research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of meso-di-μ-chlorido-bis­­[bis­­(2,2′-bi­pyridine)­cadmium] bis­­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) 0.81-hydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, cLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, dFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: fat_setifi@yahoo.fr, touzanir@yahoo.fr, cg@st-andrews.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 November 2016; accepted 9 December 2016; online 1 January 2017)

The hydrated title salt, [Cd2Cl2(C10H8N2)4](C9H5N4O)2·0.81H2O, was obtained from the hydro­thermal reaction between 2,2′-bi­pyridine, cadmium(II) chloride and potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide. The binuclear cation lies across a centre of inversion in the space group P21/c, with the other components in general positions. The cation has approximate, but non-crystallographic 2/m symmetry and each of the CdII atoms is a stereogenic centre, one having the Δ configuration and the other the Λ configuration. In the anion, one of the C(CN)2 units is disordered over two sets of atomic sites having occupancies 0.75 (2) and 0.25 (2). The cations are linked by two independent C—H⋯Cl hydrogen bonds to form a sheet of R22(14) and R42(24) rings.

1. Chemical context

Luminescent materials based on transition metals and lanthanoids have found wide applications in lighting (Pust et al., 2014[Pust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A. S., Henss, A., Wiechert, D., Scheu, C., Schmidt, P. J. & Schnick, W. (2014). Nat. Mater. 13, 891-896.]), luminescence sensing (Liu et al., 2015[Liu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A. & Bouwman, E. (2015). Inorg. Chem. 54, 11323-11329.]) and optical devices (Torres et al., 2015[Torres, M. de, Semin, S., Razdolski, I., Xu, J. L., Elemans, J. A. A. W., Rasing, T., Rowan, A. E. & Nolte, R. J. M. (2015). Chem. Commun. 51, 2855-2858.]). Among them, d10 metal complexes comprising zinc(II) and cadmium(II) with a variety of ligands have attracted considerable attention in recent years because of their luminescence properties (Mautner et al., 2015[Mautner, F. A., Scherzer, M., Berger, C., Fischer, R., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20-26.]).

Organic polynitrile ligands are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the 3d trans­ition metals (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Setifi et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]; Setifi, Setifi et al., 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]). The versatility of such ligands is based on two main properties: firstly, the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and secondly, the possibility of combining these ligands with a wide variety of co-ligands, leading to an extensive variety of coordination modes. To take advantage of this behaviour, we have been using polynitrile anions in combination with other chelating or bridging neutral co-ligands to explore the structural and electronic characteristics of the resulting complexes, particularly with reference to mol­ecular materials exhibiting inter­esting luminescent behaviour.

Here we report the synthesis and structure of the title compound (I)[link], the first dinuclear cadmium(II) coordination compound containing the organic polynitrile 1,1,3,3-tetra­cyano-2-eth­oxy­propenide counter-anion (abbreviated as tcnoet) in combination with the chelating ligand 2,2′-bi­pyridine.

[Scheme 1]

2. Structural commentary

The structure consists of a di-μ2-chlorido-bis­[bis­(2,2′-bi­pyridine)­cadmium] dication, [Cd2Cl2(C10H8N2)4]2+, which lies across a centre of inversion in space group P21/c (Fig. 1[link]), and a tcnoet anion, (NC)2CC(OEt)C(CN)2, which lies in a general position (Fig. 2[link]). The reference cation was selected as that lying across (1/2, 1/2, 1/2). The structure also contains a partial occupancy water mol­ecule lying in a general position with refined occupancy 0.403 (6), but the partial occupancy H atoms associated with this could not be reliably located.

[Figure 1]
Figure 1
The structure of the binuclear cation in compound (I)[link], with displacement ellipsoids drawn at the 30% probability level. Atoms marked with `a' are at the symmetry position (−x + 1, −y + 1, −z + 1). Selected bond lengths (Å): Cd1—N11 2.358 (2), Cd1—N21 2.342 (2), Cd1—N31 2.341 (2), Cd1—N41 2.350 (2), Cd1—Cl1 2.5920 (9), Cd1—Cl1a 2.6289 (8). Selected bond angles (°): N11—Cd1—N21 70.30 (8), N31—Cd1—N41 70.412 (8), Cl1—Cd1—Cl1a 84.51 (3), Cd1—Cl1—Cd1a 95.49 (3), N11—Cd1—Cl1a 165.01 (6), N21—Cd1—N41 158.62 (8), N31—Cd1—Cl1 161.37 (6).
[Figure 2]
Figure 2
The structure of the anion in compound (I)[link], with displacement ellipsoids drawn at the 30% probability level. Atomic sites C51 and C61 were constrained to be identical and the major and minor components of the disordered C(CN)2) unit are drawn with full and dashed lines, respectively.

Within the cation, the CdII atoms are six-coordinate with the two bridging chlorido ligands occupying mutually cis sites. The cis-bidentate coordination geometry at Cd means that this atom is a stereogenic centre and the reference Cd atom was selected as the one having the Δ configuration. The inversion-related Cd atom within the binuclear cation thus has the Λ configuration, so that the cation represents a meso form. Overall, the cation has approximate, but non-crystallographic 2/m (C2h) symmetry, with the twofold rotation axis along the Cd⋯Cd vector and the mirror normal to this and containing the two chlorido ligands.

The Cd—N distances for the bonds trans to the bridging chlorido ligands do not differ markedly from the two Cd—N distances which are mutually trans (see Fig. 1[link]). The two Cd—Cl distances are, however, significantly different. The inversion symmetry of the cation means that the central Cd2Cl2 ring is strictly planar, although it is not rectangular [Cl1—Cd1—Cl1a = 84.51 (3)°; symmetry code: (a) −x + 1, −y + 1, −z + 1].

The six-coordinate geometry at the Cd atom is markedly distorted from an idealized octa­hedral geometry (Fig. 1[link]), and the bond angles at Cd are probably dominated by the bite angles of the bipy ligands and the central ring geometry. Thus, because of the small bite of the 2,2′-bipy ligand, the N—N distances within these ligands, 2.705 (3) Å and 2.706 (4) Å, are significantly shorter than those along the remaining edges of the CdCl2N4 octa­hedron, which range from 3.387 (3) to 3.760 (3) Å; as a consequence, the torsional angle N11—Cl1—Cl1a—N31 is 21.3 (4)°, rather than the zero degrees expected for a regular octa­hedron. The structural motif of such a meso-[(CdClN4)2]2+ entity has been found in a variety of complexes with 1,2-di­amino­ethane (Näther & Jess, 2010[Näther, C. & Jess, I. (2010). Acta Cryst. E66, m98.]), 1,10-phenanthroline (Wang et al., 2012[Wang, L.-M., Fan, Y., Wang, Y., Xiao, L.-N., Hu, Y.-Y., Peng, Y., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Xiao-Cui, C.-B. & Xu, J.-Q. (2012). J. Solid State Chem. 191, 252-262.]) and 3,5-di­methyl­pyrazole-1-carboxamidine (Holló et al., 2009[Holló, B., Tomić, Z. D., Pogány, P., Kovács, A., Leovac, V. M. & Szécsényi, K. M. (2009). Polyhedron, 28, 3881-3889.]) as chelating ligands. The largest N—N separations [2.899 (5) Å and 2.909 (6) Å], are observed for the flexible ligand 1,2-di­amino­ethane, while for 1,10-phen and 3,5-di­methyl­pyrazole-1-carboxamidine the corresponding N—N separation is slightly smaller than in compound (I)[link]. In agreement with this observation, the N—Cl—Cl—N dihedral angle increases in the order: monodentate N-donors (Hu et al., 2016[Hu, P., Zhu, R.-Q. & Zhang, W. (2016). Polyhedron, 115, 137-141.]) 3.5 (6)° < 1,2-di­amino­ethane 10.6 (4)° < 2,2′-bipy 21.3 (4)° < 1,10-phen 26.8 (7)° and 3,5-di­methyl­pyrazole-1-carboxamidine 26.4 (5)°.

One of the C(CN)2 groups in the tcnoet anion is disordered over two sets of atomic sites, with occupancies 0.75 (2) and 0.25 (2), which are related by a mutual rotation about the C—C bond to atom C52 (Fig. 2[link]). The dihedral angles between the central plane (C51,C52,C53) and the major and minor components of the disordered C(CN)2 unit are 20.3 (6) and 31.6 (15)°, respectively, while the dihedral angle between the central plane and the ordered C(CN)2 unit is 17.1 (6)°, such that the rotations of two C(CN)2 units out of the central plane are in a conrotatory sense. The dihedral angle between the planes of the major and minor disorder forms is 12.4 (17)°. The C—N distances in the anion are all very similar, as are the corresponding values for the two types of C—C distances in the tetra­cyano­propenide portion, with their magnitudes pointing to extensive delocalization of the negative charge not only over the propenide unit but also into the cyano groups, as previously discussed (Setifi et al., 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.]).

3. Supra­molecular inter­actions

The supra­molecular assembly is determined by two independent C—H⋯Cl hydrogen bonds (Table 1[link]). Database analyses (Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]; Thallypally & Nangia, 2001[Thallypally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1-6.]) have demonstrated that chlorido ligands bonded to metals are effective hydrogen-bond acceptors, even from weak donors such as C—H, and the two hydrogen bonds here link the reference cation centred at (1/2, 1/2, 1/2) to the four symmetry-related cations centred at (1/2, 0, 0), (1/2, 1, 0), (1/2, 0, 1) and (1/2, 1, 1), so generating a sheet lying parallel to (100) and containing hydrogen-bonded rings of R22(14) and R42(24) types. The formation of the sheet is reinforced by a ππ stacking inter­action. The pyridyl ring containing atom N11, which lies in the cation centred at (1/2, 1/2, 1/2), makes a dihedral angle of only 1.78 (14)° with the pyridyl ring containing N31 at (x, [{3\over 2}] − y, [{1\over 2}] + z), which lies in the cation centred at (1/2, 1, 1). The ring-centroid separation is 3.602 (2) Å and the shorted perpendicular from the centroid of one ring to the plane of the other is 3.3878 (11) Å, corresponding to a ring-centroid offset of ca 1.22 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl1i 0.93 2.79 3.651 (4) 154
C15—H15⋯N512 0.93 2.63 3.456 (17) 149
C15—H15⋯N612 0.93 2.46 3.29 (5) 149
C34—H34⋯Cl1ii 0.93 2.82 3.705 (4) 160
C46—H46⋯O71 0.93 2.49 3.292 (8) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

The anions are linked to this sheet by C—H⋯N hydrogen bonds, but otherwise play no part in the supra­molecular assembly.

The partial-occupancy atom O71 is linked to the cation by a C—H⋯O hydrogen bond (Table 1[link]). Although the H atoms associated with atom O71 could not be located, nonetheless atom O71 is within plausible hydrogen-bonding distance of the N atoms, N511 and N611 both at (−x, −[{1\over 2}] + y, [{3\over 2}] − z) and N532 at (x, −1 + y, z), with O⋯N distances 2.935 (4), 2.72 (4) and 3.186 (8) Å, respectively. The corresponding N⋯O⋯N angles involving the N atoms in the major and minor components of the disordered anion are 95.4 (3) and 105.5 (6)°, respectively. If these contacts represent hydrogen bonds, then that involving atom N532 lies within the sheet already described (Fig. 3[link]), while the other two would combine to link these sheets into a three-dimensional framework structure.

[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a sheet of cations parallel to (100) built from two C—H⋯Cl hydrogen bonds and containing R22(14) and R42(24) ring motifs. For the sake of clarity, the anions and water mol­ecules, and those H atoms of the cation which are not involved in the motifs shown have been omitted.

4. Database survey

The structure of the tcnoet unit has been reported in salt-like compounds, both with organic cations (Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Setifi et al., 2016[Setifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246-1250.]) and with cationic metal coordination complexes (Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Setifi et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]), and as a coordinating ligand. Examples have been reported recently in which the tcnoet unit acts as both a bridging and a terminal ligand with CuII, leading to the formation of a coordination polymer in the form of a ribbon (Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]), and where it acts as a μ3-bridging ligand, also with CuII, leading to the formation of a coordination polymer sheet (Setifi, Setifi et al., 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]).

The structure of the dicadmium cation present in compound (I)[link] appears not to have been reported previously. However, in the analogous cation [(μ2-Cl)2(en2Cd)2]2+, characterized as its chloride salt (Näther & Jess, 2010[Näther, C. & Jess, I. (2010). Acta Cryst. E66, m98.]), the cation again lies across a centre of inversion, here in space group P21/n, with a geometry at Cd very similar to that in compound (I)[link]. The related cation [(μ2-Cl)2(phen2Cd)2]2+ has been characterized in two polytungstate salts, one of them as a 4,4′-bi­pyridine solvate. In the unsolvated salt, the cation lies across a twofold rotation axis in C2/c (Wang et al., 2011[Wang, Y., Zou, B., Xiao, L.-N., Jin, N., Peng, Y., Wu, F.-Q., Ding, H., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Cui, X.-B. & Xu, J.-Q. (2011). J. Solid State Chem. 184, 557-562.]); by contrast, in the solvated salt (Wang et al., 2012[Wang, L.-M., Fan, Y., Wang, Y., Xiao, L.-N., Hu, Y.-Y., Peng, Y., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Xiao-Cui, C.-B. & Xu, J.-Q. (2012). J. Solid State Chem. 191, 252-262.]), the cation is almost centrosymmetric, although examination of the atomic coordinates using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggests that the space group may be P[\overline{1}] rather than the reported P1 (cf. Marsh, 1999[Marsh, R. E. (1999). Acta Cryst. B55, 931-936.], 2005[Marsh, R. E. (2005). Acta Cryst. B61, 359.], 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]). Finally, we note some neutral dicadmium complexes of type (μ2-Cl)2(ClCdL)2, where L represents a tridentate aliphatic amine ligand, which have mol­ecular architectures similar to that in the cation of compound (I)[link]: when L represents 2-amino­ethyl-3-amino­propyl amine (Gannas et al., 1980[Gannas, M., Maronglu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090-2094.]) or cis-3,5-di­amino­piperidine (Pauly et al., 2000[Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830-2846.]), the complexes lie across inversion centres in space group types P21/n and P21/c, respectively, but when L represents bis­(3-amino­prop­yl)amine (Gannas et al., 1980[Gannas, M., Maronglu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090-2094.]), the complex lies across a twofold rotation axis in C2/c.

5. Synthesis and crystallization

The salt K(tcnoet) was prepared using the published method (Middleton et al., 1958[Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795-2806.]). The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of cadmium(II) chloride (40 mg, 0.21 mmol), 2,2′-bi­pyridine (32 mg, 0.21 mmol) and K(tcnoet) (90 mg, 0.40 mmol) in water–methanol (4:1 v/v, 20 cm3). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 (yield 47%). Colourless prisms of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three low-angle reflections, (100), (011) and ([\overline{1}]02), which had been attenuated by the beam stop, were omitted from the refinement. The H atoms bonded to C atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (pyridine), 0.96 Å (CH3) or 0.97 Å (CH2) and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. It was apparent from an early stage that the cyano groups in one of the C(CN)2 units of the anion, that containing atom C51, are disordered over two sets of atomic sites having unequal occupancies. For the minor disorder form, the bond lengths and the 1,3 non-bonding contacts were restrained to be the same as the corresponding distances in the major form, subject to s.u. values of 0.005 and 0.01 Å, respectively. In addition, the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be identical. Subject to these conditions, the occupancies of the major and minor disorder forms refined to 0.75 (2) and 0.25 (2). For the partial-occupancy water mol­ecule, the atomic coordinates of the O atom were refined with Uiso(O) fixed at 0.08 Å2, giving a refined occupancy of 0.403 (6). A difference map provided plausible locations for two H atoms associated with this O atom but neither of these sites was within hydrogen-bonding range of any likely acceptor and hence they were probably just artefacts of the isotropic refinement. In the final analysis of variance, there was a negative value, −0.835, of K = mean(Fo2)/mean(Fc2) for the group of 1177 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.006.

Table 2
Experimental details

Crystal data
Chemical formula [Cd2Cl2(C10H8N2)4](C9H5N4O)2·0.81H2O
Mr 1305.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.425 (5), 13.912 (5), 17.382 (5)
β (°) 104.395 (5)
V3) 2910.3 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.56 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.805, 0.846
No. of measured, independent and observed [I > 2σ(I)] reflections 44121, 11429, 8506
Rint 0.020
(sin θ/λ)max−1) 0.778
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.04
No. of reflections 11429
No. of parameters 379
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.54, −0.79
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).

meso-Di-µ-chlorido-bis[bis(2,2'-bipyridine)cadmium] bis(1,1,3,3-tetracyano-2-ethoxypropenide) 0.81-hydrate top
Crystal data top
[Cd2Cl2(C10H8N2)4](C9H5N4O)2·0.806H2OF(000) = 1312
Mr = 1305.29Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.425 (5) ÅCell parameters from 13115 reflections
b = 13.912 (5) Åθ = 1.7–35.4°
c = 17.382 (5) ŵ = 0.88 mm1
β = 104.395 (5)°T = 293 K
V = 2910.3 (18) Å3Prism, colourless
Z = 20.56 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
8506 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.020
φ and ω scansθmax = 33.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1719
Tmin = 0.805, Tmax = 0.846k = 1821
44121 measured reflectionsl = 2726
11429 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0611P)2 + 2.0973P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
11429 reflectionsΔρmax = 1.54 e Å3
379 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.48583 (2)0.63830 (2)0.50037 (2)0.03951 (6)
Cl10.45118 (7)0.49495 (4)0.58640 (4)0.04984 (15)
N110.4782 (2)0.75528 (15)0.59703 (11)0.0475 (5)
C120.5745 (2)0.77979 (18)0.64804 (13)0.0492 (6)
C130.5741 (4)0.8450 (2)0.70916 (18)0.0701 (10)
H130.64060.86250.74440.084*
C140.4754 (4)0.8833 (2)0.7174 (2)0.0754 (11)
H140.47490.92590.75850.090*
C150.3781 (4)0.8584 (2)0.6645 (2)0.0698 (10)
H150.31050.88400.66850.084*
C160.3835 (3)0.7944 (2)0.60539 (17)0.0599 (7)
H160.31770.77730.56920.072*
N210.66628 (18)0.67905 (16)0.57084 (13)0.0499 (5)
C220.6771 (2)0.73550 (19)0.63481 (14)0.0508 (6)
C230.7818 (3)0.7514 (3)0.6852 (2)0.0857 (12)
H230.78960.78980.73000.103*
C240.8734 (3)0.7099 (4)0.6682 (3)0.0975 (14)
H240.94350.72040.70150.117*
C250.8622 (3)0.6539 (3)0.6032 (3)0.0804 (11)
H250.92360.62580.59070.096*
C260.7561 (3)0.6397 (2)0.5559 (2)0.0618 (8)
H260.74740.60060.51130.074*
N310.46705 (18)0.74567 (14)0.39413 (11)0.0433 (4)
C320.3644 (2)0.76034 (16)0.34772 (13)0.0429 (5)
C330.3454 (3)0.8242 (2)0.28427 (16)0.0615 (7)
H330.27370.83420.25320.074*
C340.4343 (4)0.8727 (2)0.2680 (2)0.0743 (11)
H340.42310.91530.22560.089*
C350.5395 (4)0.8574 (2)0.3153 (2)0.0707 (10)
H350.60050.88940.30550.085*
C360.5519 (3)0.7931 (2)0.37774 (18)0.0575 (6)
H360.62290.78260.40980.069*
N410.29665 (17)0.65857 (15)0.43755 (12)0.0440 (4)
C420.2726 (2)0.70543 (17)0.36817 (13)0.0430 (5)
C430.1653 (3)0.7022 (3)0.31844 (19)0.0650 (8)
H430.14960.73270.26930.078*
C440.0835 (3)0.6536 (3)0.3426 (2)0.0775 (11)
H440.01180.65110.31000.093*
C450.1075 (3)0.6094 (3)0.4144 (3)0.0710 (9)
H450.05250.57770.43240.085*
C460.2157 (2)0.6125 (2)0.4601 (2)0.0580 (7)
H460.23270.58090.50880.070*
C520.0654 (3)1.0993 (2)0.5745 (2)0.0675 (8)
C530.0125 (3)1.1611 (3)0.5323 (2)0.0673 (8)
C510.0135 (3)1.0558 (3)0.6467 (2)0.0742 (9)0.75 (2)
C5110.0821 (7)1.0188 (7)0.6947 (6)0.0706 (19)0.75 (2)
N5110.1340 (8)0.9934 (8)0.7366 (7)0.093 (3)0.75 (2)
C5120.1033 (4)1.0422 (18)0.6761 (8)0.0773 (16)0.75 (2)
N5120.1970 (5)1.0327 (16)0.6983 (9)0.096 (3)0.75 (2)
C610.0135 (3)1.0558 (3)0.6467 (2)0.0742 (9)0.25 (2)
C6110.062 (2)1.041 (2)0.7125 (12)0.0706 (19)0.25 (2)
N6110.105 (2)1.025 (2)0.7621 (13)0.093 (3)0.25 (2)
C6120.1045 (9)1.046 (6)0.664 (2)0.0773 (16)0.25 (2)
N6120.1961 (12)1.026 (5)0.676 (3)0.096 (3)0.25 (2)
C5310.0659 (3)1.1915 (3)0.4536 (2)0.0764 (10)
N5310.1062 (3)1.2178 (4)0.3913 (2)0.1098 (14)
C5320.0883 (3)1.2078 (3)0.5690 (2)0.0710 (8)
N5320.1683 (3)1.2487 (3)0.5991 (2)0.0916 (10)
O5210.1747 (2)1.08810 (18)0.54269 (17)0.0796 (7)
C5210.2240 (4)0.9924 (3)0.5284 (4)0.0941 (14)
H52A0.22300.97090.47540.113*
H52B0.18110.94720.56640.113*
C5220.3369 (4)0.9956 (3)0.5360 (4)0.1013 (16)
H52C0.38011.03710.49590.152*
H52D0.33771.01980.58760.152*
H52E0.36790.93210.52970.152*
O710.1575 (6)0.4775 (5)0.6000 (4)0.080*0.403 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04263 (10)0.03855 (9)0.03202 (8)0.00263 (6)0.00077 (6)0.00296 (5)
Cl10.0755 (4)0.0419 (3)0.0324 (2)0.0095 (3)0.0140 (3)0.00108 (18)
N110.0640 (13)0.0446 (10)0.0315 (8)0.0059 (9)0.0077 (8)0.0059 (7)
C120.0719 (16)0.0405 (11)0.0315 (10)0.0138 (11)0.0061 (10)0.0023 (8)
C130.107 (3)0.0564 (16)0.0434 (14)0.0262 (17)0.0129 (16)0.0149 (12)
C140.131 (4)0.0483 (15)0.0536 (17)0.0131 (19)0.036 (2)0.0152 (13)
C150.109 (3)0.0493 (15)0.0586 (18)0.0133 (16)0.0361 (19)0.0042 (12)
C160.0737 (19)0.0552 (15)0.0513 (14)0.0131 (14)0.0165 (13)0.0078 (12)
N210.0456 (11)0.0494 (11)0.0476 (11)0.0068 (9)0.0017 (8)0.0015 (9)
C220.0561 (14)0.0506 (13)0.0377 (11)0.0178 (11)0.0036 (10)0.0038 (9)
C230.073 (2)0.103 (3)0.064 (2)0.027 (2)0.0153 (17)0.0182 (19)
C240.0536 (19)0.118 (3)0.100 (3)0.019 (2)0.0207 (19)0.014 (3)
C250.0421 (15)0.090 (3)0.100 (3)0.0078 (15)0.0002 (17)0.003 (2)
C260.0429 (14)0.0633 (18)0.074 (2)0.0022 (12)0.0044 (13)0.0077 (14)
N310.0502 (11)0.0402 (9)0.0388 (9)0.0033 (8)0.0095 (8)0.0002 (7)
C320.0561 (13)0.0382 (10)0.0325 (9)0.0085 (9)0.0073 (9)0.0023 (8)
C330.087 (2)0.0510 (14)0.0423 (13)0.0154 (14)0.0079 (13)0.0107 (11)
C340.122 (3)0.0496 (16)0.0569 (18)0.0046 (17)0.032 (2)0.0134 (13)
C350.098 (3)0.0522 (16)0.074 (2)0.0134 (16)0.044 (2)0.0017 (14)
C360.0599 (16)0.0516 (14)0.0630 (17)0.0032 (12)0.0191 (13)0.0037 (12)
N410.0390 (9)0.0473 (10)0.0422 (10)0.0034 (8)0.0035 (8)0.0000 (8)
C420.0447 (11)0.0423 (11)0.0366 (10)0.0085 (9)0.0001 (8)0.0053 (8)
C430.0530 (15)0.074 (2)0.0545 (15)0.0074 (14)0.0115 (12)0.0021 (14)
C440.0452 (16)0.080 (2)0.091 (3)0.0009 (14)0.0145 (16)0.0062 (19)
C450.0438 (14)0.0609 (17)0.105 (3)0.0066 (13)0.0133 (16)0.0030 (18)
C460.0479 (14)0.0564 (15)0.0678 (18)0.0018 (12)0.0106 (13)0.0056 (13)
C520.0609 (18)0.0577 (17)0.087 (2)0.0086 (14)0.0240 (16)0.0011 (15)
C530.0604 (18)0.0683 (18)0.076 (2)0.0002 (15)0.0214 (16)0.0062 (16)
C510.0657 (19)0.0659 (19)0.097 (3)0.0163 (16)0.0318 (18)0.0096 (18)
C5110.066 (4)0.060 (4)0.084 (4)0.009 (3)0.016 (4)0.008 (3)
N5110.086 (4)0.095 (6)0.101 (5)0.015 (3)0.029 (4)0.025 (4)
C5120.073 (2)0.070 (3)0.093 (5)0.0224 (18)0.028 (2)0.011 (4)
N5120.074 (2)0.099 (4)0.116 (9)0.032 (2)0.026 (3)0.009 (7)
C610.0657 (19)0.0659 (19)0.097 (3)0.0163 (16)0.0318 (18)0.0096 (18)
C6110.066 (4)0.060 (4)0.084 (4)0.009 (3)0.016 (4)0.008 (3)
N6110.086 (4)0.095 (6)0.101 (5)0.015 (3)0.029 (4)0.025 (4)
C6120.073 (2)0.070 (3)0.093 (5)0.0224 (18)0.028 (2)0.011 (4)
N6120.074 (2)0.099 (4)0.116 (9)0.032 (2)0.026 (3)0.009 (7)
C5310.065 (2)0.090 (3)0.074 (2)0.0169 (18)0.0172 (17)0.0067 (19)
N5310.094 (3)0.154 (4)0.072 (2)0.035 (3)0.0030 (19)0.009 (2)
C5320.0626 (19)0.076 (2)0.076 (2)0.0026 (16)0.0196 (16)0.0064 (17)
N5320.0658 (19)0.107 (3)0.095 (2)0.0156 (18)0.0062 (17)0.007 (2)
O5210.0581 (13)0.0659 (14)0.113 (2)0.0043 (11)0.0186 (13)0.0077 (13)
C5210.098 (3)0.073 (3)0.114 (4)0.011 (2)0.031 (3)0.012 (2)
C5220.093 (3)0.089 (3)0.122 (4)0.025 (2)0.027 (3)0.009 (2)
Geometric parameters (Å, º) top
Cd1—N312.341 (2)C34—H340.9300
Cd1—N212.342 (2)C35—C361.385 (5)
Cd1—N412.350 (2)C35—H350.9300
Cd1—N112.358 (2)C36—H360.9300
Cd1—Cl12.5920 (9)N41—C461.332 (4)
Cd1—Cl1i2.6289 (8)N41—C421.338 (3)
Cl1—Cd1i2.6289 (8)C42—C431.397 (3)
N11—C161.337 (4)C43—C441.371 (5)
N11—C121.344 (3)C43—H430.9300
C12—C131.398 (4)C44—C451.356 (6)
C12—C221.485 (4)C44—H440.9300
C13—C141.376 (6)C45—C461.382 (4)
C13—H130.9300C45—H450.9300
C14—C151.369 (6)C46—H460.9300
C14—H140.9300C52—O5211.343 (4)
C15—C161.375 (4)C52—C531.397 (5)
C15—H150.9300C52—C511.398 (5)
C16—H160.9300C53—C5321.414 (5)
N21—C261.326 (4)C53—C5311.428 (6)
N21—C221.340 (3)C51—C5121.425 (6)
C22—C231.393 (4)C51—C5111.428 (6)
C23—C241.372 (6)C511—N5111.143 (6)
C23—H230.9300C512—N5121.139 (6)
C24—C251.351 (6)C611—N6111.145 (7)
C24—H240.9300C612—N6121.140 (8)
C25—C261.383 (4)C531—N5311.135 (5)
C25—H250.9300C532—N5321.152 (5)
C26—H260.9300O521—C5211.461 (4)
N31—C361.333 (4)C521—C5221.442 (7)
N31—C321.344 (3)C521—H52A0.9700
C32—C331.390 (3)C521—H52B0.9700
C32—C421.488 (4)C522—H52C0.9600
C33—C341.382 (6)C522—H52D0.9600
C33—H330.9300C522—H52E0.9600
C34—C351.377 (6)
N31—Cd1—N2198.79 (8)C33—C32—C42121.9 (2)
N31—Cd1—N4170.42 (8)C34—C33—C32119.1 (3)
N21—Cd1—N41158.62 (8)C34—C33—H33120.4
N31—Cd1—N1196.20 (8)C32—C33—H33120.4
N21—Cd1—N1170.30 (8)C35—C34—C33119.5 (3)
N41—Cd1—N1192.04 (8)C35—C34—H34120.3
N31—Cd1—Cl1161.37 (6)C33—C34—H34120.3
N21—Cd1—Cl199.17 (6)C34—C35—C36118.1 (3)
N41—Cd1—Cl194.01 (6)C34—C35—H35120.9
N11—Cd1—Cl194.48 (6)C36—C35—H35120.9
N31—Cd1—Cl1i89.01 (5)N31—C36—C35123.2 (3)
N21—Cd1—Cl1i95.04 (6)N31—C36—H36118.4
N41—Cd1—Cl1i102.95 (6)C35—C36—H36118.4
N11—Cd1—Cl1i165.01 (6)C46—N41—C42119.0 (2)
Cl1—Cd1—Cl1i84.51 (3)C46—N41—Cd1123.16 (18)
Cd1—Cl1—Cd1i95.49 (3)C42—N41—Cd1116.81 (17)
C16—N11—C12119.2 (2)N41—C42—C43120.5 (3)
C16—N11—Cd1123.40 (18)N41—C42—C32116.9 (2)
C12—N11—Cd1117.30 (18)C43—C42—C32122.6 (2)
N11—C12—C13119.7 (3)C44—C43—C42119.5 (3)
N11—C12—C22116.8 (2)C44—C43—H43120.2
C13—C12—C22123.6 (3)C42—C43—H43120.2
C14—C13—C12120.1 (3)C45—C44—C43119.7 (3)
C14—C13—H13119.9C45—C44—H44120.2
C12—C13—H13119.9C43—C44—H44120.2
C15—C14—C13119.6 (3)C44—C45—C46118.4 (3)
C15—C14—H14120.2C44—C45—H45120.8
C13—C14—H14120.2C46—C45—H45120.8
C14—C15—C16117.8 (4)N41—C46—C45122.9 (3)
C14—C15—H15121.1N41—C46—H46118.5
C16—C15—H15121.1C45—C46—H46118.5
N11—C16—C15123.6 (3)O521—C52—C53114.5 (3)
N11—C16—H16118.2O521—C52—C51120.9 (3)
C15—C16—H16118.2C53—C52—C51124.5 (3)
C26—N21—C22119.3 (2)C52—C53—C532121.6 (4)
C26—N21—Cd1122.74 (19)C52—C53—C531121.2 (3)
C22—N21—Cd1117.49 (18)C532—C53—C531116.5 (3)
N21—C22—C23120.0 (3)C52—C51—C512125.5 (6)
N21—C22—C12117.3 (2)C52—C51—C511118.1 (5)
C23—C22—C12122.7 (3)C512—C51—C511116.4 (5)
C24—C23—C22119.5 (3)N511—C511—C51175.7 (7)
C24—C23—H23120.2N512—C512—C51178.4 (15)
C22—C23—H23120.2N531—C531—C53177.9 (4)
C25—C24—C23120.2 (3)N532—C532—C53177.7 (4)
C25—C24—H24119.9C52—O521—C521120.9 (3)
C23—C24—H24119.9C522—C521—O521109.4 (4)
C24—C25—C26117.7 (4)C522—C521—H52A109.8
C24—C25—H25121.1O521—C521—H52A109.8
C26—C25—H25121.1C522—C521—H52B109.8
N21—C26—C25123.3 (3)O521—C521—H52B109.8
N21—C26—H26118.4H52A—C521—H52B108.3
C25—C26—H26118.4C521—C522—H52C109.5
C36—N31—C32118.6 (2)C521—C522—H52D109.5
C36—N31—Cd1123.74 (19)H52C—C522—H52D109.5
C32—N31—Cd1117.64 (16)C521—C522—H52E109.5
N31—C32—C33121.5 (3)H52C—C522—H52E109.5
N31—C32—C42116.6 (2)H52D—C522—H52E109.5
C16—N11—C12—C130.5 (4)C32—C33—C34—C350.5 (5)
Cd1—N11—C12—C13176.6 (2)C33—C34—C35—C360.2 (5)
C16—N11—C12—C22178.8 (2)C32—N31—C36—C350.3 (4)
Cd1—N11—C12—C224.1 (3)Cd1—N31—C36—C35179.1 (2)
N11—C12—C13—C140.5 (4)C34—C35—C36—N310.0 (5)
C22—C12—C13—C14179.7 (3)C46—N41—C42—C433.1 (4)
C12—C13—C14—C151.1 (5)Cd1—N41—C42—C43165.6 (2)
C13—C14—C15—C160.8 (5)C46—N41—C42—C32176.7 (2)
C12—N11—C16—C150.8 (4)Cd1—N41—C42—C3214.7 (3)
Cd1—N11—C16—C15176.1 (2)N31—C32—C42—N4110.4 (3)
C14—C15—C16—N110.1 (5)C33—C32—C42—N41169.1 (2)
C26—N21—C22—C230.7 (4)N31—C32—C42—C43169.9 (2)
Cd1—N21—C22—C23171.2 (2)C33—C32—C42—C4310.6 (4)
C26—N21—C22—C12178.6 (3)N41—C42—C43—C442.6 (4)
Cd1—N21—C22—C129.5 (3)C32—C42—C43—C44177.1 (3)
N11—C12—C22—N213.6 (3)C42—C43—C44—C450.0 (5)
C13—C12—C22—N21175.7 (3)C43—C44—C45—C461.9 (6)
N11—C12—C22—C23177.2 (3)C42—N41—C46—C451.1 (4)
C13—C12—C22—C233.6 (4)Cd1—N41—C46—C45166.8 (3)
N21—C22—C23—C240.8 (6)C44—C45—C46—N411.4 (5)
C12—C22—C23—C24178.4 (4)O521—C52—C53—C532157.0 (3)
C22—C23—C24—C250.2 (7)C51—C52—C53—C53219.1 (6)
C23—C24—C25—C260.6 (7)O521—C52—C53—C53113.2 (5)
C22—N21—C26—C250.1 (5)C51—C52—C53—C531170.6 (4)
Cd1—N21—C26—C25171.6 (3)O521—C52—C51—C512163.4 (13)
C24—C25—C26—N210.7 (6)C53—C52—C51—C51220.7 (14)
C36—N31—C32—C330.7 (3)O521—C52—C51—C51114.6 (7)
Cd1—N31—C32—C33178.77 (19)C53—C52—C51—C511161.4 (6)
C36—N31—C32—C42179.7 (2)C53—C52—O521—C521128.9 (4)
Cd1—N31—C32—C420.8 (3)C51—C52—O521—C52154.7 (5)
N31—C32—C33—C340.9 (4)C52—O521—C521—C522149.3 (4)
C42—C32—C33—C34179.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1ii0.932.793.651 (4)154
C15—H15···N5120.932.633.456 (17)149
C15—H15···N6120.932.463.29 (5)149
C34—H34···Cl1iii0.932.823.705 (4)160
C46—H46···O710.932.493.292 (8)145
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors are indebted to the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAddala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGannas, M., Maronglu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094.  Google Scholar
First citationHolló, B., Tomić, Z. D., Pogány, P., Kovács, A., Leovac, V. M. & Szécsényi, K. M. (2009). Polyhedron, 28, 3881–3889.  Google Scholar
First citationHu, P., Zhu, R.-Q. & Zhang, W. (2016). Polyhedron, 115, 137–141.  CSD CrossRef CAS Google Scholar
First citationLiu, X., Akerboom, S., de Jong, M., Mutikainen, I., Tanase, S., Meijerink, A. & Bouwman, E. (2015). Inorg. Chem. 54, 11323–11329.  CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (1999). Acta Cryst. B55, 931–936.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E. (2005). Acta Cryst. B61, 359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Scherzer, M., Berger, C., Fischer, R., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20–26.  CSD CrossRef CAS Google Scholar
First citationMiddleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.  CrossRef CAS Web of Science Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2010). Acta Cryst. E66, m98.  CSD CrossRef IUCr Journals Google Scholar
First citationPauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830–2846.  CrossRef PubMed CAS Google Scholar
First citationPust, P., Weiler, V., Hecht, C., Tücks, A., Wochnik, A. S., Henss, A., Wiechert, D., Scheu, C., Schmidt, P. J. & Schnick, W. (2014). Nat. Mater. 13, 891–896.  CrossRef CAS Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Valkonen, A., Setifi, Z., Nummelin, S., Touzani, R. & Glidewell, C. (2016). Acta Cryst. E72, 1246–1250.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThallypally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1–6.  Google Scholar
First citationTorres, M. de, Semin, S., Razdolski, I., Xu, J. L., Elemans, J. A. A. W., Rasing, T., Rowan, A. E. & Nolte, R. J. M. (2015). Chem. Commun. 51, 2855–2858.  Google Scholar
First citationWang, L.-M., Fan, Y., Wang, Y., Xiao, L.-N., Hu, Y.-Y., Peng, Y., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Xiao-Cui, C.-B. & Xu, J.-Q. (2012). J. Solid State Chem. 191, 252–262.  Google Scholar
First citationWang, Y., Zou, B., Xiao, L.-N., Jin, N., Peng, Y., Wu, F.-Q., Ding, H., Wang, T.-G., Gao, Z.-M., Zheng, D.-F., Cui, X.-B. & Xu, J.-Q. (2011). J. Solid State Chem. 184, 557–562.  CSD CrossRef CAS Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds