research communications
E)-2-{[(4-anilinophenyl)imino]methyl}-4-nitrophenol
of (aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, and bDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
In the title compound, C19H15N3O3, which crystallizes as the phenol–imine tautomer, the dihedral angle between the aromatic rings bridged by the NH unit is 47.16 (16)°. The dihedral angle between the rings bridged by the imine unit is 6.24 (15)°; this near coplanarity is reinforced by an intramolecular O—H⋯N hydrogen bond, which generates an S(6) ring. In the crystal, N—H⋯O hydrogen bonds generate [201] C(13) chains. The chains are reinforced and cross-linked by C—H⋯O interactions to generate (001) sheets.
Keywords: crystal structure; intramolecular hydrogen bonding; Schiff base.
CCDC reference: 1524980
1. Chemical context
et al., 2006). Intramolecular hydrogen-atom transfer (tautomerism) from the o-hydroxy group to the imine-N atom is of prime importance with respect to the solvato-, thermo- and photochromic properties exhibited by o-hydroxy (Filarowski, 2005; Hadjoudis et al., 2004). Such proton-exchanging materials can be utilized for the design of various molecular electronic devices (Alarcón et al., 1999). As part of our ongoing studies of and their complexes (Faizi et al., 2016), we now report the synthesis (from 2-hydroxy-5-nitrobenzaldehyde and N-phenyl-p-phenylenediamine) and of the title compound, (I).
derived from 2-hydroxy-5-nitrobenzaldehyde are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan2. Structural commentary
The molecular structure of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular O—H⋯N hydrogen bond (Table 1), which is a common feature in related imine-phenol compounds. The imine group displays a C6—C7—N2—C8 torsion angle of 177.1 (3)° and the nitro phenol ring (C1–C6) is inclined to the central benzene ring (C8–C13) by 6.24 (4)°. The overall twisted conformation of the molecule is largely determined by the orientation of the terminal aminophenyl ring (C14–C19) with respect to the central benzene ring (C8–C13); the dihedral angle between them is 47.18 (4)°. The two outer aromatic rings (C1–C6 and C14–C19) are inclined to one another by 42.08 (4)°. The C1—O1 distance [1.351 (4) Å] is close to normal values reported for single C—O bonds in and salicylideneamines (Ozeryanskii et al., 2006). The N2—C7 bond is short at 1.287 (4) Å, strongly indicating the existence of a conjugated C=N bond, while the long C6—C7 bond [1.445 (4) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I) in its crystalline state. These features are similar to those observed in related 4-dimethylamino-N-salicylideneanilines (Filipenko et al., 1983; Aldoshin et al., 1984; Wozniak et al., 1995; Pizzala et al., 2000).
3. Supramolecular features
In the crystal, molecules are connected by N—H⋯O hydrogen bonds, generating C(13) chains propagating in the [201] direction. The chains are reinforced by the C12—H12⋯O2 link and cross-linked by the C3—H3⋯O2 bond [which in its own right generates a C(5) chain] (Table 1), resulting in (001) sheets (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) revealed the structure of one very similar compound, viz. (E)-2-({[4-(dialkylamino)phenyl]imino}methyl)-4-nitrophenol (II) (Valkonen et al., 2012), in which the 4-alkylamino-substituted benzene ring in the title compound is replaced by a 4-N-phenylbenzene ring. In (II), the 4-alkylamino-substituted ring makes a dihedral angle of 13.44 (19)° with the 4-nitro-substituted phenol ring. The equivalent dihedral angle is smaller in the title compound [6.24 (4)°] owing to the presence of the intramolecular O—H⋯N hydrogen bond.
5. Synthesis and crystallization
100 mg (1 mmol) of N-phenyl-p-phenylenediamine was dissolved in 10 ml of absolute ethanol. To this solution, 90 mg (1 mmol) of 2-hydroxy-5-nitrobenzaldehyde in 5 ml of absolute ethanol was added dropwise with stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was refluxed for 2 h. The resulting reddish yellow precipitate was recovered by filtration, washed several times with small portions of EtOH and then with diethyl ether to give 150 mg (83%) of the title compound. Colourless blocks of (I) were obtained within three days by slow evaporation of a solution in methanol.
6. Refinement
Crystal data, data collection and structure . The O—H, N—H and H atoms were located in a difference-Fourier map and freely refined. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1524980
https://doi.org/10.1107/S2056989016020673/hb7649sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016020673/hb7649Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016020673/hb7649Isup3.cml
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2014); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).C19H15N3O3 | F(000) = 696 |
Mr = 333.34 | Dx = 1.439 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4243 (12) Å | Cell parameters from 1374 reflections |
b = 31.818 (6) Å | θ = 2.7–25.0° |
c = 7.6595 (14) Å | µ = 0.10 mm−1 |
β = 100.736 (5)° | T = 293 K |
V = 1538.2 (5) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2760 independent reflections |
Radiation source: fine-focus sealed tube | 1365 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.113 |
Detector resolution: 9 pixels mm-1 | θmax = 25.2°, θmin = 2.6° |
φ scans and ω scans with κ offset | h = −7→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | k = −37→38 |
Tmin = 0.954, Tmax = 0.983 | l = −9→9 |
18286 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.4218P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2760 reflections | Δρmax = 0.25 e Å−3 |
233 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7180 (4) | 0.01793 (8) | 1.0878 (3) | 0.0290 (6) | |
H1O1 | 0.657 (6) | 0.0376 (13) | 0.997 (5) | 0.070 (14)* | |
O2 | 1.6498 (3) | 0.05876 (7) | 1.4408 (3) | 0.0322 (7) | |
O3 | 1.5860 (3) | 0.11239 (8) | 1.2643 (3) | 0.0299 (6) | |
N1 | 1.5327 (4) | 0.07871 (10) | 1.3227 (4) | 0.0255 (7) | |
N2 | 0.6467 (4) | 0.08236 (9) | 0.8823 (3) | 0.0241 (7) | |
N3 | 0.0003 (4) | 0.16368 (10) | 0.4069 (4) | 0.0306 (8) | |
H1N3 | −0.118 (5) | 0.1527 (10) | 0.413 (4) | 0.037* | |
C1 | 0.9164 (5) | 0.03312 (11) | 1.1387 (4) | 0.0235 (9) | |
C2 | 1.0557 (5) | 0.01128 (11) | 1.2681 (4) | 0.0289 (9) | |
H2 | 1.0110 | −0.0133 | 1.3159 | 0.035* | |
C3 | 1.2570 (5) | 0.02547 (11) | 1.3255 (4) | 0.0286 (9) | |
H3 | 1.3498 | 0.0107 | 1.4115 | 0.034* | |
C4 | 1.3215 (5) | 0.06199 (11) | 1.2546 (4) | 0.0214 (8) | |
C5 | 1.1882 (5) | 0.08439 (11) | 1.1266 (4) | 0.0229 (9) | |
H5 | 1.2358 | 0.1088 | 1.0801 | 0.027* | |
C6 | 0.9819 (5) | 0.07046 (10) | 1.0666 (4) | 0.0206 (8) | |
C7 | 0.8378 (5) | 0.09492 (11) | 0.9384 (4) | 0.0247 (9) | |
H7 | 0.8837 | 0.1200 | 0.8961 | 0.030* | |
C8 | 0.4951 (5) | 0.10551 (11) | 0.7634 (4) | 0.0226 (9) | |
C9 | 0.5258 (5) | 0.14469 (11) | 0.6939 (5) | 0.0286 (9) | |
H9 | 0.6565 | 0.1579 | 0.7261 | 0.034* | |
C10 | 0.3657 (5) | 0.16458 (11) | 0.5776 (4) | 0.0296 (9) | |
H10 | 0.3885 | 0.1912 | 0.5347 | 0.035* | |
C11 | 0.1687 (5) | 0.14472 (11) | 0.5240 (4) | 0.0235 (9) | |
C12 | 0.1366 (5) | 0.10576 (11) | 0.5961 (4) | 0.0266 (9) | |
H12 | 0.0058 | 0.0925 | 0.5656 | 0.032* | |
C13 | 0.2985 (5) | 0.08666 (11) | 0.7131 (4) | 0.0247 (9) | |
H13 | 0.2751 | 0.0604 | 0.7593 | 0.030* | |
C14 | 0.0098 (5) | 0.18488 (10) | 0.2476 (5) | 0.0233 (9) | |
C15 | 0.1924 (5) | 0.18889 (11) | 0.1768 (5) | 0.0280 (9) | |
H15 | 0.3206 | 0.1787 | 0.2394 | 0.034* | |
C16 | 0.1843 (6) | 0.20790 (11) | 0.0138 (5) | 0.0342 (10) | |
H16 | 0.3076 | 0.2103 | −0.0326 | 0.041* | |
C17 | −0.0036 (5) | 0.22338 (11) | −0.0815 (5) | 0.0329 (10) | |
H17 | −0.0080 | 0.2357 | −0.1921 | 0.039* | |
C18 | −0.1849 (5) | 0.22024 (11) | −0.0099 (5) | 0.0314 (10) | |
H18 | −0.3118 | 0.2310 | −0.0724 | 0.038* | |
C19 | −0.1803 (5) | 0.20138 (10) | 0.1532 (5) | 0.0275 (9) | |
H19 | −0.3034 | 0.1997 | 0.2003 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0164 (14) | 0.0337 (16) | 0.0344 (16) | −0.0028 (12) | −0.0019 (12) | 0.0031 (14) |
O2 | 0.0214 (14) | 0.0425 (17) | 0.0289 (15) | 0.0020 (12) | −0.0052 (12) | 0.0051 (13) |
O3 | 0.0198 (14) | 0.0313 (16) | 0.0374 (16) | −0.0063 (12) | 0.0025 (12) | 0.0022 (13) |
N1 | 0.0231 (18) | 0.031 (2) | 0.0225 (18) | 0.0034 (16) | 0.0046 (15) | −0.0032 (16) |
N2 | 0.0206 (17) | 0.0289 (19) | 0.0211 (17) | 0.0005 (14) | −0.0004 (14) | −0.0017 (14) |
N3 | 0.0129 (17) | 0.043 (2) | 0.034 (2) | −0.0002 (15) | 0.0010 (16) | 0.0047 (17) |
C1 | 0.016 (2) | 0.031 (2) | 0.023 (2) | 0.0023 (18) | 0.0026 (18) | −0.0068 (19) |
C2 | 0.025 (2) | 0.031 (2) | 0.029 (2) | −0.0050 (18) | −0.0008 (19) | 0.0034 (19) |
C3 | 0.024 (2) | 0.030 (2) | 0.028 (2) | 0.0033 (18) | −0.0022 (18) | 0.0023 (19) |
C4 | 0.0104 (19) | 0.027 (2) | 0.025 (2) | −0.0033 (16) | −0.0007 (17) | −0.0024 (19) |
C5 | 0.022 (2) | 0.023 (2) | 0.024 (2) | −0.0007 (17) | 0.0065 (18) | −0.0055 (17) |
C6 | 0.018 (2) | 0.023 (2) | 0.021 (2) | 0.0006 (17) | 0.0054 (17) | −0.0009 (17) |
C7 | 0.024 (2) | 0.025 (2) | 0.025 (2) | 0.0013 (17) | 0.0057 (19) | −0.0005 (18) |
C8 | 0.018 (2) | 0.029 (2) | 0.019 (2) | −0.0015 (18) | −0.0022 (17) | −0.0009 (18) |
C9 | 0.018 (2) | 0.030 (2) | 0.034 (2) | −0.0039 (17) | −0.0038 (19) | −0.0026 (19) |
C10 | 0.029 (2) | 0.025 (2) | 0.031 (2) | −0.0006 (18) | −0.0049 (19) | −0.0001 (19) |
C11 | 0.021 (2) | 0.029 (2) | 0.019 (2) | 0.0040 (18) | 0.0004 (18) | −0.0032 (18) |
C12 | 0.016 (2) | 0.039 (3) | 0.025 (2) | −0.0060 (18) | 0.0050 (18) | 0.0006 (19) |
C13 | 0.021 (2) | 0.030 (2) | 0.024 (2) | −0.0030 (17) | 0.0043 (18) | 0.0022 (18) |
C14 | 0.022 (2) | 0.020 (2) | 0.026 (2) | 0.0009 (17) | −0.0008 (18) | −0.0006 (17) |
C15 | 0.015 (2) | 0.030 (2) | 0.036 (3) | −0.0006 (16) | −0.0029 (18) | −0.0017 (19) |
C16 | 0.024 (2) | 0.037 (3) | 0.041 (3) | −0.0040 (18) | 0.006 (2) | 0.006 (2) |
C17 | 0.030 (2) | 0.030 (2) | 0.036 (2) | −0.0031 (19) | −0.001 (2) | 0.0081 (19) |
C18 | 0.024 (2) | 0.028 (2) | 0.038 (3) | 0.0015 (18) | −0.0034 (19) | 0.005 (2) |
C19 | 0.017 (2) | 0.026 (2) | 0.038 (2) | 0.0001 (16) | 0.0012 (18) | 0.000 (2) |
O1—C1 | 1.351 (4) | C8—C9 | 1.384 (4) |
O1—H1O1 | 0.97 (4) | C8—C13 | 1.387 (4) |
O2—N1 | 1.238 (3) | C9—C10 | 1.382 (4) |
O3—N1 | 1.234 (3) | C9—H9 | 0.9300 |
N1—C4 | 1.460 (4) | C10—C11 | 1.406 (4) |
N2—C7 | 1.287 (4) | C10—H10 | 0.9300 |
N2—C8 | 1.410 (4) | C11—C12 | 1.388 (4) |
N3—C14 | 1.406 (4) | C12—C13 | 1.381 (4) |
N3—C11 | 1.406 (4) | C12—H12 | 0.9300 |
N3—H1N3 | 0.85 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.391 (4) | C14—C15 | 1.387 (4) |
C1—C6 | 1.407 (4) | C14—C19 | 1.400 (4) |
C2—C3 | 1.363 (4) | C15—C16 | 1.379 (4) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.379 (4) | C16—C17 | 1.380 (4) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.375 (4) | C17—C18 | 1.380 (4) |
C5—C6 | 1.392 (4) | C17—H17 | 0.9300 |
C5—H5 | 0.9300 | C18—C19 | 1.381 (4) |
C6—C7 | 1.445 (4) | C18—H18 | 0.9300 |
C7—H7 | 0.9300 | C19—H19 | 0.9300 |
C1—O1—H1O1 | 102 (2) | C10—C9—H9 | 119.4 |
O3—N1—O2 | 122.6 (3) | C8—C9—H9 | 119.4 |
O3—N1—C4 | 119.2 (3) | C9—C10—C11 | 120.3 (3) |
O2—N1—C4 | 118.2 (3) | C9—C10—H10 | 119.9 |
C7—N2—C8 | 123.7 (3) | C11—C10—H10 | 119.9 |
C14—N3—C11 | 127.3 (3) | C12—C11—N3 | 118.9 (3) |
C14—N3—H1N3 | 116 (2) | C12—C11—C10 | 118.5 (3) |
C11—N3—H1N3 | 112 (2) | N3—C11—C10 | 122.5 (3) |
O1—C1—C2 | 118.3 (3) | C13—C12—C11 | 120.1 (3) |
O1—C1—C6 | 121.6 (3) | C13—C12—H12 | 119.9 |
C2—C1—C6 | 120.1 (3) | C11—C12—H12 | 119.9 |
C3—C2—C1 | 120.7 (3) | C12—C13—C8 | 121.8 (3) |
C3—C2—H2 | 119.7 | C12—C13—H13 | 119.1 |
C1—C2—H2 | 119.7 | C8—C13—H13 | 119.1 |
C2—C3—C4 | 119.3 (3) | C15—C14—C19 | 118.9 (3) |
C2—C3—H3 | 120.4 | C15—C14—N3 | 124.1 (3) |
C4—C3—H3 | 120.4 | C19—C14—N3 | 116.9 (3) |
C5—C4—C3 | 121.7 (3) | C16—C15—C14 | 120.1 (3) |
C5—C4—N1 | 118.7 (3) | C16—C15—H15 | 119.9 |
C3—C4—N1 | 119.6 (3) | C14—C15—H15 | 119.9 |
C4—C5—C6 | 119.9 (3) | C15—C16—C17 | 121.1 (3) |
C4—C5—H5 | 120.0 | C15—C16—H16 | 119.4 |
C6—C5—H5 | 120.0 | C17—C16—H16 | 119.4 |
C5—C6—C1 | 118.4 (3) | C18—C17—C16 | 118.9 (3) |
C5—C6—C7 | 120.2 (3) | C18—C17—H17 | 120.5 |
C1—C6—C7 | 121.4 (3) | C16—C17—H17 | 120.5 |
N2—C7—C6 | 120.7 (3) | C17—C18—C19 | 120.9 (3) |
N2—C7—H7 | 119.6 | C17—C18—H18 | 119.6 |
C6—C7—H7 | 119.6 | C19—C18—H18 | 119.6 |
C9—C8—C13 | 118.1 (3) | C18—C19—C14 | 120.0 (3) |
C9—C8—N2 | 126.0 (3) | C18—C19—H19 | 120.0 |
C13—C8—N2 | 115.9 (3) | C14—C19—H19 | 120.0 |
C10—C9—C8 | 121.2 (3) | ||
O1—C1—C2—C3 | −179.4 (3) | C13—C8—C9—C10 | −0.1 (5) |
C6—C1—C2—C3 | −0.5 (5) | N2—C8—C9—C10 | 179.8 (3) |
C1—C2—C3—C4 | 0.4 (5) | C8—C9—C10—C11 | −1.5 (5) |
C2—C3—C4—C5 | −0.4 (5) | C14—N3—C11—C12 | −137.7 (4) |
C2—C3—C4—N1 | 176.4 (3) | C14—N3—C11—C10 | 45.4 (5) |
O3—N1—C4—C5 | 0.1 (4) | C9—C10—C11—C12 | 2.7 (5) |
O2—N1—C4—C5 | 178.4 (3) | C9—C10—C11—N3 | 179.6 (3) |
O3—N1—C4—C3 | −176.8 (3) | N3—C11—C12—C13 | −179.2 (3) |
O2—N1—C4—C3 | 1.5 (4) | C10—C11—C12—C13 | −2.2 (5) |
C3—C4—C5—C6 | 0.5 (5) | C11—C12—C13—C8 | 0.6 (5) |
N1—C4—C5—C6 | −176.3 (3) | C9—C8—C13—C12 | 0.5 (5) |
C4—C5—C6—C1 | −0.7 (4) | N2—C8—C13—C12 | −179.4 (3) |
C4—C5—C6—C7 | 177.0 (3) | C11—N3—C14—C15 | 2.6 (5) |
O1—C1—C6—C5 | 179.5 (3) | C11—N3—C14—C19 | −179.8 (3) |
C2—C1—C6—C5 | 0.7 (5) | C19—C14—C15—C16 | −1.7 (5) |
O1—C1—C6—C7 | 1.8 (5) | N3—C14—C15—C16 | 175.8 (3) |
C2—C1—C6—C7 | −177.0 (3) | C14—C15—C16—C17 | 0.3 (5) |
C8—N2—C7—C6 | 177.1 (3) | C15—C16—C17—C18 | 1.1 (5) |
C5—C6—C7—N2 | −179.9 (3) | C16—C17—C18—C19 | −1.0 (5) |
C1—C6—C7—N2 | −2.3 (5) | C17—C18—C19—C14 | −0.5 (5) |
C7—N2—C8—C9 | −1.6 (5) | C15—C14—C19—C18 | 1.8 (5) |
C7—N2—C8—C13 | 178.3 (3) | N3—C14—C19—C18 | −175.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N2 | 0.97 (4) | 1.67 (4) | 2.573 (4) | 155 (4) |
N3—H1N3···O3i | 0.85 (3) | 2.40 (3) | 3.140 (4) | 147 (3) |
C3—H3···O2ii | 0.93 | 2.48 | 3.217 (4) | 136 |
C12—H12···O2i | 0.93 | 2.55 | 3.470 (4) | 173 |
Symmetry codes: (i) x−2, y, z−1; (ii) −x+3, −y, −z+3. |
Acknowledgements
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support and Dr Igor Fritsky and Dr Graham Smith for important discussions.
References
Alarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240. Web of Science CrossRef Google Scholar
Aldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787–791. CAS Google Scholar
Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Filarowski, A. (2005). J. Phys. Org. Chem. 18, 686–698. Web of Science CrossRef CAS Google Scholar
Filipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889–895. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588. Web of Science PubMed CAS Google Scholar
Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790. Web of Science CSD CrossRef Google Scholar
Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany. Google Scholar
Valkonen, A., Kolehmainen, E., Grzegórska, A., Ośmiałowski, B., Gawinecki, R. & Rissanen, K. (2012). Acta Cryst. C68, o279–o282. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). Faraday Trans. 91, 77–85. CSD CrossRef Web of Science Google Scholar
Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.