research communications
meso-di-μ-chlorido-bis[bis(2,2′-bipyridine)cadmium] bis(1,1,3,3-tetracyano-2-ethoxypropenide) 0.81-hydrate
ofaLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, cLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, dFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: fat_setifi@yahoo.fr, touzanir@yahoo.fr, cg@st-andrews.ac.uk
The hydrated title salt, [Cd2Cl2(C10H8N2)4](C9H5N4O)2·0.81H2O, was obtained from the hydrothermal reaction between 2,2′-bipyridine, cadmium(II) chloride and potassium 1,1,3,3-tetracyano-2-ethoxypropenide. The binuclear cation lies across a centre of inversion in the P21/c, with the other components in general positions. The cation has approximate, but non-crystallographic 2/m symmetry and each of the CdII atoms is a stereogenic centre, one having the Δ configuration and the other the Λ configuration. In the anion, one of the C(CN)2 units is disordered over two sets of atomic sites having occupancies 0.75 (2) and 0.25 (2). The cations are linked by two independent C—H⋯Cl hydrogen bonds to form a sheet of R22(14) and R42(24) rings.
Keywords: crystal structure; hydrothermal synthesis; polynitrile anions; molecular structure; molecular disorder; hydrogen bonding.
CCDC reference: 1521824
1. Chemical context
Luminescent materials based on transition metals and lanthanoids have found wide applications in lighting (Pust et al., 2014), luminescence sensing (Liu et al., 2015) and optical devices (Torres et al., 2015). Among them, d10 metal complexes comprising zinc(II) and cadmium(II) with a variety of ligands have attracted considerable attention in recent years because of their luminescence properties (Mautner et al., 2015).
Organic polynitrile ligands are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the 3d transition metals (Miyazaki et al., 2003; Yuste et al., 2009; Benmansour et al., 2010; Gaamoune et al., 2010; Setifi et al., 2013; Setifi, Setifi et al., 2014; Addala et al., 2015). The versatility of such ligands is based on two main properties: firstly, the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and secondly, the possibility of combining these ligands with a wide variety of co-ligands, leading to an extensive variety of coordination modes. To take advantage of this behaviour, we have been using polynitrile anions in combination with other chelating or bridging neutral co-ligands to explore the structural and electronic characteristics of the resulting complexes, particularly with reference to molecular materials exhibiting interesting luminescent behaviour.
Here we report the synthesis and structure of the title compound (I), the first dinuclear cadmium(II) coordination compound containing the organic polynitrile 1,1,3,3-tetracyano-2-ethoxypropenide counter-anion (abbreviated as tcnoet−) in combination with the chelating ligand 2,2′-bipyridine.
2. Structural commentary
The structure consists of a di-μ2-chlorido-bis[bis(2,2′-bipyridine)cadmium] dication, [Cd2Cl2(C10H8N2)4]2+, which lies across a centre of inversion in P21/c (Fig. 1), and a tcnoet− anion, (NC)2CC(OEt)C(CN)2, which lies in a general position (Fig. 2). The reference cation was selected as that lying across (1/2, 1/2, 1/2). The structure also contains a partial occupancy water molecule lying in a general position with refined occupancy 0.403 (6), but the partial occupancy H atoms associated with this could not be reliably located.
Within the cation, the CdII atoms are six-coordinate with the two bridging chlorido ligands occupying mutually cis sites. The cis-bidentate coordination geometry at Cd means that this atom is a stereogenic centre and the reference Cd atom was selected as the one having the Δ configuration. The inversion-related Cd atom within the binuclear cation thus has the Λ configuration, so that the cation represents a meso form. Overall, the cation has approximate, but non-crystallographic 2/m (C2h) symmetry, with the twofold rotation axis along the Cd⋯Cd vector and the mirror normal to this and containing the two chlorido ligands.
The Cd—N distances for the bonds trans to the bridging chlorido ligands do not differ markedly from the two Cd—N distances which are mutually trans (see Fig. 1). The two Cd—Cl distances are, however, significantly different. The inversion symmetry of the cation means that the central Cd2Cl2 ring is strictly planar, although it is not rectangular [Cl1—Cd1—Cl1a = 84.51 (3)°; symmetry code: (a) −x + 1, −y + 1, −z + 1].
The six-coordinate geometry at the Cd atom is markedly distorted from an idealized octahedral geometry (Fig. 1), and the bond angles at Cd are probably dominated by the bite angles of the bipy ligands and the central ring geometry. Thus, because of the small bite of the 2,2′-bipy ligand, the N—N distances within these ligands, 2.705 (3) Å and 2.706 (4) Å, are significantly shorter than those along the remaining edges of the CdCl2N4 octahedron, which range from 3.387 (3) to 3.760 (3) Å; as a consequence, the torsional angle N11—Cl1—Cl1a—N31 is 21.3 (4)°, rather than the zero degrees expected for a regular octahedron. The structural motif of such a meso-[(CdClN4)2]2+ entity has been found in a variety of complexes with 1,2-diaminoethane (Näther & Jess, 2010), 1,10-phenanthroline (Wang et al., 2012) and 3,5-dimethylpyrazole-1-carboxamidine (Holló et al., 2009) as chelating ligands. The largest N—N separations [2.899 (5) Å and 2.909 (6) Å], are observed for the flexible ligand 1,2-diaminoethane, while for 1,10-phen and 3,5-dimethylpyrazole-1-carboxamidine the corresponding N—N separation is slightly smaller than in compound (I). In agreement with this observation, the N—Cl—Cl—N dihedral angle increases in the order: monodentate N-donors (Hu et al., 2016) 3.5 (6)° < 1,2-diaminoethane 10.6 (4)° < 2,2′-bipy 21.3 (4)° < 1,10-phen 26.8 (7)° and 3,5-dimethylpyrazole-1-carboxamidine 26.4 (5)°.
One of the C(CN)2 groups in the tcnoet− anion is disordered over two sets of atomic sites, with occupancies 0.75 (2) and 0.25 (2), which are related by a mutual rotation about the C—C bond to atom C52 (Fig. 2). The dihedral angles between the central plane (C51,C52,C53) and the major and minor components of the disordered C(CN)2 unit are 20.3 (6) and 31.6 (15)°, respectively, while the dihedral angle between the central plane and the ordered C(CN)2 unit is 17.1 (6)°, such that the rotations of two C(CN)2 units out of the central plane are in a conrotatory sense. The dihedral angle between the planes of the major and minor disorder forms is 12.4 (17)°. The C—N distances in the anion are all very similar, as are the corresponding values for the two types of C—C distances in the tetracyanopropenide portion, with their magnitudes pointing to extensive delocalization of the negative charge not only over the propenide unit but also into the cyano groups, as previously discussed (Setifi et al., 2016).
3. Supramolecular interactions
The supramolecular assembly is determined by two independent C—H⋯Cl hydrogen bonds (Table 1). Database analyses (Brammer et al., 2001; Thallypally & Nangia, 2001) have demonstrated that chlorido ligands bonded to metals are effective hydrogen-bond acceptors, even from weak donors such as C—H, and the two hydrogen bonds here link the reference cation centred at (1/2, 1/2, 1/2) to the four symmetry-related cations centred at (1/2, 0, 0), (1/2, 1, 0), (1/2, 0, 1) and (1/2, 1, 1), so generating a sheet lying parallel to (100) and containing hydrogen-bonded rings of R22(14) and R42(24) types. The formation of the sheet is reinforced by a π–π stacking interaction. The pyridyl ring containing atom N11, which lies in the cation centred at (1/2, 1/2, 1/2), makes a dihedral angle of only 1.78 (14)° with the pyridyl ring containing N31 at (x, − y, + z), which lies in the cation centred at (1/2, 1, 1). The ring-centroid separation is 3.602 (2) Å and the shorted perpendicular from the centroid of one ring to the plane of the other is 3.3878 (11) Å, corresponding to a ring-centroid offset of ca 1.22 Å.
The anions are linked to this sheet by C—H⋯N hydrogen bonds, but otherwise play no part in the supramolecular assembly.
The partial-occupancy atom O71 is linked to the cation by a C—H⋯O hydrogen bond (Table 1). Although the H atoms associated with atom O71 could not be located, nonetheless atom O71 is within plausible hydrogen-bonding distance of the N atoms, N511 and N611 both at (−x, − + y, − z) and N532 at (x, −1 + y, z), with O⋯N distances 2.935 (4), 2.72 (4) and 3.186 (8) Å, respectively. The corresponding N⋯O⋯N angles involving the N atoms in the major and minor components of the disordered anion are 95.4 (3) and 105.5 (6)°, respectively. If these contacts represent hydrogen bonds, then that involving atom N532 lies within the sheet already described (Fig. 3), while the other two would combine to link these sheets into a three-dimensional framework structure.
4. Database survey
The structure of the tcnoet− unit has been reported in salt-like compounds, both with organic cations (Setifi, Lehchili et al., 2014; Setifi et al., 2016) and with cationic metal coordination complexes (Gaamoune et al., 2010; Setifi et al., 2013), and as a coordinating ligand. Examples have been reported recently in which the tcnoet− unit acts as both a bridging and a terminal ligand with CuII, leading to the formation of a coordination polymer in the form of a ribbon (Addala et al., 2015), and where it acts as a μ3-bridging ligand, also with CuII, leading to the formation of a coordination polymer sheet (Setifi, Setifi et al., 2014).
The structure of the dicadmium cation present in compound (I) appears not to have been reported previously. However, in the analogous cation [(μ2-Cl)2(en2Cd)2]2+, characterized as its chloride salt (Näther & Jess, 2010), the cation again lies across a centre of inversion, here in P21/n, with a geometry at Cd very similar to that in compound (I). The related cation [(μ2-Cl)2(phen2Cd)2]2+ has been characterized in two polytungstate salts, one of them as a 4,4′-bipyridine solvate. In the unsolvated salt, the cation lies across a twofold rotation axis in C2/c (Wang et al., 2011); by contrast, in the solvated salt (Wang et al., 2012), the cation is almost centrosymmetric, although examination of the atomic coordinates using PLATON (Spek, 2009) suggests that the may be P rather than the reported P1 (cf. Marsh, 1999, 2005, 2009). Finally, we note some neutral dicadmium complexes of type (μ2-Cl)2(ClCdL)2, where L represents a tridentate aliphatic amine ligand, which have molecular architectures similar to that in the cation of compound (I): when L represents 2-aminoethyl-3-aminopropyl amine (Gannas et al., 1980) or cis-3,5-diaminopiperidine (Pauly et al., 2000), the complexes lie across inversion centres in types P21/n and P21/c, respectively, but when L represents bis(3-aminopropyl)amine (Gannas et al., 1980), the complex lies across a twofold rotation axis in C2/c.
5. Synthesis and crystallization
The salt K(tcnoet) was prepared using the published method (Middleton et al., 1958). The title compound was synthesized hydrothermally under autogenous pressure from a mixture of cadmium(II) chloride (40 mg, 0.21 mmol), 2,2′-bipyridine (32 mg, 0.21 mmol) and K(tcnoet) (90 mg, 0.40 mmol) in water–methanol (4:1 v/v, 20 cm3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 (yield 47%). Colourless prisms of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.
6. Refinement
Crystal data, data collection and structure . Three low-angle reflections, (100), (011) and (02), which had been attenuated by the beam stop, were omitted from the The H atoms bonded to C atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (pyridine), 0.96 Å (CH3) or 0.97 Å (CH2) and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. It was apparent from an early stage that the cyano groups in one of the C(CN)2 units of the anion, that containing atom C51, are disordered over two sets of atomic sites having unequal occupancies. For the minor disorder form, the bond lengths and the 1,3 non-bonding contacts were restrained to be the same as the corresponding distances in the major form, subject to s.u. values of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be identical. Subject to these conditions, the occupancies of the major and minor disorder forms refined to 0.75 (2) and 0.25 (2). For the partial-occupancy water molecule, the atomic coordinates of the O atom were refined with Uiso(O) fixed at 0.08 Å2, giving a refined occupancy of 0.403 (6). A difference map provided plausible locations for two H atoms associated with this O atom but neither of these sites was within hydrogen-bonding range of any likely acceptor and hence they were probably just artefacts of the isotropic In the final analysis of variance, there was a negative value, −0.835, of K = mean(Fo2)/mean(Fc2) for the group of 1177 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.006.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1521824
https://doi.org/10.1107/S205698901601971X/wm5346sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601971X/wm5346Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).[Cd2Cl2(C10H8N2)4](C9H5N4O)2·0.806H2O | F(000) = 1312 |
Mr = 1305.29 | Dx = 1.490 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.425 (5) Å | Cell parameters from 13115 reflections |
b = 13.912 (5) Å | θ = 1.7–35.4° |
c = 17.382 (5) Å | µ = 0.88 mm−1 |
β = 104.395 (5)° | T = 293 K |
V = 2910.3 (18) Å3 | Prism, colourless |
Z = 2 | 0.56 × 0.22 × 0.19 mm |
Bruker APEXII CCD diffractometer | 8506 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.020 |
φ and ω scans | θmax = 33.6°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→19 |
Tmin = 0.805, Tmax = 0.846 | k = −18→21 |
44121 measured reflections | l = −27→26 |
11429 independent reflections |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0611P)2 + 2.0973P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.003 |
11429 reflections | Δρmax = 1.54 e Å−3 |
379 parameters | Δρmin = −0.79 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.48583 (2) | 0.63830 (2) | 0.50037 (2) | 0.03951 (6) | |
Cl1 | 0.45118 (7) | 0.49495 (4) | 0.58640 (4) | 0.04984 (15) | |
N11 | 0.4782 (2) | 0.75528 (15) | 0.59703 (11) | 0.0475 (5) | |
C12 | 0.5745 (2) | 0.77979 (18) | 0.64804 (13) | 0.0492 (6) | |
C13 | 0.5741 (4) | 0.8450 (2) | 0.70916 (18) | 0.0701 (10) | |
H13 | 0.6406 | 0.8625 | 0.7444 | 0.084* | |
C14 | 0.4754 (4) | 0.8833 (2) | 0.7174 (2) | 0.0754 (11) | |
H14 | 0.4749 | 0.9259 | 0.7585 | 0.090* | |
C15 | 0.3781 (4) | 0.8584 (2) | 0.6645 (2) | 0.0698 (10) | |
H15 | 0.3105 | 0.8840 | 0.6685 | 0.084* | |
C16 | 0.3835 (3) | 0.7944 (2) | 0.60539 (17) | 0.0599 (7) | |
H16 | 0.3177 | 0.7773 | 0.5692 | 0.072* | |
N21 | 0.66628 (18) | 0.67905 (16) | 0.57084 (13) | 0.0499 (5) | |
C22 | 0.6771 (2) | 0.73550 (19) | 0.63481 (14) | 0.0508 (6) | |
C23 | 0.7818 (3) | 0.7514 (3) | 0.6852 (2) | 0.0857 (12) | |
H23 | 0.7896 | 0.7898 | 0.7300 | 0.103* | |
C24 | 0.8734 (3) | 0.7099 (4) | 0.6682 (3) | 0.0975 (14) | |
H24 | 0.9435 | 0.7204 | 0.7015 | 0.117* | |
C25 | 0.8622 (3) | 0.6539 (3) | 0.6032 (3) | 0.0804 (11) | |
H25 | 0.9236 | 0.6258 | 0.5907 | 0.096* | |
C26 | 0.7561 (3) | 0.6397 (2) | 0.5559 (2) | 0.0618 (8) | |
H26 | 0.7474 | 0.6006 | 0.5113 | 0.074* | |
N31 | 0.46705 (18) | 0.74567 (14) | 0.39413 (11) | 0.0433 (4) | |
C32 | 0.3644 (2) | 0.76034 (16) | 0.34772 (13) | 0.0429 (5) | |
C33 | 0.3454 (3) | 0.8242 (2) | 0.28427 (16) | 0.0615 (7) | |
H33 | 0.2737 | 0.8342 | 0.2532 | 0.074* | |
C34 | 0.4343 (4) | 0.8727 (2) | 0.2680 (2) | 0.0743 (11) | |
H34 | 0.4231 | 0.9153 | 0.2256 | 0.089* | |
C35 | 0.5395 (4) | 0.8574 (2) | 0.3153 (2) | 0.0707 (10) | |
H35 | 0.6005 | 0.8894 | 0.3055 | 0.085* | |
C36 | 0.5519 (3) | 0.7931 (2) | 0.37774 (18) | 0.0575 (6) | |
H36 | 0.6229 | 0.7826 | 0.4098 | 0.069* | |
N41 | 0.29665 (17) | 0.65857 (15) | 0.43755 (12) | 0.0440 (4) | |
C42 | 0.2726 (2) | 0.70543 (17) | 0.36817 (13) | 0.0430 (5) | |
C43 | 0.1653 (3) | 0.7022 (3) | 0.31844 (19) | 0.0650 (8) | |
H43 | 0.1496 | 0.7327 | 0.2693 | 0.078* | |
C44 | 0.0835 (3) | 0.6536 (3) | 0.3426 (2) | 0.0775 (11) | |
H44 | 0.0118 | 0.6511 | 0.3100 | 0.093* | |
C45 | 0.1075 (3) | 0.6094 (3) | 0.4144 (3) | 0.0710 (9) | |
H45 | 0.0525 | 0.5777 | 0.4324 | 0.085* | |
C46 | 0.2157 (2) | 0.6125 (2) | 0.4601 (2) | 0.0580 (7) | |
H46 | 0.2327 | 0.5809 | 0.5088 | 0.070* | |
C52 | −0.0654 (3) | 1.0993 (2) | 0.5745 (2) | 0.0675 (8) | |
C53 | −0.0125 (3) | 1.1611 (3) | 0.5323 (2) | 0.0673 (8) | |
C51 | −0.0135 (3) | 1.0558 (3) | 0.6467 (2) | 0.0742 (9) | 0.75 (2) |
C511 | −0.0821 (7) | 1.0188 (7) | 0.6947 (6) | 0.0706 (19) | 0.75 (2) |
N511 | −0.1340 (8) | 0.9934 (8) | 0.7366 (7) | 0.093 (3) | 0.75 (2) |
C512 | 0.1033 (4) | 1.0422 (18) | 0.6761 (8) | 0.0773 (16) | 0.75 (2) |
N512 | 0.1970 (5) | 1.0327 (16) | 0.6983 (9) | 0.096 (3) | 0.75 (2) |
C61 | −0.0135 (3) | 1.0558 (3) | 0.6467 (2) | 0.0742 (9) | 0.25 (2) |
C611 | −0.062 (2) | 1.041 (2) | 0.7125 (12) | 0.0706 (19) | 0.25 (2) |
N611 | −0.105 (2) | 1.025 (2) | 0.7621 (13) | 0.093 (3) | 0.25 (2) |
C612 | 0.1045 (9) | 1.046 (6) | 0.664 (2) | 0.0773 (16) | 0.25 (2) |
N612 | 0.1961 (12) | 1.026 (5) | 0.676 (3) | 0.096 (3) | 0.25 (2) |
C531 | −0.0659 (3) | 1.1915 (3) | 0.4536 (2) | 0.0764 (10) | |
N531 | −0.1062 (3) | 1.2178 (4) | 0.3913 (2) | 0.1098 (14) | |
C532 | 0.0883 (3) | 1.2078 (3) | 0.5690 (2) | 0.0710 (8) | |
N532 | 0.1683 (3) | 1.2487 (3) | 0.5991 (2) | 0.0916 (10) | |
O521 | −0.1747 (2) | 1.08810 (18) | 0.54269 (17) | 0.0796 (7) | |
C521 | −0.2240 (4) | 0.9924 (3) | 0.5284 (4) | 0.0941 (14) | |
H52A | −0.2230 | 0.9709 | 0.4754 | 0.113* | |
H52B | −0.1811 | 0.9472 | 0.5664 | 0.113* | |
C522 | −0.3369 (4) | 0.9956 (3) | 0.5360 (4) | 0.1013 (16) | |
H52C | −0.3801 | 1.0371 | 0.4959 | 0.152* | |
H52D | −0.3377 | 1.0198 | 0.5876 | 0.152* | |
H52E | −0.3679 | 0.9321 | 0.5297 | 0.152* | |
O71 | 0.1575 (6) | 0.4775 (5) | 0.6000 (4) | 0.080* | 0.403 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04263 (10) | 0.03855 (9) | 0.03202 (8) | 0.00263 (6) | −0.00077 (6) | −0.00296 (5) |
Cl1 | 0.0755 (4) | 0.0419 (3) | 0.0324 (2) | 0.0095 (3) | 0.0140 (3) | 0.00108 (18) |
N11 | 0.0640 (13) | 0.0446 (10) | 0.0315 (8) | −0.0059 (9) | 0.0077 (8) | −0.0059 (7) |
C12 | 0.0719 (16) | 0.0405 (11) | 0.0315 (10) | −0.0138 (11) | 0.0061 (10) | −0.0023 (8) |
C13 | 0.107 (3) | 0.0564 (16) | 0.0434 (14) | −0.0262 (17) | 0.0129 (16) | −0.0149 (12) |
C14 | 0.131 (4) | 0.0483 (15) | 0.0536 (17) | −0.0131 (19) | 0.036 (2) | −0.0152 (13) |
C15 | 0.109 (3) | 0.0493 (15) | 0.0586 (18) | 0.0133 (16) | 0.0361 (19) | −0.0042 (12) |
C16 | 0.0737 (19) | 0.0552 (15) | 0.0513 (14) | 0.0131 (14) | 0.0165 (13) | −0.0078 (12) |
N21 | 0.0456 (11) | 0.0494 (11) | 0.0476 (11) | −0.0068 (9) | −0.0017 (8) | −0.0015 (9) |
C22 | 0.0561 (14) | 0.0506 (13) | 0.0377 (11) | −0.0178 (11) | −0.0036 (10) | 0.0038 (9) |
C23 | 0.073 (2) | 0.103 (3) | 0.064 (2) | −0.027 (2) | −0.0153 (17) | −0.0182 (19) |
C24 | 0.0536 (19) | 0.118 (3) | 0.100 (3) | −0.019 (2) | −0.0207 (19) | −0.014 (3) |
C25 | 0.0421 (15) | 0.090 (3) | 0.100 (3) | −0.0078 (15) | −0.0002 (17) | 0.003 (2) |
C26 | 0.0429 (14) | 0.0633 (18) | 0.074 (2) | −0.0022 (12) | 0.0044 (13) | −0.0077 (14) |
N31 | 0.0502 (11) | 0.0402 (9) | 0.0388 (9) | 0.0033 (8) | 0.0095 (8) | 0.0002 (7) |
C32 | 0.0561 (13) | 0.0382 (10) | 0.0325 (9) | 0.0085 (9) | 0.0073 (9) | −0.0023 (8) |
C33 | 0.087 (2) | 0.0510 (14) | 0.0423 (13) | 0.0154 (14) | 0.0079 (13) | 0.0107 (11) |
C34 | 0.122 (3) | 0.0496 (16) | 0.0569 (18) | 0.0046 (17) | 0.032 (2) | 0.0134 (13) |
C35 | 0.098 (3) | 0.0522 (16) | 0.074 (2) | −0.0134 (16) | 0.044 (2) | −0.0017 (14) |
C36 | 0.0599 (16) | 0.0516 (14) | 0.0630 (17) | −0.0032 (12) | 0.0191 (13) | −0.0037 (12) |
N41 | 0.0390 (9) | 0.0473 (10) | 0.0422 (10) | 0.0034 (8) | 0.0035 (8) | 0.0000 (8) |
C42 | 0.0447 (11) | 0.0423 (11) | 0.0366 (10) | 0.0085 (9) | 0.0001 (8) | −0.0053 (8) |
C43 | 0.0530 (15) | 0.074 (2) | 0.0545 (15) | 0.0074 (14) | −0.0115 (12) | −0.0021 (14) |
C44 | 0.0452 (16) | 0.080 (2) | 0.091 (3) | 0.0009 (14) | −0.0145 (16) | −0.0062 (19) |
C45 | 0.0438 (14) | 0.0609 (17) | 0.105 (3) | −0.0066 (13) | 0.0133 (16) | −0.0030 (18) |
C46 | 0.0479 (14) | 0.0564 (15) | 0.0678 (18) | 0.0018 (12) | 0.0106 (13) | 0.0056 (13) |
C52 | 0.0609 (18) | 0.0577 (17) | 0.087 (2) | 0.0086 (14) | 0.0240 (16) | −0.0011 (15) |
C53 | 0.0604 (18) | 0.0683 (18) | 0.076 (2) | −0.0002 (15) | 0.0214 (16) | −0.0062 (16) |
C51 | 0.0657 (19) | 0.0659 (19) | 0.097 (3) | 0.0163 (16) | 0.0318 (18) | 0.0096 (18) |
C511 | 0.066 (4) | 0.060 (4) | 0.084 (4) | 0.009 (3) | 0.016 (4) | 0.008 (3) |
N511 | 0.086 (4) | 0.095 (6) | 0.101 (5) | 0.015 (3) | 0.029 (4) | 0.025 (4) |
C512 | 0.073 (2) | 0.070 (3) | 0.093 (5) | 0.0224 (18) | 0.028 (2) | 0.011 (4) |
N512 | 0.074 (2) | 0.099 (4) | 0.116 (9) | 0.032 (2) | 0.026 (3) | 0.009 (7) |
C61 | 0.0657 (19) | 0.0659 (19) | 0.097 (3) | 0.0163 (16) | 0.0318 (18) | 0.0096 (18) |
C611 | 0.066 (4) | 0.060 (4) | 0.084 (4) | 0.009 (3) | 0.016 (4) | 0.008 (3) |
N611 | 0.086 (4) | 0.095 (6) | 0.101 (5) | 0.015 (3) | 0.029 (4) | 0.025 (4) |
C612 | 0.073 (2) | 0.070 (3) | 0.093 (5) | 0.0224 (18) | 0.028 (2) | 0.011 (4) |
N612 | 0.074 (2) | 0.099 (4) | 0.116 (9) | 0.032 (2) | 0.026 (3) | 0.009 (7) |
C531 | 0.065 (2) | 0.090 (3) | 0.074 (2) | −0.0169 (18) | 0.0172 (17) | −0.0067 (19) |
N531 | 0.094 (3) | 0.154 (4) | 0.072 (2) | −0.035 (3) | 0.0030 (19) | 0.009 (2) |
C532 | 0.0626 (19) | 0.076 (2) | 0.076 (2) | 0.0026 (16) | 0.0196 (16) | 0.0064 (17) |
N532 | 0.0658 (19) | 0.107 (3) | 0.095 (2) | −0.0156 (18) | 0.0062 (17) | 0.007 (2) |
O521 | 0.0581 (13) | 0.0659 (14) | 0.113 (2) | −0.0043 (11) | 0.0186 (13) | 0.0077 (13) |
C521 | 0.098 (3) | 0.073 (3) | 0.114 (4) | −0.011 (2) | 0.031 (3) | −0.012 (2) |
C522 | 0.093 (3) | 0.089 (3) | 0.122 (4) | −0.025 (2) | 0.027 (3) | 0.009 (2) |
Cd1—N31 | 2.341 (2) | C34—H34 | 0.9300 |
Cd1—N21 | 2.342 (2) | C35—C36 | 1.385 (5) |
Cd1—N41 | 2.350 (2) | C35—H35 | 0.9300 |
Cd1—N11 | 2.358 (2) | C36—H36 | 0.9300 |
Cd1—Cl1 | 2.5920 (9) | N41—C46 | 1.332 (4) |
Cd1—Cl1i | 2.6289 (8) | N41—C42 | 1.338 (3) |
Cl1—Cd1i | 2.6289 (8) | C42—C43 | 1.397 (3) |
N11—C16 | 1.337 (4) | C43—C44 | 1.371 (5) |
N11—C12 | 1.344 (3) | C43—H43 | 0.9300 |
C12—C13 | 1.398 (4) | C44—C45 | 1.356 (6) |
C12—C22 | 1.485 (4) | C44—H44 | 0.9300 |
C13—C14 | 1.376 (6) | C45—C46 | 1.382 (4) |
C13—H13 | 0.9300 | C45—H45 | 0.9300 |
C14—C15 | 1.369 (6) | C46—H46 | 0.9300 |
C14—H14 | 0.9300 | C52—O521 | 1.343 (4) |
C15—C16 | 1.375 (4) | C52—C53 | 1.397 (5) |
C15—H15 | 0.9300 | C52—C51 | 1.398 (5) |
C16—H16 | 0.9300 | C53—C532 | 1.414 (5) |
N21—C26 | 1.326 (4) | C53—C531 | 1.428 (6) |
N21—C22 | 1.340 (3) | C51—C512 | 1.425 (6) |
C22—C23 | 1.393 (4) | C51—C511 | 1.428 (6) |
C23—C24 | 1.372 (6) | C511—N511 | 1.143 (6) |
C23—H23 | 0.9300 | C512—N512 | 1.139 (6) |
C24—C25 | 1.351 (6) | C611—N611 | 1.145 (7) |
C24—H24 | 0.9300 | C612—N612 | 1.140 (8) |
C25—C26 | 1.383 (4) | C531—N531 | 1.135 (5) |
C25—H25 | 0.9300 | C532—N532 | 1.152 (5) |
C26—H26 | 0.9300 | O521—C521 | 1.461 (4) |
N31—C36 | 1.333 (4) | C521—C522 | 1.442 (7) |
N31—C32 | 1.344 (3) | C521—H52A | 0.9700 |
C32—C33 | 1.390 (3) | C521—H52B | 0.9700 |
C32—C42 | 1.488 (4) | C522—H52C | 0.9600 |
C33—C34 | 1.382 (6) | C522—H52D | 0.9600 |
C33—H33 | 0.9300 | C522—H52E | 0.9600 |
C34—C35 | 1.377 (6) | ||
N31—Cd1—N21 | 98.79 (8) | C33—C32—C42 | 121.9 (2) |
N31—Cd1—N41 | 70.42 (8) | C34—C33—C32 | 119.1 (3) |
N21—Cd1—N41 | 158.62 (8) | C34—C33—H33 | 120.4 |
N31—Cd1—N11 | 96.20 (8) | C32—C33—H33 | 120.4 |
N21—Cd1—N11 | 70.30 (8) | C35—C34—C33 | 119.5 (3) |
N41—Cd1—N11 | 92.04 (8) | C35—C34—H34 | 120.3 |
N31—Cd1—Cl1 | 161.37 (6) | C33—C34—H34 | 120.3 |
N21—Cd1—Cl1 | 99.17 (6) | C34—C35—C36 | 118.1 (3) |
N41—Cd1—Cl1 | 94.01 (6) | C34—C35—H35 | 120.9 |
N11—Cd1—Cl1 | 94.48 (6) | C36—C35—H35 | 120.9 |
N31—Cd1—Cl1i | 89.01 (5) | N31—C36—C35 | 123.2 (3) |
N21—Cd1—Cl1i | 95.04 (6) | N31—C36—H36 | 118.4 |
N41—Cd1—Cl1i | 102.95 (6) | C35—C36—H36 | 118.4 |
N11—Cd1—Cl1i | 165.01 (6) | C46—N41—C42 | 119.0 (2) |
Cl1—Cd1—Cl1i | 84.51 (3) | C46—N41—Cd1 | 123.16 (18) |
Cd1—Cl1—Cd1i | 95.49 (3) | C42—N41—Cd1 | 116.81 (17) |
C16—N11—C12 | 119.2 (2) | N41—C42—C43 | 120.5 (3) |
C16—N11—Cd1 | 123.40 (18) | N41—C42—C32 | 116.9 (2) |
C12—N11—Cd1 | 117.30 (18) | C43—C42—C32 | 122.6 (2) |
N11—C12—C13 | 119.7 (3) | C44—C43—C42 | 119.5 (3) |
N11—C12—C22 | 116.8 (2) | C44—C43—H43 | 120.2 |
C13—C12—C22 | 123.6 (3) | C42—C43—H43 | 120.2 |
C14—C13—C12 | 120.1 (3) | C45—C44—C43 | 119.7 (3) |
C14—C13—H13 | 119.9 | C45—C44—H44 | 120.2 |
C12—C13—H13 | 119.9 | C43—C44—H44 | 120.2 |
C15—C14—C13 | 119.6 (3) | C44—C45—C46 | 118.4 (3) |
C15—C14—H14 | 120.2 | C44—C45—H45 | 120.8 |
C13—C14—H14 | 120.2 | C46—C45—H45 | 120.8 |
C14—C15—C16 | 117.8 (4) | N41—C46—C45 | 122.9 (3) |
C14—C15—H15 | 121.1 | N41—C46—H46 | 118.5 |
C16—C15—H15 | 121.1 | C45—C46—H46 | 118.5 |
N11—C16—C15 | 123.6 (3) | O521—C52—C53 | 114.5 (3) |
N11—C16—H16 | 118.2 | O521—C52—C51 | 120.9 (3) |
C15—C16—H16 | 118.2 | C53—C52—C51 | 124.5 (3) |
C26—N21—C22 | 119.3 (2) | C52—C53—C532 | 121.6 (4) |
C26—N21—Cd1 | 122.74 (19) | C52—C53—C531 | 121.2 (3) |
C22—N21—Cd1 | 117.49 (18) | C532—C53—C531 | 116.5 (3) |
N21—C22—C23 | 120.0 (3) | C52—C51—C512 | 125.5 (6) |
N21—C22—C12 | 117.3 (2) | C52—C51—C511 | 118.1 (5) |
C23—C22—C12 | 122.7 (3) | C512—C51—C511 | 116.4 (5) |
C24—C23—C22 | 119.5 (3) | N511—C511—C51 | 175.7 (7) |
C24—C23—H23 | 120.2 | N512—C512—C51 | 178.4 (15) |
C22—C23—H23 | 120.2 | N531—C531—C53 | 177.9 (4) |
C25—C24—C23 | 120.2 (3) | N532—C532—C53 | 177.7 (4) |
C25—C24—H24 | 119.9 | C52—O521—C521 | 120.9 (3) |
C23—C24—H24 | 119.9 | C522—C521—O521 | 109.4 (4) |
C24—C25—C26 | 117.7 (4) | C522—C521—H52A | 109.8 |
C24—C25—H25 | 121.1 | O521—C521—H52A | 109.8 |
C26—C25—H25 | 121.1 | C522—C521—H52B | 109.8 |
N21—C26—C25 | 123.3 (3) | O521—C521—H52B | 109.8 |
N21—C26—H26 | 118.4 | H52A—C521—H52B | 108.3 |
C25—C26—H26 | 118.4 | C521—C522—H52C | 109.5 |
C36—N31—C32 | 118.6 (2) | C521—C522—H52D | 109.5 |
C36—N31—Cd1 | 123.74 (19) | H52C—C522—H52D | 109.5 |
C32—N31—Cd1 | 117.64 (16) | C521—C522—H52E | 109.5 |
N31—C32—C33 | 121.5 (3) | H52C—C522—H52E | 109.5 |
N31—C32—C42 | 116.6 (2) | H52D—C522—H52E | 109.5 |
C16—N11—C12—C13 | 0.5 (4) | C32—C33—C34—C35 | −0.5 (5) |
Cd1—N11—C12—C13 | −176.6 (2) | C33—C34—C35—C36 | 0.2 (5) |
C16—N11—C12—C22 | −178.8 (2) | C32—N31—C36—C35 | 0.3 (4) |
Cd1—N11—C12—C22 | 4.1 (3) | Cd1—N31—C36—C35 | −179.1 (2) |
N11—C12—C13—C14 | 0.5 (4) | C34—C35—C36—N31 | 0.0 (5) |
C22—C12—C13—C14 | 179.7 (3) | C46—N41—C42—C43 | −3.1 (4) |
C12—C13—C14—C15 | −1.1 (5) | Cd1—N41—C42—C43 | 165.6 (2) |
C13—C14—C15—C16 | 0.8 (5) | C46—N41—C42—C32 | 176.7 (2) |
C12—N11—C16—C15 | −0.8 (4) | Cd1—N41—C42—C32 | −14.7 (3) |
Cd1—N11—C16—C15 | 176.1 (2) | N31—C32—C42—N41 | 10.4 (3) |
C14—C15—C16—N11 | 0.1 (5) | C33—C32—C42—N41 | −169.1 (2) |
C26—N21—C22—C23 | −0.7 (4) | N31—C32—C42—C43 | −169.9 (2) |
Cd1—N21—C22—C23 | 171.2 (2) | C33—C32—C42—C43 | 10.6 (4) |
C26—N21—C22—C12 | 178.6 (3) | N41—C42—C43—C44 | 2.6 (4) |
Cd1—N21—C22—C12 | −9.5 (3) | C32—C42—C43—C44 | −177.1 (3) |
N11—C12—C22—N21 | 3.6 (3) | C42—C43—C44—C45 | 0.0 (5) |
C13—C12—C22—N21 | −175.7 (3) | C43—C44—C45—C46 | −1.9 (6) |
N11—C12—C22—C23 | −177.2 (3) | C42—N41—C46—C45 | 1.1 (4) |
C13—C12—C22—C23 | 3.6 (4) | Cd1—N41—C46—C45 | −166.8 (3) |
N21—C22—C23—C24 | 0.8 (6) | C44—C45—C46—N41 | 1.4 (5) |
C12—C22—C23—C24 | −178.4 (4) | O521—C52—C53—C532 | 157.0 (3) |
C22—C23—C24—C25 | −0.2 (7) | C51—C52—C53—C532 | −19.1 (6) |
C23—C24—C25—C26 | −0.6 (7) | O521—C52—C53—C531 | −13.2 (5) |
C22—N21—C26—C25 | −0.1 (5) | C51—C52—C53—C531 | 170.6 (4) |
Cd1—N21—C26—C25 | −171.6 (3) | O521—C52—C51—C512 | 163.4 (13) |
C24—C25—C26—N21 | 0.7 (6) | C53—C52—C51—C512 | −20.7 (14) |
C36—N31—C32—C33 | −0.7 (3) | O521—C52—C51—C511 | −14.6 (7) |
Cd1—N31—C32—C33 | 178.77 (19) | C53—C52—C51—C511 | 161.4 (6) |
C36—N31—C32—C42 | 179.7 (2) | C53—C52—O521—C521 | 128.9 (4) |
Cd1—N31—C32—C42 | −0.8 (3) | C51—C52—O521—C521 | −54.7 (5) |
N31—C32—C33—C34 | 0.9 (4) | C52—O521—C521—C522 | 149.3 (4) |
C42—C32—C33—C34 | −179.7 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···Cl1ii | 0.93 | 2.79 | 3.651 (4) | 154 |
C15—H15···N512 | 0.93 | 2.63 | 3.456 (17) | 149 |
C15—H15···N612 | 0.93 | 2.46 | 3.29 (5) | 149 |
C34—H34···Cl1iii | 0.93 | 2.82 | 3.705 (4) | 160 |
C46—H46···O71 | 0.93 | 2.49 | 3.292 (8) | 145 |
Symmetry codes: (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors are indebted to the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.
References
Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gannas, M., Maronglu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094. Google Scholar
Holló, B., Tomić, Z. D., Pogány, P., Kovács, A., Leovac, V. M. & Szécsényi, K. M. (2009). Polyhedron, 28, 3881–3889. Google Scholar
Hu, P., Zhu, R.-Q. & Zhang, W. (2016). Polyhedron, 115, 137–141. CSD CrossRef CAS Google Scholar
Liu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A. & Bouwman, E. (2015). Inorg. Chem. 54, 11323–11329. CSD CrossRef CAS Google Scholar
Marsh, R. E. (1999). Acta Cryst. B55, 931–936. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marsh, R. E. (2005). Acta Cryst. B61, 359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marsh, R. E. (2009). Acta Cryst. B65, 782–783. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mautner, F. A., Scherzer, M., Berger, C., Fischer, R., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20–26. CSD CrossRef CAS Google Scholar
Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806. CrossRef CAS Web of Science Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Näther, C. & Jess, I. (2010). Acta Cryst. E66, m98. CSD CrossRef IUCr Journals Google Scholar
Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830–2846. CrossRef PubMed CAS Google Scholar
Pust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A. S., Henss, A., Wiechert, D., Scheu, C., Schmidt, P. J. & Schnick, W. (2014). Nat. Mater. 13, 891–896. CrossRef CAS Google Scholar
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246–1250. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thallypally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1–6. Google Scholar
Torres, M. de, Semin, S., Razdolski, I., Xu, J. L., Elemans, J. A. A. W., Rasing, T., Rowan, A. E. & Nolte, R. J. M. (2015). Chem. Commun. 51, 2855–2858. Google Scholar
Wang, L.-M., Fan, Y., Wang, Y., Xiao, L.-N., Hu, Y.-Y., Peng, Y., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Xiao-Cui, C.-B. & Xu, J.-Q. (2012). J. Solid State Chem. 191, 252–262. Google Scholar
Wang, Y., Zou, B., Xiao, L.-N., Jin, N., Peng, Y., Wu, F.-Q., Ding, H., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Cui, X.-B. & Xu, J.-Q. (2011). J. Solid State Chem. 184, 557–562. CSD CrossRef CAS Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.