research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-{[(4-anilinophen­yl)imino]meth­yl}-4-nitro­phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, and bDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 December 2016; accepted 29 December 2016; online 6 January 2017)

In the title compound, C19H15N3O3, which crystallizes as the phenol–imine tautomer, the dihedral angle between the aromatic rings bridged by the NH unit is 47.16 (16)°. The dihedral angle between the rings bridged by the imine unit is 6.24 (15)°; this near coplanarity is reinforced by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. In the crystal, N—H⋯O hydrogen bonds generate [201] C(13) chains. The chains are reinforced and cross-linked by C—H⋯O inter­actions to generate (001) sheets.

1. Chemical context

Schiff bases derived from 2-hy­droxy-5-nitro­benzaldehyde are widely used either as materials or as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141-148.]). Intra­molecular hydrogen-atom transfer (tautomerism) from the o-hy­droxy group to the imine-N atom is of prime importance with respect to the solvato-, thermo- and photochromic properties exhibited by o-hy­droxy Schiff bases (Filarowski, 2005[Filarowski, A. (2005). J. Phys. Org. Chem. 18, 686-698.]; Hadjoudis et al., 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]). Such proton-exchanging materials can be utilized for the design of various mol­ecular electronic devices (Alarcón et al., 1999[Alarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233-240.]). As part of our ongoing studies of Schiff bases and their complexes (Faizi et al., 2016[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.]), we now report the synthesis (from 2-hy­droxy-5-nitro­benzaldehyde and N-phenyl-p-phenyl­enedi­amine) and crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The molecular structure of the title compound, (I)[link], is illustrated in Fig. 1[link]. There is an intra­molecular O—H⋯N hydrogen bond (Table 1[link]), which is a common feature in related imine-phenol compounds. The imine group displays a C6—C7—N2—C8 torsion angle of 177.1 (3)° and the nitro phenol ring (C1–C6) is inclined to the central benzene ring (C8–C13) by 6.24 (4)°. The overall twisted conformation of the mol­ecule is largely determined by the orientation of the terminal amino­phenyl ring (C14–C19) with respect to the central benzene ring (C8–C13); the dihedral angle between them is 47.18 (4)°. The two outer aromatic rings (C1–C6 and C14–C19) are inclined to one another by 42.08 (4)°. The C1—O1 distance [1.351 (4) Å] is close to normal values reported for single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The N2—C7 bond is short at 1.287 (4) Å, strongly indicating the existence of a conjugated C=N bond, while the long C6—C7 bond [1.445 (4) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I)[link] in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Filipenko et al., 1983[Filipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889-895.]; Aldoshin et al., 1984[Aldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787-791.]; Wozniak et al., 1995[Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). Faraday Trans. 91, 77-85.]; Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N2 0.97 (4) 1.67 (4) 2.573 (4) 155 (4)
N3—H1N3⋯O3i 0.85 (3) 2.40 (3) 3.140 (4) 147 (3)
C3—H3⋯O2ii 0.93 2.48 3.217 (4) 136
C12—H12⋯O2i 0.93 2.55 3.470 (4) 173
Symmetry codes: (i) x-2, y, z-1; (ii) -x+3, -y, -z+3.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds, generating C(13) chains propagating in the [201] direction. The chains are reinforced by the C12—H12⋯O2 link and cross-linked by the C3—H3⋯O2 bond [which in its own right generates a C(5) chain] (Table 1[link]), resulting in (001) sheets (Fig. 2[link]).

[Figure 2]
Figure 2
A view down [001] of the N—H⋯O and C—H⋯O inter­actions (shown as dashed lines) in the crystal of the title compound.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of one very similar compound, viz. (E)-2-({[4-(di­alkyl­amino)­phen­yl]imino}­meth­yl)-4-nitro­phenol (II) (Valkonen et al., 2012[Valkonen, A., Kolehmainen, E., Grzegórska, A., Ośmiałowski, B., Gawinecki, R. & Rissanen, K. (2012). Acta Cryst. C68, o279-o282.]), in which the 4-alkyl­amino-substituted benzene ring in the title compound is replaced by a 4-N-phenyl­benzene ring. In (II), the 4-alkyl­amino-substituted ring makes a dihedral angle of 13.44 (19)° with the 4-nitro-substituted phenol ring. The equivalent dihedral angle is smaller in the title compound [6.24 (4)°] owing to the presence of the intra­molecular O—H⋯N hydrogen bond.

5. Synthesis and crystallization

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine was dissolved in 10 ml of absolute ethanol. To this solution, 90 mg (1 mmol) of 2-hy­droxy-5-nitro­benzaldehyde in 5 ml of absolute ethanol was added dropwise with stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was refluxed for 2 h. The resulting reddish yellow precipitate was recovered by filtration, washed several times with small portions of EtOH and then with diethyl ether to give 150 mg (83%) of the title compound. Colourless blocks of (I)[link] were obtained within three days by slow evaporation of a solution in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O—H, N—H and H atoms were located in a difference-Fourier map and freely refined. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C19H15N3O3
Mr 333.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.4243 (12), 31.818 (6), 7.6595 (14)
β (°) 100.736 (5)
V3) 1538.2 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.954, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 18286, 2760, 1365
Rint 0.113
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.125, 1.01
No. of reflections 2760
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL-2014/7 (Sheldrick, 2014[Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.]) and DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2014); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

(E)-2-{[(4-Anilinophenyl)imino]methyl}-4-nitrophenol top
Crystal data top
C19H15N3O3F(000) = 696
Mr = 333.34Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.4243 (12) ÅCell parameters from 1374 reflections
b = 31.818 (6) Åθ = 2.7–25.0°
c = 7.6595 (14) ŵ = 0.10 mm1
β = 100.736 (5)°T = 293 K
V = 1538.2 (5) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2760 independent reflections
Radiation source: fine-focus sealed tube1365 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.113
Detector resolution: 9 pixels mm-1θmax = 25.2°, θmin = 2.6°
φ scans and ω scans with κ offseth = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2014)
k = 3738
Tmin = 0.954, Tmax = 0.983l = 99
18286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.040P)2 + 0.4218P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2760 reflectionsΔρmax = 0.25 e Å3
233 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7180 (4)0.01793 (8)1.0878 (3)0.0290 (6)
H1O10.657 (6)0.0376 (13)0.997 (5)0.070 (14)*
O21.6498 (3)0.05876 (7)1.4408 (3)0.0322 (7)
O31.5860 (3)0.11239 (8)1.2643 (3)0.0299 (6)
N11.5327 (4)0.07871 (10)1.3227 (4)0.0255 (7)
N20.6467 (4)0.08236 (9)0.8823 (3)0.0241 (7)
N30.0003 (4)0.16368 (10)0.4069 (4)0.0306 (8)
H1N30.118 (5)0.1527 (10)0.413 (4)0.037*
C10.9164 (5)0.03312 (11)1.1387 (4)0.0235 (9)
C21.0557 (5)0.01128 (11)1.2681 (4)0.0289 (9)
H21.01100.01331.31590.035*
C31.2570 (5)0.02547 (11)1.3255 (4)0.0286 (9)
H31.34980.01071.41150.034*
C41.3215 (5)0.06199 (11)1.2546 (4)0.0214 (8)
C51.1882 (5)0.08439 (11)1.1266 (4)0.0229 (9)
H51.23580.10881.08010.027*
C60.9819 (5)0.07046 (10)1.0666 (4)0.0206 (8)
C70.8378 (5)0.09492 (11)0.9384 (4)0.0247 (9)
H70.88370.12000.89610.030*
C80.4951 (5)0.10551 (11)0.7634 (4)0.0226 (9)
C90.5258 (5)0.14469 (11)0.6939 (5)0.0286 (9)
H90.65650.15790.72610.034*
C100.3657 (5)0.16458 (11)0.5776 (4)0.0296 (9)
H100.38850.19120.53470.035*
C110.1687 (5)0.14472 (11)0.5240 (4)0.0235 (9)
C120.1366 (5)0.10576 (11)0.5961 (4)0.0266 (9)
H120.00580.09250.56560.032*
C130.2985 (5)0.08666 (11)0.7131 (4)0.0247 (9)
H130.27510.06040.75930.030*
C140.0098 (5)0.18488 (10)0.2476 (5)0.0233 (9)
C150.1924 (5)0.18889 (11)0.1768 (5)0.0280 (9)
H150.32060.17870.23940.034*
C160.1843 (6)0.20790 (11)0.0138 (5)0.0342 (10)
H160.30760.21030.03260.041*
C170.0036 (5)0.22338 (11)0.0815 (5)0.0329 (10)
H170.00800.23570.19210.039*
C180.1849 (5)0.22024 (11)0.0099 (5)0.0314 (10)
H180.31180.23100.07240.038*
C190.1803 (5)0.20138 (10)0.1532 (5)0.0275 (9)
H190.30340.19970.20030.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (14)0.0337 (16)0.0344 (16)0.0028 (12)0.0019 (12)0.0031 (14)
O20.0214 (14)0.0425 (17)0.0289 (15)0.0020 (12)0.0052 (12)0.0051 (13)
O30.0198 (14)0.0313 (16)0.0374 (16)0.0063 (12)0.0025 (12)0.0022 (13)
N10.0231 (18)0.031 (2)0.0225 (18)0.0034 (16)0.0046 (15)0.0032 (16)
N20.0206 (17)0.0289 (19)0.0211 (17)0.0005 (14)0.0004 (14)0.0017 (14)
N30.0129 (17)0.043 (2)0.034 (2)0.0002 (15)0.0010 (16)0.0047 (17)
C10.016 (2)0.031 (2)0.023 (2)0.0023 (18)0.0026 (18)0.0068 (19)
C20.025 (2)0.031 (2)0.029 (2)0.0050 (18)0.0008 (19)0.0034 (19)
C30.024 (2)0.030 (2)0.028 (2)0.0033 (18)0.0022 (18)0.0023 (19)
C40.0104 (19)0.027 (2)0.025 (2)0.0033 (16)0.0007 (17)0.0024 (19)
C50.022 (2)0.023 (2)0.024 (2)0.0007 (17)0.0065 (18)0.0055 (17)
C60.018 (2)0.023 (2)0.021 (2)0.0006 (17)0.0054 (17)0.0009 (17)
C70.024 (2)0.025 (2)0.025 (2)0.0013 (17)0.0057 (19)0.0005 (18)
C80.018 (2)0.029 (2)0.019 (2)0.0015 (18)0.0022 (17)0.0009 (18)
C90.018 (2)0.030 (2)0.034 (2)0.0039 (17)0.0038 (19)0.0026 (19)
C100.029 (2)0.025 (2)0.031 (2)0.0006 (18)0.0049 (19)0.0001 (19)
C110.021 (2)0.029 (2)0.019 (2)0.0040 (18)0.0004 (18)0.0032 (18)
C120.016 (2)0.039 (3)0.025 (2)0.0060 (18)0.0050 (18)0.0006 (19)
C130.021 (2)0.030 (2)0.024 (2)0.0030 (17)0.0043 (18)0.0022 (18)
C140.022 (2)0.020 (2)0.026 (2)0.0009 (17)0.0008 (18)0.0006 (17)
C150.015 (2)0.030 (2)0.036 (3)0.0006 (16)0.0029 (18)0.0017 (19)
C160.024 (2)0.037 (3)0.041 (3)0.0040 (18)0.006 (2)0.006 (2)
C170.030 (2)0.030 (2)0.036 (2)0.0031 (19)0.001 (2)0.0081 (19)
C180.024 (2)0.028 (2)0.038 (3)0.0015 (18)0.0034 (19)0.005 (2)
C190.017 (2)0.026 (2)0.038 (2)0.0001 (16)0.0012 (18)0.000 (2)
Geometric parameters (Å, º) top
O1—C11.351 (4)C8—C91.384 (4)
O1—H1O10.97 (4)C8—C131.387 (4)
O2—N11.238 (3)C9—C101.382 (4)
O3—N11.234 (3)C9—H90.9300
N1—C41.460 (4)C10—C111.406 (4)
N2—C71.287 (4)C10—H100.9300
N2—C81.410 (4)C11—C121.388 (4)
N3—C141.406 (4)C12—C131.381 (4)
N3—C111.406 (4)C12—H120.9300
N3—H1N30.85 (3)C13—H130.9300
C1—C21.391 (4)C14—C151.387 (4)
C1—C61.407 (4)C14—C191.400 (4)
C2—C31.363 (4)C15—C161.379 (4)
C2—H20.9300C15—H150.9300
C3—C41.379 (4)C16—C171.380 (4)
C3—H30.9300C16—H160.9300
C4—C51.375 (4)C17—C181.380 (4)
C5—C61.392 (4)C17—H170.9300
C5—H50.9300C18—C191.381 (4)
C6—C71.445 (4)C18—H180.9300
C7—H70.9300C19—H190.9300
C1—O1—H1O1102 (2)C10—C9—H9119.4
O3—N1—O2122.6 (3)C8—C9—H9119.4
O3—N1—C4119.2 (3)C9—C10—C11120.3 (3)
O2—N1—C4118.2 (3)C9—C10—H10119.9
C7—N2—C8123.7 (3)C11—C10—H10119.9
C14—N3—C11127.3 (3)C12—C11—N3118.9 (3)
C14—N3—H1N3116 (2)C12—C11—C10118.5 (3)
C11—N3—H1N3112 (2)N3—C11—C10122.5 (3)
O1—C1—C2118.3 (3)C13—C12—C11120.1 (3)
O1—C1—C6121.6 (3)C13—C12—H12119.9
C2—C1—C6120.1 (3)C11—C12—H12119.9
C3—C2—C1120.7 (3)C12—C13—C8121.8 (3)
C3—C2—H2119.7C12—C13—H13119.1
C1—C2—H2119.7C8—C13—H13119.1
C2—C3—C4119.3 (3)C15—C14—C19118.9 (3)
C2—C3—H3120.4C15—C14—N3124.1 (3)
C4—C3—H3120.4C19—C14—N3116.9 (3)
C5—C4—C3121.7 (3)C16—C15—C14120.1 (3)
C5—C4—N1118.7 (3)C16—C15—H15119.9
C3—C4—N1119.6 (3)C14—C15—H15119.9
C4—C5—C6119.9 (3)C15—C16—C17121.1 (3)
C4—C5—H5120.0C15—C16—H16119.4
C6—C5—H5120.0C17—C16—H16119.4
C5—C6—C1118.4 (3)C18—C17—C16118.9 (3)
C5—C6—C7120.2 (3)C18—C17—H17120.5
C1—C6—C7121.4 (3)C16—C17—H17120.5
N2—C7—C6120.7 (3)C17—C18—C19120.9 (3)
N2—C7—H7119.6C17—C18—H18119.6
C6—C7—H7119.6C19—C18—H18119.6
C9—C8—C13118.1 (3)C18—C19—C14120.0 (3)
C9—C8—N2126.0 (3)C18—C19—H19120.0
C13—C8—N2115.9 (3)C14—C19—H19120.0
C10—C9—C8121.2 (3)
O1—C1—C2—C3179.4 (3)C13—C8—C9—C100.1 (5)
C6—C1—C2—C30.5 (5)N2—C8—C9—C10179.8 (3)
C1—C2—C3—C40.4 (5)C8—C9—C10—C111.5 (5)
C2—C3—C4—C50.4 (5)C14—N3—C11—C12137.7 (4)
C2—C3—C4—N1176.4 (3)C14—N3—C11—C1045.4 (5)
O3—N1—C4—C50.1 (4)C9—C10—C11—C122.7 (5)
O2—N1—C4—C5178.4 (3)C9—C10—C11—N3179.6 (3)
O3—N1—C4—C3176.8 (3)N3—C11—C12—C13179.2 (3)
O2—N1—C4—C31.5 (4)C10—C11—C12—C132.2 (5)
C3—C4—C5—C60.5 (5)C11—C12—C13—C80.6 (5)
N1—C4—C5—C6176.3 (3)C9—C8—C13—C120.5 (5)
C4—C5—C6—C10.7 (4)N2—C8—C13—C12179.4 (3)
C4—C5—C6—C7177.0 (3)C11—N3—C14—C152.6 (5)
O1—C1—C6—C5179.5 (3)C11—N3—C14—C19179.8 (3)
C2—C1—C6—C50.7 (5)C19—C14—C15—C161.7 (5)
O1—C1—C6—C71.8 (5)N3—C14—C15—C16175.8 (3)
C2—C1—C6—C7177.0 (3)C14—C15—C16—C170.3 (5)
C8—N2—C7—C6177.1 (3)C15—C16—C17—C181.1 (5)
C5—C6—C7—N2179.9 (3)C16—C17—C18—C191.0 (5)
C1—C6—C7—N22.3 (5)C17—C18—C19—C140.5 (5)
C7—N2—C8—C91.6 (5)C15—C14—C19—C181.8 (5)
C7—N2—C8—C13178.3 (3)N3—C14—C19—C18175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N20.97 (4)1.67 (4)2.573 (4)155 (4)
N3—H1N3···O3i0.85 (3)2.40 (3)3.140 (4)147 (3)
C3—H3···O2ii0.932.483.217 (4)136
C12—H12···O2i0.932.553.470 (4)173
Symmetry codes: (i) x2, y, z1; (ii) x+3, y, z+3.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support and Dr Igor Fritsky and Dr Graham Smith for important discussions.

References

First citationAlarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240.  Web of Science CrossRef Google Scholar
First citationAldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787–791.  CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFilarowski, A. (2005). J. Phys. Org. Chem. 18, 686–698.  Web of Science CrossRef CAS Google Scholar
First citationFilipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889–895.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.  Google Scholar
First citationValkonen, A., Kolehmainen, E., Grzegórska, A., Ośmiałowski, B., Gawinecki, R. & Rissanen, K. (2012). Acta Cryst. C68, o279–o282.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). Faraday Trans. 91, 77–85.  CSD CrossRef Web of Science Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds