i174.2 (3)P1—C4—C5—C6177.99 (15)
O3—P1—C4—C556.90 (17)C4—C5—C6—C6ii178.7 (2)
O2—P1—C4—C570.57 (17)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O30.89 (2)1.90 (2)2.782 (2)168 (2)
N1—H12···O3iii0.87 (3)2.05 (3)2.905 (2)165 (2)
N1—H13···O2iv0.90 (2)1.94 (2)2.828 (2)170 (2)
O1—H1···O2iii0.81 (3)1.76 (3)2.5546 (19)168 (3)
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x1, y+1/2, z1/2.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support. Support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) is gratefully acknowledged (Xcalibur diffractometer; INST 208/533–1).

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAssaf, K. I. & Nau, W. M. (2015). Chem. Soc. Rev. 44, 394–418.  CrossRef CAS Google Scholar
First citationBaran, J., Lis, T. & Ratajczak, H. (1989). J. Mol. Struct. 195, 159–174.  CrossRef CAS Google Scholar
First citationBiałek, M. J., Zaręba, J. K., Janczak, J. & Zoń, J. (2013). Cryst. Growth Des. 13, 4039–4050.  Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2008). Acta Cryst. C64, o537–o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoczula, D., Cały, A., Dobrzyńska, D., Janczak, J. & Zoń, J. (2012). J. Mol. Struct. 1007, 220–226.  CSD CrossRef CAS Google Scholar
First citationBoncel, S., Górka, J., Shaffer, M. S. P. & Koziol, K. K. K. (2014). Polym. Compos. 35, 523–529.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBujoli-Doeuff, M., Dessapt, R., Deniard, P. & Jobic, S. (2012). Inorg. Chem. 51, 142–149.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFrank, W. & Reiss, G. J. (1996). Chem. Ber. 129, 1355–1359.  CSD CrossRef CAS Web of Science Google Scholar
First citationFrank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593–4595.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855–861.  CAS Google Scholar
First citationFuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129–136.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGriffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317–4323.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadži, D. (1965). Pure Appl. Chem. 11, 435–445.  Google Scholar
First citationHoltby, A. S., Harrison, W. T. A., Yilmaz, V. T. & Büyükgüngör, O. (2007). Solid State Sci. 9, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationKan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73–74.  CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21–25.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus Sulfur Silicon Relat. Elem. 177, 2941–2951.  CSD CrossRef CAS Google Scholar
First citationMegen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485–494.  Google Scholar
First citationMegen, M. van, Frank, W. & Reiss, G. J. (2016a). CrystEngComm, 18, 3574–3584.  Google Scholar
First citationMegen, M. van, Reiss, G. J. & Frank, W. (2016b). Acta Cryst. E72, 1456–1459.  CSD CrossRef IUCr Journals Google Scholar
First citationMoedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297–304.  CrossRef CAS Web of Science Google Scholar
First citationOuasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o92–o93.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPaul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049–5060.  CSD CrossRef CAS Google Scholar
First citationReiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155–161.  Google Scholar
First citationReiss, G. J. & van Megen, M. (2012). Z. Naturforsch. Teil B, 67, 447–451.  CAS Google Scholar
First citationSchwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202–212.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationThalladi, V. R., Boese, R. & Weiss, H.-C. (2000). Angew. Chem. Int. Ed. 39, 918–922.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m902–m904.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds