research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two nickel compounds comprising neutral NiII hydrazone complexes and di­carb­­oxy­lic acids

CROSSMARK_Color_square_no_text.svg

aInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 November 2016; accepted 22 December 2016; online 6 January 2017)

Two isostructural NiII compounds, bis­{N-[1-(pyridin-2-yl-κN)eth­ylidene]pyridine-4-carbohydrazonato-κ2N′,O}nickel(II)–2,5-di­chloro­terephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Cl2O4), and bis­{N-[1-(pyridin-2-yl-κN)eth­ylidene]pyridine-4-carbohydrazonato-κ2N′,O}nickel(II)–2,5-di­bromo­terephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Br2O4), were synthesized and their crystal structures determined. The pair of N,N′,O-tridentate N-[1-(pyridin-2-yl-κN)eth­yl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO2N4 octa­hedral coordination sphere for the metal ions. The asymmetric units consist of two half-mol­ecules of the di­carb­oxy­lic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-di­chloro­terephthalic acid (H2Cl2TPA, 1-Cl) mol­ecules form zigzag hydrogen-bonded chains with the [Ni(L)2] mol­ecules, with the hydrogen-bond distances in 1-Br slightly longer than those in 1-Cl. The packing is consolidated by aromatic ππ stacking between the di­carb­oxy­lic acid mol­ecules and terminal pyridine rings in [Ni(L)2] and short halogen–halogen inter­actions are also observed. The qualitative prediction of the H-atom position from the C—N—C angles of the terminal pyridine rings in L and the C—O distances in the carboxyl groups show that 1-Cl and 1-Br are co-crystals rather than salts.

1. Chemical context

Metal complexes based on 2-acetyl­pyridine isonicotinoyl­hydrazone (HL) have attracted considerable attention for the construction of supra­molecular materials (Servati Gargari et al., 2015[Servati Gargari, M., Stilinović, V., Bauzá, A., Frontera, A., McArdle, P., Van Derveer, D., Ng, S. W. & Mahmoudi, G. (2015). Chem. Eur. J. 21, 17951-17958.]; Valipour et al., 2016[Valipour, A., Mirtamizdoust, B., Ghaedi, M., Taghizadeh, F. & Talemi, P. (2016). J. Inorg. Organomet. Polym. 26, 197-207.]) and as functional complexes for applications in various biochemical fields (Ababei et al., 2012[Ababei, L. V., Kriza, A., Andronescu, C. & Musuc, A. M. (2012. J. Therm. Anal. Calorim. 107, 573-584.]; Chang, Jia, Xu, Xu et al., 2015[Chang, H. Q., Jia, L., Xu, J., Xu, Z. Q., Chen, R. H., Wu, W. N., Bie, H. Y., Zhu, T. F., Ma, T. L. & Wang, Y. (2015). Inorg. Chem. Commun. 57, 8-10.]; Chang, Jia, Xu, Wu et al., 2015[Chang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). Transition Met. Chem. 40, 485-491.]). Moreover, the precursors of HLs and related hydrazone ligands have been used in the design of complexes stabilized by strong hydrogen bonds (Lemmerer et al., 2010[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2010). CrystEngComm, 12, 2856-2864.]; Grobelny et al., 2011[Grobelny, P., Mukherjee, A. & Desiraju, G. R. (2011). CrystEngComm, 13, 4358-4364.]; Aakeröy et al., 2012[Aakeröy, C. B., Forbes, S. & Desper, J. (2012). CrystEngComm, 14, 2435-2443.]; Cherukuvada & Nangia, 2012[Cherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579-2588.]; Aitipamula et al., 2009[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877-5887.]) and spin-crossover complexes (Hill et al., 2010[Hill, S., Datta, S., Liu, J., Inglis, R., Milios, C. J., Feng, P. L., Henderson, J. J., del Barco, E., Brechin, E. K. & Hendrickson, D. N. (2010). Dalton Trans. 39, 4693-4707.]; Zhang et al., 2010[Zhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). Chem. Commun. 46, 2554-2556.]). Thus, it is possible that metal complexes with HL ligands could be applied in the design of various functional materials. We have reported spin-crossover compounds consisting of [Fe(L)2] and H2Cl2TPA, and of [Fe(L)2] and H2Br2TPA (H2Cl2TPA = 2,5-dichloroterephtalic acid, H2Br2TPA = 2,5-di­bromo­terephthalic acid), and it was observed that a one-dimensional zigzag hydrogen-bonding network involving short hydrogen bonds was formed between the [Fe(L)2] mol­ecules and di­carb­oxy­lic acids (Nakanishi & Sato, 2016[Nakanishi, T. & Sato, O. (2016). Crystals, 6, 131-138.]). In this study, we present the crystal structures of the analogous NiII complexes, [Ni(L)2](H2Cl2TPA) (1-Cl) and [Ni(L)2)](H2Br2TPA) (1-Br).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1-Cl and 1-Br are displayed in Figs. 1[link] and 2[link], respectively. The crystal structures of 1-Cl and 1-Br are isostructural with each other: the asymmetric unit comprises one [Ni(L)2] mol­ecule and two half di­carb­oxy­lic acid mol­ecules, which are completed by crystallographic inversion symmetry. These are hereafter designated as (H2X2TPA)A with O3 and O4 and (H2X2TPA)B with O5 and O6 (X = Br, Cl). The pair of N,N′,O-tridentate L ligands generate a cis-NiO2N4 octa­hedron in each case.

[Figure 1]
Figure 1
The asymmetric unit of [Ni(L)2](H2Cl2TPA) (1-Cl), shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The asymmetric unit of [Ni(L)2](H2Br2TPA) (1-Br), shown with 50% probability displacement ellipsoids.

Unfortunately, the hydrogen-atom positions in the hydrogen-bonding network could not be determined from difference Fourier maps. However, the positions of hydrogen atoms involved in hydrogen bonds could be predicted qualitatively from the C—N—C angles of the terminal pyridine ring in L and the C—O bond lengths of the carboxyl group in H2X2TPA. The coordination distances and angles related to the hydrogen-bonding network are listed in Table 1[link]. The C13–N4–C11 and C24–N8–C26 bond angles in 1-Cl are 117.4 (2)° and 118.8 (2)°, respectively, and these are categorized as being part of a non-protonated pyridine ring (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]). Moreover, the C34—O3 and C27—O5 distances in 1-Cl are 1.316 (3) and 1.306 (3) Å, respectively, and these clearly correspond to a protonated carb­oxy­lic acid (Bis & Zaworotko, 2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]). These results indicate that the hydrogen atoms involved in hydrogen bonds are mainly located on the H2X2TPA side. Therefore, it could be concluded that 1-Cl is a co-crystal, comprising neutral [Ni(L)2] complexes and H2Cl2TPA mol­ecules, rather than a salt. The same conclusion can be drawn concerning 1-Br (Table 2[link]).

Table 1
Selected geometric parameters (Å, °) for 1-Cl[link]

Ni1—O1 2.0870 (17) Ni1—N6 1.985 (2)
Ni1—O2 2.1099 (19) C34—O3 1.316 (3)
Ni1—N1 2.106 (2) C34—O4 1.206 (3)
Ni1—N2 1.990 (2) C27—O5 1.306 (3)
Ni1—N5 2.110 (2) C27—O6 1.216 (3)
       
C11—N4—C13 117.4 (2) C24—N8—C26 118.8 (2)

Table 2
Selected geometric parameters (Å, °) for 1-Br[link]

Ni1—O1 2.079 (2) Ni1—N6 1.983 (3)
Ni1—O2 2.118 (3) C34—O3 1.324 (4)
Ni1—N1 2.110 (3) C34—O4 1.207 (4)
Ni1—N2 1.986 (3) C27—O5 1.300 (4)
Ni1—N5 2.116 (3) C27—O6 1.223 (4)
       
C11—N4—C13 117.1 (3) C24—N8—C26 118.2 (3)

3. Supra­molecular features

The mol­ecular arrangement in the hydrogen-bonding network in 1-Cl is shown in Fig. 3[link]. It was confirmed that [Ni(L)2] forms a one-dimensional zigzag hydrogen-bonding network with H2X2TPA via the terminal py ring in L. In addition, in each case the two H2X2TPA mol­ecules can be differentiated from one another in terms of the hydrogen-bond distance in the hydrogen-bonding chain; the (H2X2TPA)A mol­ecule forms a long hydrogen bond [N4⋯O3 = 2.679 (3) Å] and the (H2X2TPA)B mol­ecule forms a shorter hydrogen bond [N8⋯O5 = 2.547 (3) Å] (Table 3[link]). The carboxyl groups in each H2X2TPA mol­ecule are related by inversion, hence exhibiting the same hydrogen bonds at each end of the mol­ecule (Fig. 3[link]). The hydrogen-bond distance N8⋯O5 [2.547 (3) Å] is relatively short, but not comparable with the distances observed in the organic compounds that exhibit proton migration (Steiner et al., 2001[Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651-2654.]; Cowan et al., 2003[Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2003). Acta Cryst. B59, 794-801.], 2005[Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2005). Acta Cryst. B61, 724-730.]). The hydrogen bond distances N4⋯O3 and N8⋯O5 in 1-Br are 2.706 (4) and 2.557 (4) Å (Table 4[link]), respectively, and these are clearly longer than the equivalent bonds in 1-Cl; the same tendency was confirmed when comparing [Fe(L)2](H2Cl2TPA) and [Fe(L)2](H2Br2TPA) (Nakanishi & Sato, 2016[Nakanishi, T. & Sato, O. (2016). Crystals, 6, 131-138.]).

Table 3
Hydrogen-bond geometry (Å, °) for 1-Cl[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H25⋯N4i 0.84 1.84 2.679 (3) 177
O5—H26⋯N8ii 0.84 1.71 2.547 (3) 176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for 1-Br[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H25⋯N4i 0.84 1.87 2.706 (4) 178
O5—H26⋯N8ii 0.84 1.72 2.557 (4) 172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
[Figure 3]
Figure 3
The mol­ecular arrangement of [Ni(L)2] and H2Cl2TPA in a zigzag hydrogen-bonded chain.

Another inter­molecular inter­action in each H2X2TPA, a ππ inter­action, is found between the (H2X2TPA)A mol­ecule and the terminal pyridine ring in [Ni(L)2]. Furthermore, the (H2X2TPA)B mol­ecules form halogen–halogen inter­actions with adjacent (H2X2TPA)B mol­ecules [1-Cl: Cl1⋯Cl1i = 3.435 (1) Å, C30–Cl1⋯Cl1i = 129.64 (9)°; 1-Br: Br1⋯Br1 = 3.5240 (8) Å, C30—Br1⋯Br1i = 125.3 (1)°; symmetry code: (i) 1 – x, −1 – y, –z] as observed in an overview of the crystal structure (Fig. 4[link]).

[Figure 4]
Figure 4
An overview of the the two-dimensional supra­molecular network comprising hydrogen bonds, ππ inter­actions and halogen–halogen inter­actions.

4. Synthesis and crystallization

[Ni(L)2](H2Cl2TPA) (1-Cl)

HL was synthesized according to the published procedure (Ababei et al., 2011[Ababei, L. V., Kriza, A., Andronescu, C. & Musuc, A. M. (2012. J. Therm. Anal. Calorim. 107, 573-584.]). HL (48 mg, 0.20 mmol) was dissolved in methanol (40 ml); then, NiCl2·6H2O (24 mg, 0.10 mmol) was added to the solution. Following this, H2Cl2TPA (24 mg, 0.10 mmol) was added to the solution. The mixture was stirred for 30 s. Subsequently, the solution was evaporated in air over a period of several days. Plate-shaped brown crystals were obtained.

[Ni(L)2](H2Br2TPA) (1-Br)

The synthesis procedure for 1-Br is similar to that for 1-Cl, except for the use of H2Br2TPA instead of H2Cl2TPA. Plate-shaped brown crystals were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms connected to the carbon atom were treated using a riding model: C—H (aromatic) = 0.96 Å and C—H (meth­yl) = 0.98 Å. The hydrogen atoms involved in hydrogen bonds were also treated as riding with O—H = 0.84 Å.

Table 5
Experimental details

  1-Cl 1-Br
Crystal data
Chemical formula [Ni(C13H11N4O)2](C8H4Cl2O4) [Ni(C13H11N4O)2](C8H4Br2O4)
Mr 772.24 861.14
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 123 123
a, b, c (Å) 7.9596 (18), 8.7600 (17), 24.121 (4) 7.8740 (14), 8.9716 (15), 24.233 (4)
α, β, γ (°) 76.138 (8), 81.803 (8), 87.253 (9) 75.040 (9), 82.162 (10), 86.007 (11)
V3) 1616.0 (6) 1637.3 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.83 3.10
Crystal size (mm) 0.02 × 0.02 × 0.01 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku Saturn724 Rigaku Saturn724
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.761, 0.848 0.467, 0.538
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 27850, 7359, 6814 28760, 7439, 6665
Rint 0.044 0.050
(sin θ/λ)max−1) 0.649 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.130, 1.13 0.051, 0.107, 1.14
No. of reflections 7359 7439
No. of parameters 464 464
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.92 0.72, −0.75
Computer programs: CrystalClear and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2014); cell refinement: CrystalClear (Rigaku, 2014); data reduction: CrystalClear (Rigaku, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

(1-Cl) Bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2N',O}nickel(II)–2,5-dichloroterephthalic acid (1/1) top
Crystal data top
[Ni(C13H11N4O)2](C8H4Cl2O4)Z = 2
Mr = 772.24F(000) = 792.00
Triclinic, P1Dx = 1.587 Mg m3
a = 7.9596 (18) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.7600 (17) ÅCell parameters from 5812 reflections
c = 24.121 (4) Åθ = 1.8–30.7°
α = 76.138 (8)°µ = 0.83 mm1
β = 81.803 (8)°T = 123 K
γ = 87.253 (9)°Plate, brown
V = 1616.0 (6) Å30.02 × 0.02 × 0.01 mm
Data collection top
Rigaku Saturn724
diffractometer
6814 reflections with F2 > 2.0σ(F2)
Detector resolution: 14.222 pixels mm-1Rint = 0.044
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.761, Tmax = 0.848k = 1111
27850 measured reflectionsl = 3131
7359 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.4269P]
where P = (Fo2 + 2Fc2)/3
7359 reflections(Δ/σ)max = 0.001
464 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.92 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.67086 (4)0.43172 (3)0.25224 (2)0.01854 (10)
Cl10.41155 (8)0.35525 (7)0.03245 (3)0.02750 (15)
Cl20.79694 (9)0.13848 (8)0.62117 (3)0.03312 (17)
O10.7541 (2)0.2053 (2)0.28890 (7)0.0231 (4)
O20.4392 (2)0.3451 (2)0.24024 (7)0.0216 (4)
O30.8331 (3)0.3969 (2)0.48427 (8)0.0337 (5)
O41.0219 (3)0.4091 (2)0.40572 (9)0.0391 (5)
O50.7989 (2)0.0224 (2)0.09773 (8)0.0285 (4)
O60.9030 (3)0.1760 (3)0.01231 (8)0.0330 (4)
N10.5819 (3)0.6608 (2)0.25437 (9)0.0197 (4)
N20.6092 (3)0.4157 (2)0.33633 (8)0.0188 (4)
N30.6286 (3)0.2722 (2)0.37388 (9)0.0212 (4)
N40.7897 (3)0.2955 (3)0.43917 (10)0.0298 (5)
N50.9154 (3)0.5276 (3)0.22513 (9)0.0210 (4)
N60.7008 (3)0.4439 (2)0.16820 (8)0.0184 (4)
N70.5775 (3)0.3818 (2)0.14568 (8)0.0198 (4)
N80.0405 (3)0.1303 (3)0.13524 (9)0.0236 (4)
C10.5204 (3)0.6749 (3)0.30831 (10)0.0187 (5)
C20.4620 (3)0.8194 (3)0.31865 (11)0.0216 (5)
C30.4758 (3)0.9523 (3)0.27352 (11)0.0253 (5)
C40.5456 (3)0.9378 (3)0.21886 (11)0.0243 (5)
C50.5948 (3)0.7898 (3)0.21134 (10)0.0224 (5)
C60.5269 (3)0.5291 (3)0.35434 (10)0.0197 (5)
C70.4446 (4)0.5154 (3)0.41466 (11)0.0292 (6)
C80.7073 (3)0.1748 (3)0.34310 (10)0.0199 (5)
C90.7388 (3)0.0127 (3)0.37742 (10)0.0214 (5)
C100.6540 (4)0.0432 (3)0.43257 (11)0.0277 (6)
C110.6816 (4)0.1960 (3)0.46184 (12)0.0322 (6)
C120.8510 (4)0.0892 (3)0.35420 (11)0.0256 (5)
C130.8734 (4)0.2401 (3)0.38644 (11)0.0285 (6)
C140.9496 (3)0.5711 (3)0.16687 (10)0.0209 (5)
C151.0827 (3)0.6692 (3)0.13930 (12)0.0292 (6)
C161.1852 (4)0.7223 (4)0.17243 (13)0.0368 (7)
C171.1539 (4)0.6737 (4)0.23198 (13)0.0364 (7)
C181.0174 (3)0.5764 (3)0.25663 (12)0.0272 (5)
C190.8334 (3)0.5091 (3)0.13497 (10)0.0195 (5)
C200.8694 (3)0.5198 (3)0.07165 (10)0.0250 (5)
C210.4492 (3)0.3366 (3)0.18769 (10)0.0195 (5)
C220.3055 (3)0.2660 (3)0.16921 (10)0.0202 (5)
C230.3146 (3)0.2441 (3)0.11342 (11)0.0243 (5)
C240.1815 (3)0.1762 (3)0.09809 (11)0.0266 (5)
C250.1580 (3)0.2183 (3)0.20755 (10)0.0208 (5)
C260.0296 (3)0.1524 (3)0.18879 (11)0.0234 (5)
C270.7947 (3)0.0902 (3)0.04348 (11)0.0232 (5)
C280.6401 (3)0.0472 (3)0.02141 (10)0.0215 (5)
C290.5893 (3)0.1087 (3)0.03644 (10)0.0221 (5)
C300.4537 (3)0.1554 (3)0.01532 (10)0.0207 (5)
C310.9135 (3)0.0673 (3)0.55392 (11)0.0236 (5)
C320.8909 (3)0.0907 (3)0.52835 (11)0.0242 (5)
C330.9751 (3)0.1619 (3)0.47446 (11)0.0226 (5)
C340.9472 (3)0.3356 (3)0.45046 (11)0.0249 (5)
H10.413160.826730.356240.0260*
H20.437991.051950.279920.0303*
H30.559161.027320.18740.0291*
H40.640030.77930.173780.0269*
H5B0.514370.447620.441260.0351*
H6C0.33190.469640.419590.0351*
H7A0.43320.619980.422880.0351*
H80.57740.023580.450050.0333*
H90.622110.232630.499450.0386*
H100.911590.055530.316610.0307*
H110.952180.308030.370360.0342*
H121.103470.699480.098410.0351*
H131.276050.791280.15450.0442*
H141.224560.706460.255440.0437*
H150.995640.543190.297440.0326*
H16C0.960650.445280.064110.0299*
H17A0.904430.626840.051540.0299*
H18B0.766810.494360.057760.0299*
H190.412270.275930.086150.0291*
H200.189430.161260.060060.0319*
H210.146730.231260.245910.0250*
H220.070780.121320.214820.0280*
H230.649450.184420.061810.0265*
H240.815010.152450.548430.0290*
H250.823740.493960.47030.0404*
H260.8820.055710.109080.0341*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02329 (18)0.01591 (17)0.01524 (16)0.00197 (12)0.00110 (12)0.00266 (12)
Cl10.0335 (3)0.0171 (3)0.0299 (3)0.0019 (2)0.0009 (3)0.0035 (2)
Cl20.0421 (4)0.0239 (3)0.0274 (3)0.0045 (3)0.0084 (3)0.0030 (3)
O10.0305 (10)0.0197 (9)0.0174 (8)0.0048 (7)0.0001 (7)0.0036 (7)
O20.0253 (9)0.0213 (9)0.0182 (8)0.0013 (7)0.0008 (7)0.0058 (7)
O30.0475 (12)0.0179 (9)0.0294 (10)0.0098 (9)0.0061 (9)0.0019 (8)
O40.0489 (13)0.0232 (10)0.0352 (11)0.0071 (9)0.0109 (10)0.0015 (9)
O50.0267 (10)0.0383 (11)0.0188 (9)0.0092 (8)0.0055 (7)0.0004 (8)
O60.0336 (11)0.0384 (11)0.0238 (10)0.0130 (9)0.0042 (8)0.0018 (8)
N10.0221 (10)0.0177 (10)0.0185 (10)0.0029 (8)0.0025 (8)0.0036 (8)
N20.0218 (10)0.0165 (10)0.0170 (9)0.0001 (8)0.0014 (8)0.0024 (8)
N30.0280 (11)0.0166 (10)0.0171 (10)0.0016 (8)0.0025 (8)0.0008 (8)
N40.0436 (14)0.0178 (11)0.0263 (12)0.0037 (10)0.0066 (10)0.0019 (9)
N50.0213 (10)0.0217 (10)0.0198 (10)0.0039 (8)0.0032 (8)0.0050 (8)
N60.0214 (10)0.0158 (10)0.0175 (9)0.0018 (8)0.0030 (8)0.0030 (8)
N70.0226 (10)0.0201 (10)0.0167 (9)0.0011 (8)0.0024 (8)0.0041 (8)
N80.0235 (11)0.0242 (11)0.0214 (10)0.0001 (9)0.0030 (8)0.0023 (9)
C10.0165 (11)0.0194 (11)0.0195 (11)0.0006 (9)0.0028 (9)0.0033 (9)
C20.0271 (13)0.0169 (11)0.0199 (12)0.0008 (9)0.0006 (9)0.0039 (9)
C30.0279 (13)0.0200 (12)0.0288 (13)0.0041 (10)0.0052 (10)0.0074 (10)
C40.0295 (13)0.0168 (12)0.0230 (12)0.0028 (10)0.0020 (10)0.0008 (10)
C50.0233 (12)0.0228 (12)0.0179 (11)0.0028 (10)0.0017 (9)0.0002 (9)
C60.0210 (12)0.0186 (12)0.0183 (11)0.0004 (9)0.0001 (9)0.0032 (9)
C70.0407 (16)0.0206 (13)0.0214 (13)0.0037 (11)0.0061 (11)0.0020 (10)
C80.0220 (12)0.0180 (12)0.0184 (11)0.0013 (9)0.0036 (9)0.0014 (9)
C90.0263 (13)0.0179 (12)0.0193 (12)0.0020 (10)0.0051 (9)0.0025 (9)
C100.0352 (15)0.0224 (13)0.0220 (12)0.0033 (11)0.0016 (11)0.0022 (10)
C110.0437 (17)0.0218 (13)0.0241 (13)0.0044 (12)0.0028 (12)0.0028 (11)
C120.0323 (14)0.0221 (13)0.0216 (12)0.0038 (10)0.0032 (10)0.0049 (10)
C130.0389 (15)0.0209 (13)0.0257 (13)0.0081 (11)0.0044 (11)0.0071 (10)
C140.0196 (12)0.0210 (12)0.0212 (12)0.0054 (9)0.0015 (9)0.0050 (9)
C150.0244 (13)0.0356 (15)0.0259 (13)0.0007 (11)0.0022 (10)0.0043 (11)
C160.0245 (14)0.0495 (19)0.0356 (16)0.0112 (13)0.0011 (12)0.0080 (14)
C170.0266 (14)0.0505 (19)0.0354 (16)0.0052 (13)0.0077 (12)0.0136 (14)
C180.0252 (13)0.0338 (14)0.0232 (13)0.0030 (11)0.0050 (10)0.0078 (11)
C190.0210 (12)0.0171 (11)0.0176 (11)0.0029 (9)0.0006 (9)0.0004 (9)
C200.0284 (13)0.0268 (13)0.0176 (12)0.0020 (10)0.0019 (10)0.0037 (10)
C210.0250 (12)0.0138 (11)0.0180 (11)0.0051 (9)0.0034 (9)0.0015 (9)
C220.0244 (12)0.0131 (11)0.0216 (12)0.0053 (9)0.0033 (9)0.0021 (9)
C230.0233 (12)0.0298 (14)0.0192 (12)0.0008 (10)0.0007 (9)0.0069 (10)
C240.0276 (13)0.0346 (14)0.0184 (12)0.0004 (11)0.0010 (10)0.0092 (11)
C250.0231 (12)0.0199 (12)0.0184 (11)0.0019 (9)0.0007 (9)0.0039 (9)
C260.0247 (13)0.0235 (13)0.0206 (12)0.0024 (10)0.0015 (9)0.0040 (10)
C270.0269 (13)0.0217 (12)0.0202 (12)0.0004 (10)0.0016 (10)0.0044 (10)
C280.0228 (12)0.0232 (12)0.0176 (11)0.0002 (10)0.0004 (9)0.0048 (9)
C290.0273 (13)0.0187 (12)0.0187 (11)0.0031 (10)0.0027 (9)0.0020 (9)
C300.0264 (12)0.0182 (11)0.0168 (11)0.0001 (9)0.0012 (9)0.0039 (9)
C310.0267 (13)0.0224 (12)0.0205 (12)0.0024 (10)0.0006 (10)0.0051 (10)
C320.0268 (13)0.0212 (12)0.0254 (13)0.0034 (10)0.0019 (10)0.0089 (10)
C330.0246 (13)0.0197 (12)0.0242 (12)0.0013 (10)0.0051 (10)0.0054 (10)
C340.0305 (14)0.0179 (12)0.0255 (13)0.0041 (10)0.0029 (10)0.0050 (10)
Geometric parameters (Å, º) top
Ni1—O12.0870 (17)C16—C171.386 (4)
Ni1—O22.1099 (19)C17—C181.386 (4)
Ni1—N12.106 (2)C19—C201.494 (3)
Ni1—N21.990 (2)C21—C221.495 (4)
Ni1—N52.110 (2)C22—C231.396 (4)
Ni1—N61.985 (2)C22—C251.400 (3)
Cl1—C301.738 (3)C23—C241.374 (4)
Cl2—C311.739 (2)C25—C261.377 (4)
O1—C81.274 (3)C27—C281.506 (4)
O2—C211.278 (3)C28—C291.391 (4)
C34—O31.316 (3)C28—C30i1.400 (3)
C34—O41.206 (3)C29—C301.375 (4)
C27—O51.306 (3)C31—C321.388 (3)
C27—O61.216 (3)C31—C33ii1.404 (4)
N1—C11.355 (3)C32—C331.390 (3)
N1—C51.335 (3)C33—C341.510 (3)
N2—N31.379 (3)O3—H250.840
N2—C61.292 (3)O5—H260.840
N3—C81.338 (3)C2—H10.950
N4—C111.350 (4)C3—H20.950
N4—C131.338 (3)C4—H30.950
N5—C141.356 (3)C5—H40.950
N5—C181.336 (4)C7—H5B0.980
N6—N71.378 (3)C7—H6C0.980
N6—C191.296 (3)C7—H7A0.980
N7—C211.333 (3)C10—H80.950
N8—C241.345 (3)C11—H90.950
N8—C261.342 (4)C12—H100.950
C1—C21.393 (4)C13—H110.950
C1—C61.482 (3)C15—H120.950
C2—C31.387 (3)C16—H130.950
C3—C41.389 (4)C17—H140.950
C4—C51.382 (4)C18—H150.950
C6—C71.488 (3)C20—H16C0.980
C8—C91.492 (3)C20—H17A0.980
C9—C101.389 (3)C20—H18B0.980
C9—C121.389 (4)C23—H190.950
C10—C111.379 (4)C24—H200.950
C12—C131.382 (3)C25—H210.950
C14—C151.384 (3)C26—H220.950
C14—C191.481 (4)C29—H230.950
C15—C161.386 (5)C32—H240.950
O1—Ni1—O291.34 (7)N8—C26—C25122.6 (2)
O1—Ni1—N1154.21 (8)O5—C27—O6125.6 (3)
O1—Ni1—N277.13 (8)O5—C27—C28112.6 (2)
O1—Ni1—N595.75 (8)O6—C27—C28121.8 (2)
O1—Ni1—N6104.55 (8)C27—C28—C29119.0 (2)
O2—Ni1—N196.67 (8)C27—C28—C30i123.5 (2)
O2—Ni1—N295.71 (8)C29—C28—C30i117.5 (2)
O2—Ni1—N5154.86 (8)C28—C29—C30121.3 (2)
O2—Ni1—N677.12 (8)Cl1—C30—C28i121.3 (2)
N1—Ni1—N277.70 (8)Cl1—C30—C29117.39 (18)
N1—Ni1—N587.32 (8)C28i—C30—C29121.2 (2)
N1—Ni1—N6101.13 (8)Cl2—C31—C32116.7 (2)
N2—Ni1—N5109.38 (9)Cl2—C31—C33ii123.01 (18)
N2—Ni1—N6172.61 (9)C32—C31—C33ii120.3 (2)
N5—Ni1—N677.75 (9)C31—C32—C33122.4 (2)
Ni1—O1—C8108.99 (15)C31ii—C33—C32117.2 (2)
Ni1—O2—C21108.26 (15)C31ii—C33—C34123.7 (2)
Ni1—N1—C1112.70 (15)C32—C33—C34119.1 (2)
Ni1—N1—C5128.03 (18)O3—C34—O4124.2 (2)
C1—N1—C5118.9 (2)O3—C34—C33112.1 (2)
Ni1—N2—N3118.43 (16)O4—C34—C33123.7 (2)
Ni1—N2—C6120.19 (15)C34—O3—H25109.478
N3—N2—C6120.36 (19)C27—O5—H26109.477
N2—N3—C8107.53 (19)C1—C2—H1120.325
C11—N4—C13117.4 (2)C3—C2—H1120.322
Ni1—N5—C14111.70 (17)C2—C3—H2120.450
Ni1—N5—C18128.02 (17)C4—C3—H2120.447
C14—N5—C18118.7 (2)C3—C4—H3120.816
Ni1—N6—N7118.72 (13)C5—C4—H3120.812
Ni1—N6—C19120.82 (19)N1—C5—H4118.447
N7—N6—C19120.5 (2)C4—C5—H4118.448
N6—N7—C21108.0 (2)C6—C7—H5B109.470
C24—N8—C26118.8 (2)C6—C7—H6C109.478
N1—C1—C2121.0 (2)C6—C7—H7A109.475
N1—C1—C6115.3 (2)H5B—C7—H6C109.469
C2—C1—C6123.6 (2)H5B—C7—H7A109.464
C1—C2—C3119.4 (2)H6C—C7—H7A109.472
C2—C3—C4119.1 (2)C9—C10—H8120.135
C3—C4—C5118.4 (2)C11—C10—H8120.151
N1—C5—C4123.1 (2)N4—C11—H9118.708
N2—C6—C1113.0 (2)C10—C11—H9118.699
N2—C6—C7123.9 (2)C9—C12—H10120.404
C1—C6—C7123.1 (2)C13—C12—H10120.405
O1—C8—N3127.3 (2)N4—C13—H11118.362
O1—C8—C9118.1 (2)C12—C13—H11118.358
N3—C8—C9114.6 (2)C14—C15—H12120.607
C8—C9—C10121.6 (2)C16—C15—H12120.613
C8—C9—C12120.6 (2)C15—C16—H13120.324
C10—C9—C12117.8 (2)C17—C16—H13120.330
C9—C10—C11119.7 (3)C16—C17—H14120.669
N4—C11—C10122.6 (2)C18—C17—H14120.655
C9—C12—C13119.2 (2)N5—C18—H15118.782
N4—C13—C12123.3 (3)C17—C18—H15118.778
N5—C14—C15122.0 (3)C19—C20—H16C109.476
N5—C14—C19115.6 (2)C19—C20—H17A109.482
C15—C14—C19122.5 (2)C19—C20—H18B109.472
C14—C15—C16118.8 (3)H16C—C20—H17A109.466
C15—C16—C17119.3 (3)H16C—C20—H18B109.468
C16—C17—C18118.7 (3)H17A—C20—H18B109.463
N5—C18—C17122.4 (3)C22—C23—H19120.140
N6—C19—C14112.5 (2)C24—C23—H19120.125
N6—C19—C20124.7 (2)N8—C24—H20118.975
C14—C19—C20122.8 (2)C23—C24—H20118.982
O2—C21—N7127.5 (2)C22—C25—H21120.510
O2—C21—C22118.7 (2)C26—C25—H21120.521
N7—C21—C22113.8 (2)N8—C26—H22118.675
C21—C22—C23121.1 (2)C25—C26—H22118.677
C21—C22—C25121.0 (2)C28—C29—H23119.339
C23—C22—C25117.8 (2)C30—C29—H23119.342
C22—C23—C24119.7 (2)C31—C32—H24118.785
N8—C24—C23122.0 (3)C33—C32—H24118.786
C22—C25—C26119.0 (2)
O1—Ni1—O2—C2199.87 (11)Ni1—N6—N7—C215.8 (2)
O2—Ni1—O1—C889.54 (12)Ni1—N6—C19—C140.9 (3)
O1—Ni1—N1—C117.2 (3)Ni1—N6—C19—C20178.20 (13)
O1—Ni1—N1—C5155.73 (14)N7—N6—C19—C14178.99 (17)
N1—Ni1—O1—C818.9 (3)N7—N6—C19—C201.9 (3)
O1—Ni1—N2—N37.52 (13)C19—N6—N7—C21174.06 (19)
O1—Ni1—N2—C6176.01 (17)N6—N7—C21—O21.1 (3)
N2—Ni1—O1—C86.01 (12)N6—N7—C21—C22179.84 (16)
O1—Ni1—N5—C14114.34 (13)C24—N8—C26—C250.9 (3)
O1—Ni1—N5—C1880.17 (17)C26—N8—C24—C230.4 (4)
N5—Ni1—O1—C8114.62 (13)N1—C1—C2—C33.6 (4)
O1—Ni1—N6—N782.01 (14)N1—C1—C6—N27.8 (3)
O1—Ni1—N6—C1998.13 (14)N1—C1—C6—C7171.4 (2)
N6—Ni1—O1—C8166.58 (12)C2—C1—C6—N2169.9 (2)
O2—Ni1—N1—C190.00 (14)C2—C1—C6—C710.9 (4)
O2—Ni1—N1—C597.03 (17)C6—C1—C2—C3173.9 (2)
N1—Ni1—O2—C21104.69 (11)C1—C2—C3—C40.9 (4)
O2—Ni1—N2—N382.55 (14)C2—C3—C4—C51.6 (4)
O2—Ni1—N2—C685.94 (16)C3—C4—C5—N11.5 (4)
N2—Ni1—O2—C21177.07 (11)O1—C8—C9—C10162.4 (2)
O2—Ni1—N5—C148.7 (3)O1—C8—C9—C1215.5 (4)
O2—Ni1—N5—C18174.18 (12)N3—C8—C9—C1016.5 (4)
N5—Ni1—O2—C216.7 (2)N3—C8—C9—C12165.5 (2)
O2—Ni1—N6—N76.01 (12)C8—C9—C10—C11177.2 (2)
O2—Ni1—N6—C19173.85 (16)C8—C9—C12—C13178.0 (2)
N6—Ni1—O2—C214.75 (10)C10—C9—C12—C130.0 (4)
N1—Ni1—N2—N3178.16 (16)C12—C9—C10—C110.8 (4)
N1—Ni1—N2—C69.67 (15)C9—C10—C11—N40.4 (5)
N2—Ni1—N1—C14.42 (13)C9—C12—C13—N41.2 (5)
N2—Ni1—N1—C5168.55 (19)N5—C14—C15—C160.9 (4)
N1—Ni1—N5—C1491.35 (14)N5—C14—C19—N610.7 (3)
N1—Ni1—N5—C1874.15 (17)N5—C14—C19—C20168.44 (19)
N5—Ni1—N1—C1114.92 (14)C15—C14—C19—N6168.3 (2)
N5—Ni1—N1—C558.05 (18)C15—C14—C19—C2012.6 (4)
N1—Ni1—N6—N7100.40 (14)C19—C14—C15—C16179.8 (2)
N1—Ni1—N6—C1979.46 (15)C14—C15—C16—C171.2 (4)
N6—Ni1—N1—C1168.12 (13)C15—C16—C17—C181.7 (5)
N6—Ni1—N1—C518.91 (19)C16—C17—C18—N50.1 (4)
N2—Ni1—N5—C14167.31 (12)O2—C21—C22—C23175.62 (18)
N2—Ni1—N5—C181.82 (19)O2—C21—C22—C253.7 (3)
N5—Ni1—N2—N399.16 (15)N7—C21—C22—C233.2 (3)
N5—Ni1—N2—C692.36 (16)N7—C21—C22—C25177.40 (18)
N5—Ni1—N6—N7174.84 (15)C21—C22—C23—C24178.79 (19)
N5—Ni1—N6—C195.30 (14)C21—C22—C25—C26179.32 (18)
N6—Ni1—N5—C1410.66 (13)C23—C22—C25—C260.0 (3)
N6—Ni1—N5—C18176.15 (18)C25—C22—C23—C240.6 (3)
Ni1—O1—C8—N34.5 (3)C22—C23—C24—N80.4 (4)
Ni1—O1—C8—C9174.20 (14)C22—C25—C26—N80.7 (4)
Ni1—O2—C21—N73.5 (3)O5—C27—C28—C2943.4 (3)
Ni1—O2—C21—C22175.16 (13)O5—C27—C28—C30i138.8 (2)
Ni1—N1—C1—C2177.44 (15)O6—C27—C28—C29134.9 (2)
Ni1—N1—C1—C60.3 (2)O6—C27—C28—C30i43.0 (4)
Ni1—N1—C5—C4173.77 (15)C27—C28—C29—C30177.0 (2)
C1—N1—C5—C41.2 (4)C27—C28—C30i—Cl1i7.1 (3)
C5—N1—C1—C23.8 (3)C27—C28—C30i—C29i176.9 (2)
C5—N1—C1—C6173.9 (2)C29—C28—C30i—Cl1i175.04 (18)
Ni1—N2—N3—C87.2 (2)C29—C28—C30i—C29i1.0 (3)
Ni1—N2—C6—C112.4 (3)C30i—C28—C29—C301.0 (3)
Ni1—N2—C6—C7166.82 (15)C28—C29—C30—Cl1175.15 (19)
N3—N2—C6—C1179.38 (19)C28—C29—C30—C28i1.0 (4)
N3—N2—C6—C71.4 (4)Cl2—C31—C32—C33179.38 (18)
C6—N2—N3—C8175.6 (2)Cl2—C31—C33ii—C32ii179.35 (18)
N2—N3—C8—O11.3 (4)Cl2—C31—C33ii—C34ii1.3 (4)
N2—N3—C8—C9179.92 (18)C32—C31—C33ii—C32ii0.1 (4)
C11—N4—C13—C121.7 (4)C32—C31—C33ii—C34ii178.2 (2)
C13—N4—C11—C100.9 (4)C33ii—C31—C32—C330.1 (4)
Ni1—N5—C14—C15164.49 (15)C31—C32—C33—C31ii0.1 (4)
Ni1—N5—C14—C1914.5 (2)C31—C32—C33—C34178.3 (2)
Ni1—N5—C18—C17162.65 (15)C31ii—C33—C34—O3178.1 (2)
C14—N5—C18—C172.0 (4)C31ii—C33—C34—O42.4 (5)
C18—N5—C14—C152.5 (3)C32—C33—C34—O33.9 (4)
C18—N5—C14—C19178.5 (2)C32—C33—C34—O4175.6 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H25···N4iii0.841.842.679 (3)177
O5—H26···N8iv0.841.712.547 (3)176
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z.
(1-Br) Bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2N',O}nickel(II)–2,5-dibromoterephthalic acid (1/1) top
Crystal data top
[Ni(C13H11N4O)2](C8H4Br2O4)Z = 2
Mr = 861.14F(000) = 864.00
Triclinic, P1Dx = 1.747 Mg m3
a = 7.8740 (14) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.9716 (15) ÅCell parameters from 6236 reflections
c = 24.233 (4) Åθ = 1.8–30.8°
α = 75.040 (9)°µ = 3.10 mm1
β = 82.162 (10)°T = 123 K
γ = 86.007 (11)°Plate, brown
V = 1637.3 (5) Å30.02 × 0.02 × 0.01 mm
Data collection top
Rigaku Saturn724
diffractometer
6665 reflections with F2 > 2.0σ(F2)
Detector resolution: 14.222 pixels mm-1Rint = 0.050
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.467, Tmax = 0.538k = 1111
28760 measured reflectionsl = 3131
7439 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.036P)2 + 2.3422P]
where P = (Fo2 + 2Fc2)/3
7439 reflections(Δ/σ)max = 0.001
464 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.75 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08134 (5)0.36721 (4)0.45974 (2)0.03504 (11)
Br20.71262 (5)0.14742 (4)0.87301 (2)0.02901 (11)
Ni10.17274 (6)0.41976 (5)0.75363 (2)0.02102 (11)
O10.2587 (3)0.1969 (3)0.79096 (10)0.0250 (5)
O20.0585 (3)0.3334 (3)0.74089 (9)0.0236 (5)
O30.3310 (4)0.3923 (3)0.98699 (11)0.0321 (6)
O40.5246 (4)0.4085 (3)0.90949 (12)0.0394 (7)
O50.3029 (3)0.0259 (3)0.59558 (10)0.0335 (6)
O60.4060 (4)0.1768 (3)0.50971 (11)0.0392 (7)
N10.0800 (4)0.6459 (3)0.75401 (12)0.0219 (6)
N20.1146 (4)0.4059 (3)0.83712 (11)0.0198 (6)
N30.1365 (4)0.2643 (3)0.87523 (11)0.0206 (6)
N40.2905 (4)0.3001 (3)0.94192 (13)0.0280 (7)
N50.4171 (4)0.5170 (3)0.72801 (12)0.0230 (6)
N60.2067 (4)0.4314 (3)0.67004 (11)0.0207 (6)
N70.0867 (4)0.3661 (3)0.64776 (11)0.0226 (6)
N80.4536 (4)0.1265 (3)0.63430 (12)0.0262 (6)
C10.0264 (4)0.6627 (4)0.80766 (14)0.0201 (7)
C20.0243 (5)0.8064 (4)0.81732 (15)0.0250 (7)
C30.0113 (5)0.9368 (4)0.77106 (15)0.0278 (8)
C40.0499 (5)0.9204 (4)0.71676 (15)0.0281 (8)
C50.0911 (5)0.7722 (4)0.70999 (15)0.0264 (8)
C60.0339 (4)0.5190 (4)0.85436 (14)0.0210 (7)
C70.0436 (5)0.5096 (4)0.91452 (14)0.0275 (8)
C80.2134 (4)0.1678 (4)0.84499 (14)0.0211 (7)
C90.2437 (4)0.0059 (4)0.87960 (14)0.0210 (7)
C100.1563 (5)0.0480 (4)0.93437 (15)0.0277 (8)
C110.1833 (5)0.2009 (4)0.96349 (16)0.0308 (8)
C120.3547 (5)0.0961 (4)0.85712 (15)0.0260 (7)
C130.3756 (5)0.2461 (4)0.88957 (15)0.0275 (8)
C140.4490 (4)0.5644 (4)0.66952 (14)0.0234 (7)
C150.5748 (5)0.6703 (4)0.64261 (16)0.0303 (8)
C160.6693 (5)0.7273 (5)0.67645 (18)0.0394 (10)
C170.6416 (5)0.6749 (5)0.73531 (17)0.0366 (9)
C180.5135 (5)0.5698 (4)0.75984 (16)0.0291 (8)
C190.3388 (4)0.4983 (4)0.63754 (14)0.0221 (7)
C200.3813 (5)0.5089 (4)0.57493 (14)0.0291 (8)
C210.0439 (5)0.3231 (4)0.68878 (14)0.0224 (7)
C220.1881 (4)0.2546 (4)0.66969 (14)0.0216 (7)
C230.1743 (5)0.2322 (4)0.61435 (15)0.0266 (8)
C240.3091 (5)0.1685 (4)0.59875 (15)0.0298 (8)
C250.3379 (5)0.2111 (4)0.70672 (14)0.0233 (7)
C260.4671 (5)0.1476 (4)0.68768 (15)0.0263 (7)
C270.2984 (5)0.0920 (4)0.54129 (15)0.0285 (8)
C280.1417 (5)0.0496 (4)0.51998 (14)0.0244 (7)
C290.0942 (5)0.1046 (4)0.53744 (15)0.0267 (8)
C300.0450 (5)0.1528 (4)0.48204 (14)0.0244 (7)
C310.5852 (4)0.0696 (4)0.94649 (14)0.0220 (7)
C320.3907 (5)0.0870 (4)1.02952 (14)0.0238 (7)
C330.4753 (4)0.1608 (4)0.97543 (14)0.0221 (7)
C340.4474 (5)0.3329 (4)0.95307 (15)0.0250 (7)
H10.067150.81560.854930.0299*
H20.04421.036050.776880.0333*
H30.063521.007860.684810.0337*
H250.320470.488040.973220.0385*
H40.128960.760080.672410.0317*
H5C0.158050.467290.920750.0329*
H260.389490.053960.606490.0401*
H6B0.052850.613120.921310.0329*
H7A0.029020.442350.94120.0329*
H80.079570.018540.951490.0333*
H90.122430.237091.000750.0370*
H100.415920.063460.819740.0312*
H110.454270.314020.87390.0330*
H120.595370.70280.601820.0363*
H130.752820.802240.6590.0473*
H140.708690.709830.758910.0439*
H150.493880.534350.800570.0350*
H16B0.386480.617720.553620.0349*
H17A0.29270.459450.561840.0349*
H18C0.492710.456630.568080.0349*
H190.074070.260170.587950.0319*
H200.299260.15370.5610.0358*
H210.351170.224990.744660.0280*
H220.568680.118020.71320.0315*
H230.158610.177590.563120.0320*
H240.314690.146131.050210.0285*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0421 (2)0.02082 (19)0.0378 (2)0.00217 (16)0.00356 (18)0.00364 (16)
Br20.0364 (2)0.02332 (19)0.02352 (18)0.00005 (15)0.00553 (15)0.00413 (14)
Ni10.0290 (2)0.0171 (2)0.0152 (2)0.00158 (18)0.00022 (17)0.00274 (16)
O10.0351 (14)0.0193 (12)0.0176 (11)0.0045 (10)0.0019 (10)0.0031 (9)
O20.0299 (13)0.0218 (12)0.0179 (11)0.0006 (10)0.0003 (10)0.0045 (10)
O30.0476 (16)0.0161 (12)0.0278 (13)0.0055 (12)0.0054 (12)0.0038 (10)
O40.0522 (18)0.0197 (13)0.0363 (15)0.0025 (12)0.0146 (14)0.0004 (12)
O50.0342 (15)0.0445 (16)0.0210 (12)0.0107 (13)0.0038 (11)0.0044 (12)
O60.0393 (16)0.0491 (18)0.0258 (13)0.0160 (14)0.0021 (12)0.0004 (13)
N10.0258 (15)0.0195 (14)0.0189 (13)0.0014 (12)0.0010 (12)0.0039 (11)
N20.0245 (15)0.0157 (13)0.0175 (13)0.0005 (11)0.0013 (11)0.0021 (11)
N30.0283 (15)0.0148 (13)0.0159 (13)0.0002 (12)0.0007 (11)0.0004 (11)
N40.0367 (18)0.0179 (14)0.0275 (15)0.0020 (13)0.0031 (14)0.0036 (12)
N50.0259 (15)0.0206 (14)0.0217 (14)0.0047 (12)0.0029 (12)0.0049 (12)
N60.0244 (15)0.0191 (14)0.0164 (13)0.0043 (12)0.0006 (11)0.0026 (11)
N70.0266 (15)0.0225 (14)0.0173 (13)0.0006 (12)0.0011 (12)0.0037 (11)
N80.0287 (16)0.0276 (16)0.0215 (14)0.0007 (13)0.0018 (12)0.0057 (12)
C10.0215 (16)0.0187 (16)0.0200 (15)0.0002 (13)0.0012 (13)0.0052 (13)
C20.0281 (18)0.0211 (17)0.0241 (17)0.0004 (14)0.0027 (14)0.0063 (14)
C30.035 (2)0.0180 (17)0.0292 (18)0.0049 (15)0.0018 (16)0.0063 (15)
C40.033 (2)0.0217 (18)0.0248 (18)0.0036 (15)0.0010 (15)0.0006 (14)
C50.0308 (19)0.0233 (18)0.0211 (17)0.0041 (15)0.0017 (15)0.0020 (14)
C60.0256 (17)0.0180 (16)0.0184 (15)0.0029 (14)0.0019 (13)0.0043 (13)
C70.035 (2)0.0220 (18)0.0218 (17)0.0014 (15)0.0051 (15)0.0042 (14)
C80.0229 (17)0.0190 (16)0.0200 (16)0.0004 (14)0.0013 (13)0.0034 (13)
C90.0241 (17)0.0182 (16)0.0208 (16)0.0020 (14)0.0021 (13)0.0051 (13)
C100.035 (2)0.0222 (18)0.0251 (18)0.0011 (15)0.0012 (15)0.0066 (14)
C110.041 (2)0.0214 (18)0.0249 (18)0.0005 (16)0.0032 (16)0.0005 (15)
C120.034 (2)0.0229 (18)0.0210 (17)0.0011 (15)0.0023 (15)0.0060 (14)
C130.033 (2)0.0233 (18)0.0285 (18)0.0050 (15)0.0060 (16)0.0106 (15)
C140.0260 (18)0.0210 (17)0.0207 (16)0.0045 (14)0.0005 (14)0.0042 (14)
C150.032 (2)0.031 (2)0.0248 (18)0.0023 (16)0.0010 (16)0.0046 (16)
C160.031 (2)0.045 (2)0.042 (2)0.0127 (19)0.0019 (18)0.010 (2)
C170.032 (2)0.049 (3)0.032 (2)0.0068 (19)0.0012 (17)0.0148 (19)
C180.031 (2)0.033 (2)0.0244 (18)0.0048 (16)0.0049 (15)0.0091 (16)
C190.0244 (17)0.0214 (17)0.0184 (16)0.0052 (14)0.0003 (13)0.0038 (13)
C200.033 (2)0.032 (2)0.0195 (17)0.0017 (16)0.0017 (15)0.0043 (15)
C210.0292 (18)0.0149 (15)0.0209 (16)0.0051 (14)0.0008 (14)0.0031 (13)
C220.0263 (18)0.0161 (16)0.0210 (16)0.0041 (14)0.0010 (14)0.0045 (13)
C230.0277 (18)0.0303 (19)0.0202 (16)0.0013 (15)0.0037 (14)0.0076 (15)
C240.034 (2)0.039 (2)0.0184 (16)0.0008 (17)0.0017 (15)0.0106 (16)
C250.0300 (18)0.0196 (17)0.0186 (16)0.0046 (14)0.0011 (14)0.0042 (13)
C260.0282 (19)0.0246 (18)0.0225 (17)0.0030 (15)0.0000 (14)0.0024 (14)
C270.033 (2)0.0277 (19)0.0251 (18)0.0006 (16)0.0020 (16)0.0074 (15)
C280.0291 (18)0.0257 (18)0.0173 (16)0.0005 (15)0.0004 (14)0.0055 (14)
C290.033 (2)0.0238 (18)0.0199 (16)0.0031 (15)0.0004 (15)0.0018 (14)
C300.0312 (19)0.0193 (16)0.0196 (16)0.0017 (14)0.0052 (14)0.0031 (13)
C310.0258 (17)0.0213 (17)0.0191 (15)0.0005 (14)0.0003 (13)0.0071 (13)
C320.0287 (18)0.0232 (17)0.0201 (16)0.0003 (14)0.0010 (14)0.0077 (14)
C330.0276 (18)0.0188 (16)0.0201 (16)0.0018 (14)0.0027 (14)0.0049 (13)
C340.0311 (19)0.0182 (17)0.0254 (17)0.0026 (15)0.0055 (15)0.0050 (14)
Geometric parameters (Å, º) top
Br1—C301.890 (3)C16—C171.373 (6)
Br2—C311.906 (3)C17—C181.392 (5)
Ni1—O12.079 (2)C19—C201.488 (5)
Ni1—O22.118 (3)C21—C221.506 (5)
Ni1—N12.110 (3)C22—C231.395 (5)
Ni1—N21.986 (3)C22—C251.394 (5)
Ni1—N52.116 (3)C23—C241.378 (6)
Ni1—N61.983 (3)C25—C261.385 (6)
O1—C81.272 (4)C27—C281.508 (6)
O2—C211.279 (4)C28—C291.399 (5)
C34—O31.324 (4)C28—C301.391 (5)
C34—O41.207 (4)C29—C30i1.388 (6)
C27—O51.300 (4)C31—C32ii1.385 (5)
C27—O61.223 (4)C31—C331.394 (5)
N1—C11.354 (5)C32—C331.406 (4)
N1—C51.339 (4)C33—C341.509 (5)
N2—N31.380 (3)O3—H250.840
N2—C61.290 (4)O5—H260.840
N3—C81.337 (5)C2—H10.950
N4—C111.339 (5)C3—H20.950
N4—C131.338 (4)C4—H30.950
N5—C141.364 (4)C5—H40.950
N5—C181.340 (5)C7—H5C0.980
N6—N71.380 (4)C7—H6B0.980
N6—C191.297 (4)C7—H7A0.980
N7—C211.332 (4)C10—H80.950
N8—C241.343 (4)C11—H90.950
N8—C261.344 (5)C12—H100.950
C1—C21.391 (5)C13—H110.950
C1—C61.484 (4)C15—H120.950
C2—C31.394 (4)C16—H130.950
C3—C41.379 (5)C17—H140.950
C4—C51.392 (5)C18—H150.950
C6—C71.485 (5)C20—H16B0.980
C8—C91.499 (4)C20—H17A0.980
C9—C101.391 (4)C20—H18C0.980
C9—C121.383 (5)C23—H190.950
C10—C111.387 (5)C24—H200.950
C12—C131.384 (5)C25—H210.950
C14—C151.394 (5)C26—H220.950
C14—C191.482 (6)C29—H230.950
C15—C161.387 (7)C32—H240.950
O1—Ni1—O290.25 (9)N8—C26—C25122.2 (3)
O1—Ni1—N1154.75 (11)O5—C27—O6126.1 (4)
O1—Ni1—N277.64 (10)O5—C27—C28111.6 (3)
O1—Ni1—N596.88 (10)O6—C27—C28122.3 (3)
O1—Ni1—N6103.71 (11)C27—C28—C29118.1 (3)
O2—Ni1—N197.70 (11)C27—C28—C30124.1 (3)
O2—Ni1—N297.26 (10)C29—C28—C30117.7 (4)
O2—Ni1—N5155.41 (10)C28—C29—C30i121.3 (3)
O2—Ni1—N677.36 (10)Br1—C30—C28122.5 (3)
N1—Ni1—N277.60 (11)Br1—C30—C29i116.2 (2)
N1—Ni1—N585.78 (11)C28—C30—C29i121.1 (3)
N1—Ni1—N6101.41 (11)Br2—C31—C32ii115.4 (3)
N2—Ni1—N5107.23 (12)Br2—C31—C33123.7 (2)
N2—Ni1—N6174.40 (12)C32ii—C31—C33121.0 (3)
N5—Ni1—N678.10 (12)C31ii—C32—C33121.9 (3)
Ni1—O1—C8108.6 (2)C31—C33—C32117.1 (3)
Ni1—O2—C21107.8 (2)C31—C33—C34124.0 (3)
Ni1—N1—C1112.86 (19)C32—C33—C34118.8 (3)
Ni1—N1—C5127.7 (2)O3—C34—O4123.7 (3)
C1—N1—C5118.7 (3)O3—C34—C33112.6 (3)
Ni1—N2—N3117.9 (2)O4—C34—C33123.7 (3)
Ni1—N2—C6120.5 (2)C34—O3—H25109.465
N3—N2—C6120.7 (3)C27—O5—H26109.470
N2—N3—C8107.6 (2)C1—C2—H1120.447
C11—N4—C13117.1 (3)C3—C2—H1120.444
Ni1—N5—C14110.8 (2)C2—C3—H2120.318
Ni1—N5—C18127.9 (2)C4—C3—H2120.314
C14—N5—C18118.8 (3)C3—C4—H3120.872
Ni1—N6—N7118.25 (18)C5—C4—H3120.856
Ni1—N6—C19120.4 (3)N1—C5—H4118.484
N7—N6—C19121.3 (3)C4—C5—H4118.485
N6—N7—C21108.4 (3)C6—C7—H5C109.473
C24—N8—C26118.2 (3)C6—C7—H6B109.467
N1—C1—C2121.4 (3)C6—C7—H7A109.477
N1—C1—C6114.9 (3)H5C—C7—H6B109.476
C2—C1—C6123.6 (3)H5C—C7—H7A109.472
C1—C2—C3119.1 (3)H6B—C7—H7A109.463
C2—C3—C4119.4 (3)C9—C10—H8120.656
C3—C4—C5118.3 (3)C11—C10—H8120.656
N1—C5—C4123.0 (3)N4—C11—H9118.224
N2—C6—C1113.0 (3)C10—C11—H9118.224
N2—C6—C7124.4 (3)C9—C12—H10120.307
C1—C6—C7122.5 (3)C13—C12—H10120.297
O1—C8—N3127.7 (3)N4—C13—H11118.377
O1—C8—C9117.4 (3)C12—C13—H11118.380
N3—C8—C9114.9 (3)C14—C15—H12120.593
C8—C9—C10121.0 (3)C16—C15—H12120.579
C8—C9—C12120.9 (3)C15—C16—H13120.167
C10—C9—C12118.0 (3)C17—C16—H13120.138
C9—C10—C11118.7 (3)C16—C17—H14120.526
N4—C11—C10123.6 (3)C18—C17—H14120.526
C9—C12—C13119.4 (3)N5—C18—H15118.856
N4—C13—C12123.2 (3)C17—C18—H15118.858
N5—C14—C15121.4 (4)C19—C20—H16B109.483
N5—C14—C19115.4 (3)C19—C20—H17A109.479
C15—C14—C19123.3 (3)C19—C20—H18C109.470
C14—C15—C16118.8 (3)H16B—C20—H17A109.459
C15—C16—C17119.7 (4)H16B—C20—H18C109.470
C16—C17—C18118.9 (4)H17A—C20—H18C109.466
N5—C18—C17122.3 (3)C22—C23—H19120.672
N6—C19—C14112.8 (3)C24—C23—H19120.657
N6—C19—C20125.3 (4)N8—C24—H20118.393
C14—C19—C20121.9 (3)C23—C24—H20118.385
O2—C21—N7127.6 (3)C22—C25—H21120.311
O2—C21—C22118.3 (3)C26—C25—H21120.324
N7—C21—C22114.1 (3)N8—C26—H22118.897
C21—C22—C23120.6 (3)C25—C26—H22118.896
C21—C22—C25121.1 (3)C28—C29—H23119.375
C23—C22—C25118.3 (3)C30i—C29—H23119.374
C22—C23—C24118.7 (3)C31ii—C32—H24119.053
N8—C24—C23123.2 (4)C33—C32—H24119.046
C22—C25—C26119.4 (3)
O1—Ni1—O2—C2198.39 (14)Ni1—N6—N7—C217.7 (3)
O2—Ni1—O1—C891.08 (16)Ni1—N6—C19—C141.8 (3)
O1—Ni1—N1—C113.5 (4)Ni1—N6—C19—C20177.56 (19)
O1—Ni1—N1—C5156.50 (19)N7—N6—C19—C14178.4 (2)
N1—Ni1—O1—C817.8 (3)N7—N6—C19—C202.2 (5)
O1—Ni1—N2—N37.43 (18)C19—N6—N7—C21172.6 (3)
O1—Ni1—N2—C6176.7 (2)N6—N7—C21—O22.2 (4)
N2—Ni1—O1—C86.30 (16)N6—N7—C21—C22178.0 (2)
O1—Ni1—N5—C14115.31 (17)C24—N8—C26—C250.2 (5)
O1—Ni1—N5—C1883.1 (2)C26—N8—C24—C230.0 (5)
N5—Ni1—O1—C8112.50 (17)N1—C1—C2—C33.3 (5)
O1—Ni1—N6—N779.58 (19)N1—C1—C6—N29.9 (4)
O1—Ni1—N6—C19100.16 (19)N1—C1—C6—C7170.5 (3)
N6—Ni1—O1—C8168.13 (16)C2—C1—C6—N2167.5 (3)
O2—Ni1—N1—C193.81 (18)C2—C1—C6—C712.1 (5)
O2—Ni1—N1—C596.2 (2)C6—C1—C2—C3173.9 (3)
N1—Ni1—O2—C21105.65 (14)C1—C2—C3—C40.6 (5)
O2—Ni1—N2—N381.23 (19)C2—C3—C4—C52.1 (5)
O2—Ni1—N2—C688.0 (2)C3—C4—C5—N12.5 (6)
N2—Ni1—O2—C21175.96 (14)O1—C8—C9—C10161.1 (3)
O2—Ni1—N5—C149.4 (4)O1—C8—C9—C1216.4 (5)
O2—Ni1—N5—C18171.00 (16)N3—C8—C9—C1017.2 (5)
N5—Ni1—O2—C218.9 (3)N3—C8—C9—C12165.3 (3)
O2—Ni1—N6—N77.56 (16)C8—C9—C10—C11177.1 (3)
O2—Ni1—N6—C19172.7 (2)C8—C9—C12—C13178.0 (3)
N6—Ni1—O2—C215.61 (14)C10—C9—C12—C130.4 (5)
N1—Ni1—N2—N3177.6 (2)C12—C9—C10—C110.5 (5)
N1—Ni1—N2—C68.3 (2)C9—C10—C11—N40.5 (6)
N2—Ni1—N1—C11.98 (18)C9—C12—C13—N41.5 (6)
N2—Ni1—N1—C5168.0 (3)N5—C14—C15—C160.4 (5)
N1—Ni1—N5—C1489.92 (18)N5—C14—C19—N613.5 (4)
N1—Ni1—N5—C1871.7 (2)N5—C14—C19—C20165.9 (3)
N5—Ni1—N1—C1110.67 (19)C15—C14—C19—N6165.1 (3)
N5—Ni1—N1—C559.3 (2)C15—C14—C19—C2015.5 (5)
N1—Ni1—N6—N7103.00 (18)C19—C14—C15—C16178.9 (3)
N1—Ni1—N6—C1977.3 (2)C14—C15—C16—C172.2 (6)
N6—Ni1—N1—C1172.39 (18)C15—C16—C17—C182.6 (6)
N6—Ni1—N1—C517.6 (3)C16—C17—C18—N50.5 (6)
N2—Ni1—N5—C14165.54 (16)O2—C21—C22—C23176.1 (2)
N2—Ni1—N5—C183.9 (2)O2—C21—C22—C253.5 (4)
N5—Ni1—N2—N3100.89 (19)N7—C21—C22—C233.7 (4)
N5—Ni1—N2—C689.8 (2)N7—C21—C22—C25176.7 (2)
N5—Ni1—N6—N7173.9 (2)C21—C22—C23—C24179.7 (3)
N5—Ni1—N6—C195.89 (18)C21—C22—C25—C26179.6 (2)
N6—Ni1—N5—C1412.69 (16)C23—C22—C25—C260.0 (4)
N6—Ni1—N5—C18174.3 (2)C25—C22—C23—C240.1 (4)
Ni1—O1—C8—N35.3 (4)C22—C23—C24—N80.1 (5)
Ni1—O1—C8—C9172.72 (19)C22—C25—C26—N80.2 (5)
Ni1—O2—C21—N73.6 (4)O5—C27—C28—C2943.0 (4)
Ni1—O2—C21—C22176.19 (17)O5—C27—C28—C30139.8 (3)
Ni1—N1—C1—C2174.0 (2)O6—C27—C28—C29136.1 (3)
Ni1—N1—C1—C63.4 (3)O6—C27—C28—C3041.1 (5)
Ni1—N1—C5—C4169.6 (2)C27—C28—C29—C30i177.8 (3)
C1—N1—C5—C40.1 (5)C27—C28—C30—Br18.3 (5)
C5—N1—C1—C23.0 (5)C27—C28—C30—C29i177.6 (3)
C5—N1—C1—C6174.4 (3)C29—C28—C30—Br1174.6 (3)
Ni1—N2—N3—C86.7 (3)C29—C28—C30—C29i0.4 (5)
Ni1—N2—C6—C112.3 (4)C30—C28—C29—C30i0.4 (5)
Ni1—N2—C6—C7168.1 (2)C28—C29—C30i—Br1i174.9 (3)
N3—N2—C6—C1178.7 (3)C28—C29—C30i—C28i0.5 (5)
N3—N2—C6—C70.9 (5)Br2—C31—C32ii—C33ii179.7 (2)
C6—N2—N3—C8176.0 (3)Br2—C31—C33—C32179.7 (2)
N2—N3—C8—O10.5 (5)Br2—C31—C33—C341.8 (5)
N2—N3—C8—C9178.5 (2)C32ii—C31—C33—C320.2 (5)
C11—N4—C13—C121.5 (6)C32ii—C31—C33—C34177.7 (3)
C13—N4—C11—C100.5 (6)C33—C31—C32ii—C33ii0.2 (6)
Ni1—N5—C14—C15161.1 (2)C31ii—C32—C33—C310.2 (5)
Ni1—N5—C14—C1917.6 (3)C31ii—C32—C33—C34177.8 (3)
Ni1—N5—C18—C17158.3 (2)C31—C33—C34—O3177.0 (3)
C14—N5—C18—C172.0 (5)C31—C33—C34—O44.1 (6)
C18—N5—C14—C152.4 (5)C32—C33—C34—O35.2 (5)
C18—N5—C14—C19178.9 (3)C32—C33—C34—O4173.8 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H25···N4iii0.841.872.706 (4)178
O5—H26···N8iv0.841.722.557 (4)172
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z.
 

References

First citationAakeröy, C. B., Forbes, S. & Desper, J. (2012). CrystEngComm, 14, 2435–2443.  Google Scholar
First citationAbabei, L. V., Kriza, A., Andronescu, C. & Musuc, A. M. (2012. J. Therm. Anal. Calorim. 107, 573–584.  Google Scholar
First citationAitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877–5887.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). Transition Met. Chem. 40, 485–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, H. Q., Jia, L., Xu, J., Xu, Z. Q., Chen, R. H., Wu, W. N., Bie, H. Y., Zhu, T. F., Ma, T. L. & Wang, Y. (2015). Inorg. Chem. Commun. 57, 8–10.  Web of Science CrossRef CAS Google Scholar
First citationCherukuvada, S. & Nangia, A. (2012). CrystEngComm, 14, 2579–2588.  Web of Science CSD CrossRef CAS Google Scholar
First citationCowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2003). Acta Cryst. B59, 794–801.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2005). Acta Cryst. B61, 724–730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrobelny, P., Mukherjee, A. & Desiraju, G. R. (2011). CrystEngComm, 13, 4358–4364.  Web of Science CSD CrossRef CAS Google Scholar
First citationHill, S., Datta, S., Liu, J., Inglis, R., Milios, C. J., Feng, P. L., Henderson, J. J., del Barco, E., Brechin, E. K. & Hendrickson, D. N. (2010). Dalton Trans. 39, 4693–4707.  Web of Science CrossRef CAS Google Scholar
First citationLemmerer, A., Bernstein, J. & Kahlenberg, V. (2010). CrystEngComm, 12, 2856–2864.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakanishi, T. & Sato, O. (2016). Crystals, 6, 131–138.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationServati Gargari, M., Stilinović, V., Bauzá, A., Frontera, A., McArdle, P., Van Derveer, D., Ng, S. W. & Mahmoudi, G. (2015). Chem. Eur. J. 21, 17951–17958.  CAS Google Scholar
First citationSteiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651–2654.  Web of Science CrossRef CAS Google Scholar
First citationValipour, A., Mirtamizdoust, B., Ghaedi, M., Taghizadeh, F. & Talemi, P. (2016). J. Inorg. Organomet. Polym. 26, 197–207.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L., Xu, G. C., Xu, H. B., Zhang, T., Wang, Z. M., Yuan, M. & Gao, S. (2010). Chem. Commun. 46, 2554–2556.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds