research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 1-oxo-1,2-di­hydro­naphthalene derivatives: di­methyl 4-(4-meth­­oxy­phen­yl)-2-(4-methyl­phen­yl)-1-oxo-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate, di­methyl 1-oxo-2-(pyren-4-yl)-4-(thio­phen-2-yl)-1,2-di­hydro­naphthalene-2,3-di­carboxyl­ate and ethyl 1-oxo-2-phenyl-2,4-bis­­(thio­phen-2-yl)-1,2-di­hydro­naphthalene-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Ishida, Okayama University, Japan (Received 16 December 2016; accepted 10 January 2017; online 13 January 2017)

In the title 1-oxo-1,2-di­hydro­naphthalene derivatives, C28H24O6, (I), C34H22O5S, (II), and C27H20O3S2, (III), the cyclo­hexa-1,3-diene rings of the 1,2-di­hydro­naphthalene ring systems adopt half-chair, boat and half-chair conformations, respectively. The carbonyl O atoms attached to the di­hydro­naphthalene ring systems are each significantly deviated from the mean plane of the 1,2-di­hydro­naphthalene ring system, by 0.6162 (12) Å in (I), 0.6016 (16) Å in (II) and 0.515 (3) Å in (III). The mean planes of the 1,2-di­hydro­naphthalene ring systems make dihedral angles of 85.83 (3), 88.19 (3) and 81.67 (8)°, respectively, with the methyl­phenyl ring in (I), the pyrene ring in (II) and the phenyl ring in (III). In (I), the mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal of (I), mol­ecules are linked by an inter­molecular C—H⋯O hydrogen bond, which generates a C(8) zigzag chain running along [100]. Adjacent chains are further connected by C—H⋯π and offset ππ inter­actions [centroid–centroid distance = 3.6572 (9) Å], forming a double-chain structure. In the crystals of (II) and (III), mol­ecules are linked into chain structures by offset ππ inter­actions with centroid–centroid distances of 3.5349 (12) and 3.8845 (13) Å for (II) and 3.588 (2) Å for (III). In (II) and (III), the thio­phene rings are orientationally disordered over two sites, with occupancy ratios of 0.69:0.31 for (II), and 0.528 (4):0.472 (4) and 0.632 (5):0.368 (5) for (III).

1. Chemical context

Naphthalene derivatives have been employed extensively in many fields, and some of them possess important biological and commercial applications, including use as disinfectants, insecticides and auxin plant hormones, and rooting agents (Morikawa & Takahashi, 2004[Morikawa, H. & Takahashi, M. (2004). US Patent 6800482.]). The bicyclic naphthalene skeleton constitutes a large number of clinical drugs, such as propranolol (Crowther & Smith, 1968[Crowther, A. F. & Smith, L. H. (1968). J. Med. Chem. 11, 1009-1013.]), naproxen (Harrison et al., 1970[Harrison, I. T., Lewis, B., Nelson, P., Rooks, W., Roszkowski, A., Tomolonis, A. & Fried, J. H. (1970). J. Med. Chem. 13, 203-205.]), an anti-inflammatory agent (Goudie et al., 1978[Goudie, A. C., Gaster, L. M., Lake, A. W., Rose, C. J., Freeman, P. C., Hughes, B. O. & Miller, D. (1978). J. Med. Chem. 21, 1260-1264.]) and methallenestril (a non-steroid oestrogen). Di­hydroxy­naph­thal­ene derivatives are a class of inter­mediates important for applications in dye synthesis (Bianchi et al., 1997[Bianchi, D., Bernardi, A., Bosetti, A., Bortolo, R., Cidaria, D., Crespi, E. & Gagliardi, I. (1997). Appl. Microbiol. Biotechnol. 48, 363-366.]) or as monomers in the preparation of polymers, such as polyesters (Blundell & Buckingham, 1985[Blundell, D. J. & Buckingham, K. A. (1985). Polymer, 26, 1623-1627.]; Aitken et al., 1992[Aitken, C. L., McHattie, J. S. & Paul, D. R. (1992). Macromolecules, 25, 2910-2922.]) and polynapthooxazines (Shen & Ishida, 1996[Shen, S. B. & Ishida, H. (1996). J. Appl. Polym. Sci. 61, 1595-1605.]). 1,2,3,4-Tetra­hydro­naphthalene derivatives are used for the treatment of central nervous system disorders (Jerussi et al., 2004[Jerussi, T. P., Fang, Q. K. & Currie, M. G. (2004). PCT Int. Appl. WO 2004042669 A1 200440325.]; Taber et al., 2004[Taber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process Res. Dev. 8, 385-388.]). Tetra­hydro­naphthalene derivatives are also used in liquid crystal display elements (Ray et al., 2003[Ray, J. K., Roy, B. C., Pan, D., Canle, L. M., Santaballa, J. A. & Mahía, J. (2003). Acta Cryst. E59, o514-o516.]). 1-Naphthalene­acetic acid is well known as a growth regulator/stimulator in a variety of fruits and vegetables (Garriz et al., 2004[Garriz, P. I., Alvarez, H. L. & Colavita, G. M. (2004). Acta Hortic. 636, 325-330.]; Li et al., 2004[Li, J., Huang, X. & Huang, H. (2004). Huanan Nongye Daxue Xuebao Ziran Kexueban, 25, 10-12.]). Against this background, we synthesized the title compounds (I)[link], (II)[link] and (III)[link] and report herein on their crystal structures and mol­ecular conformations.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds (I)[link], (II)[link] and (III)[link] are shown in Figs. 1[link], 2[link] and 3[link], respectively. The cyclo­hexa-1,3-diene rings (C1/C6–C10) of the 1,2-di­hydro naphthalene ring systems of compounds (I)[link], (II)[link] and (III)[link] adopt half-chair, boat and half-chair conformations, respectively, with puckering and smallest displacement parameters of q = 0.3370 (16) Å, θ = 115.7 (3)°, φ = 337.2 (3)° and ΔCs = 5.4 (2) for (I)[link], q = 0.257 (2) Å, θ = 66.6 (4)°, φ = 136.9 (5)° and ΔCs = 6.9 (2) for (II)[link], and q = 0.287 (3) Å, θ = 114.7 (6)°, φ = 337.2 (7)° and ΔCs = 4.4 (4) for (III)[link]. In each compound, the carbonyl oxygen atom O1 deviates significantly from the mean plane of the 1,2-di­hydro­napthalene ring system [by 0.6453 (13) Å for (I)[link], 0.6016 (16) Å for (II)[link] and 0.548 (3) Å for (III)]. The mean planes of the 1,2-di­hydro­naphthalene ring systems make dihedral angles of 85.83 (3), 88.19 (3) and 81.67 (8)° with the methyl­phenyl ring in (I)[link], the pyrene ring in (II)[link] and the phenyl ring in (III)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom-numbering scheme. The intra­molecular C—H⋯O inter­action with an S(6) ring motif is shown as a dashed line. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. For the sake of clarity, the minor component of the disordered thio­phene ring has been omitted.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. For the sake of clarity, the minor components of the disordered thio­phene rings have been omitted.

In (I)[link], the meth­oxy­phenyl ring is inclined by 19.41 (5) and 67.84 (4)°, respectively, to the methyl­phenyl ring and the mean plane of 1,2-di­hydro­naphthalene ring system. The methyl group carbon atom C28 deviates slightly [by 0.115 (2) Å] from the C22–C27 ring. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond with an S(6) ring motif (Table 1[link]). In (II)[link], the pyrene moiety is essentially planar with a maximum deviation of 0.085 (2) Å for atom C27. The thio­phene ring is orientationally disordered over two sites with an occupancy ratio of 0.69:0.31. In (III)[link], the two thio­phene rings are also disordered with occupancy ratios of 0.528 (4):0.472 (4) and 0.632 (5):0.368 (5).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg4 is the centroid of the C22–C27 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1 0.93 2.52 3.109 (2) 121
C16—H16⋯O1i 0.93 2.52 3.344 (3) 148
C3—H3⋯Cg4ii 0.93 2.78 3.656 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

3. Supra­molecular features

In the crystal of compound (I)[link], the mol­ecules are linked via C—H⋯O hydrogen bonds (C16—H16⋯O1i; Table 1[link]), generating a C(8) zigzag chain along to [100]. Adjacent chains are further linked into a double-chain structure (Fig. 4[link]) through C—H⋯π and ππ inter­actions [C3—H3⋯Cg4ii; Table 1[link]; Cg1⋯Cg1ii = 3.6572 (9) Å, inter­planar distance = 3.443 (1) Å, slippage = 1.232 Å; Cg1 and Cg4 are the centroids of the C1–C6 and C22–C27 benzene rings, respectively].

[Figure 4]
Figure 4
A packing diagram of compound (I)[link], viewed along the b axis, showing the C16—H16⋯O1i and C3—H3⋯Cg4ii inter­actions (dashed lines). Cg4 is the centroid of the C22–C27 benzene ring. [Symmetry codes: (i) −1 + x, y, z; (ii) 2 − x, 1 − y, 1 − z.]

In the crystal of (II)[link], the mol­ecules are linked by offset ππ inter­actions, forming a chain along [101] [Cg3⋯Cg6iii = 3.5349 (12) Å, inter­planar distance = 3.466 (1) Å; Cg3⋯Cg7iii = 3.8845 (13) Å, inter­planar distance = 3.468 (1) Å; Cg3, Cg6 and Cg7 are the centroids of the C1–C6, C22–C25/C33/C34 and C25–C29/C34 benzene rings, respectively; symmetry code: (iii) −[{1\over 2}] + x, 1/2-y, −[{1\over 2}] + z; Fig. 5[link]]. In the crystal of (III)[link], the mol­ecules are linked into a chain along [001] by an offset ππ inter­action [Cg5⋯Cg7iv = 3.888 (2) Å, inter­planar distance = 3.632 (1) Å; Cg5 and Cg7 are the centroids of the benzene C1–C6 and C22–C27 rings, respectively; symmetry code: (iv) x, 3/2-y, [{1\over 2}] + z; Fig. 6[link]].

[Figure 5]
Figure 5
A packing diagram of compound (II)[link], viewed approximately along the a axis, showing the ππ inter­actions (dashed lines). H atoms have been omitted for clarity. Cg3, Cg6 and Cg7 are the centroids of the C1–C6, C22–C25/C33/C34 and C25–C29/C34 benzene rings, respectively. [Symmetry code: (iii) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z.]
[Figure 6]
Figure 6
A packing diagram of compound (III)[link], showing the ππ inter­actions (dashed lines). H atoms have been excluded for clarity. Cg5 and Cg7 are the centroids of the C1–C6 and C22–C27 benzene rings, respectively. [Symmetry code: (iv) x, [{3\over 2}] − y, −[{1\over 2}] + z.]

4. Synthesis and crystallization

Compound (I): To a stirred solution of 1-(4-meth­oxy­phen­yl)-3-p-tolyl­isobenzo­furan (1 g, 3.31 mmol) in dry di­chloro­methane (DCM), dimethyl acetyl­enedi­carboxyl­ate (DMAD) (0.52 g, 3.64 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. Removal of the solvent was followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) gave the isobenzo­furan–DMAD adduct as a colorless solid (1.31 g, 87%). To a stirred solution of isobenzo­furan–DMAD adduct (0.30 g, 0.678 mmol) in dry DCM, BF3·OEt2 (0.04 g, 0.28 mmol) was added and the reaction mixture was stirred at room temperature for 5 min. Removal of the solvent followed by column chromatographic purification (silica gel; 15% ethyl acetate in hexa­ne) gave compound (I)[link] (0.28 g, 94%) as a colorless solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation from an ethyl acetate solution of (I)[link] at room temperature, m.p. 480–481 K.

Compound (II): To a stirred solution of 1-(pyren-1-yl)-3-(thio­phen-2-yl)isobenzo­furan (0.50 g, 1.25 mmol) in dry DCM (10 ml), DMAD (0.19 g, 1.32 mmol) was added and the reaction mixture was stirred at room temperature for 1 h. To this, BF3·OEt2 (0.075 g, 0.53 mmol) was added and stirred at room temperature for 5 min. Removal of the solvent followed by column chromatographic purification (silia gel; 15% ethyl acetate in hexa­ne) afforded compound (II)[link] as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation from an ethyl acetate solution of (II)[link] at room temperature, m.p. 469–471 K.

Compound (III): To a solution of 1,3-di(thio­phen-2-yl)isobenzo furan (0.50 g, 1.77 mmol) in dry toluene (15 ml), ethyl-3-phenyl­propiolate (0.34 g, 1.95 mmol) was added and refluxed till the consumption of 1,3-di(thio­phen-2-yl)isobenzo­furan (disappearance of fluorescent colour in 8 h). After removal of toluene in vacuo, the crude adduct was dissolved in dry DCM (15 ml), BF3·OEt2 (0.075 g, 0.52 mmol) was added and the reaction mixture was stirred for 10 min at room temperature. Removal of the solvent was followed by column chromatographic purification (silica gel; 15% ethyl accetate in hexa­ne) which afforded compound (III)[link] as a green solid (0.53 g, 65%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation from an ethyl acetate solution of (III)[link] at room temperature, m.p. 383–385 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For all compounds, H atoms were localized in difference Fourier maps and were then constrained geometrically with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methyl­ene H atoms, respectively, allowing for rotation of the methyl groups. The Uiso(H) values were set to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. In compound (II)[link], the thio­phene ring is disordered and the occupancy ratio was refined to 0.691 (3):0.309 (3), which was then fixed at 0.69:0.31 in the final refinement. In compound (III)[link], the two thio­phene rings are disordered with refined occupancy ratios of 0.528 (4):0.472 (4) and 0.632 (5):0.368 (5). For (II)[link] and (III)[link], ellipsoid displacement restraints (SIMU and DELU) and bond length restraints (DFIX) with C—S = 1.70 (1) Å, C—C = 1.50 (1) Å and C=C = 1.40 (1) Å were applied to the disordered rings.

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C28H24O6 C34H22O5S C27H20O3S2
Mr 456.47 542.58 456.55
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296 296
a, b, c (Å) 7.5256 (2), 10.2095 (3), 15.6299 (4) 10.9268 (10), 18.9670 (14), 12.2628 (9) 12.1263 (11), 11.8009 (11), 16.0657 (13)
α, β, γ (°) 93.990 (1), 94.679 (1), 101.089 (2) 90, 93.030 (2), 90 90, 100.181 (2), 90
V3) 1170.06 (6) 2537.9 (4) 2262.8 (3)
Z 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.17 0.26
Crystal size (mm) 0.35 × 0.30 × 0.25 0.25 × 0.25 × 0.20 0.25 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.978 0.958, 0.966 0.937, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 22413, 4119, 3346 21576, 4457, 3341 29901, 4110, 2685
Rint 0.027 0.031 0.044
(sin θ/λ)max−1) 0.595 0.595 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.03 0.039, 0.105, 1.04 0.061, 0.147, 1.09
No. of reflections 4119 4457 4110
No. of parameters 311 400 364
No. of restraints 0 56 100
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.21 0.22, −0.22 0.24, −0.24
Computer programs: APEX2and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2015).

(I) Dimethyl 4-(4-methoxyphenyl)-2-(4-methylphenyl)-1-oxo-1,2-dihydronaphthalene-2,3-dicarboxylate top
Crystal data top
C28H24O6Z = 2
Mr = 456.47F(000) = 480
Triclinic, P1Dx = 1.296 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5256 (2) ÅCell parameters from 4119 reflections
b = 10.2095 (3) Åθ = 2.3–25.0°
c = 15.6299 (4) ŵ = 0.09 mm1
α = 93.990 (1)°T = 296 K
β = 94.679 (1)°Block, colourless
γ = 101.089 (2)°0.35 × 0.30 × 0.25 mm
V = 1170.06 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4119 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω &φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.969, Tmax = 0.978k = 1212
22413 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
4119 reflections(Δ/σ)max = 0.004
311 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.04016 (19)0.52685 (14)0.34053 (9)0.0385 (3)
C21.0229 (2)0.63513 (15)0.39596 (10)0.0478 (4)
H20.93730.68630.38070.057*
C31.1303 (2)0.66814 (17)0.47312 (11)0.0550 (4)
H31.11600.74070.50950.066*
C41.2578 (2)0.59471 (18)0.49645 (11)0.0587 (5)
H41.32970.61700.54860.070*
C51.2791 (2)0.48799 (18)0.44251 (11)0.0550 (4)
H51.36670.43870.45810.066*
C61.17134 (19)0.45323 (14)0.36521 (10)0.0417 (3)
C71.1958 (2)0.33854 (15)0.30791 (10)0.0446 (4)
C81.0303 (2)0.27105 (14)0.24589 (9)0.0397 (3)
C90.92937 (19)0.37508 (14)0.21154 (9)0.0385 (3)
C100.92853 (19)0.49101 (14)0.25739 (9)0.0371 (3)
C110.8042 (2)0.58099 (14)0.23090 (9)0.0401 (3)
C120.8649 (2)0.70937 (15)0.20884 (10)0.0479 (4)
H120.98920.74160.20880.058*
C130.7446 (3)0.79111 (15)0.18672 (10)0.0521 (4)
H130.78780.87680.17100.063*
C140.5606 (2)0.74492 (16)0.18809 (10)0.0509 (4)
C150.4985 (2)0.61764 (18)0.21056 (12)0.0594 (5)
H150.37430.58610.21180.071*
C160.6190 (2)0.53671 (16)0.23124 (11)0.0522 (4)
H160.57490.45040.24580.063*
C170.8254 (2)0.33536 (15)0.12560 (10)0.0457 (4)
C180.7520 (3)0.4012 (2)0.01137 (12)0.0833 (7)
H18A0.78240.32080.03630.125*
H18B0.79020.47350.04610.125*
H18C0.62280.38790.00880.125*
C191.0997 (2)0.19417 (17)0.17186 (11)0.0523 (4)
C201.2394 (4)0.2216 (3)0.04350 (16)0.1075 (10)
H20A1.35180.19430.05970.161*
H20B1.25880.28630.00180.161*
H20C1.15050.14490.01900.161*
C210.4758 (4)0.9350 (2)0.12847 (14)0.0822 (7)
H21A0.56760.99760.16470.123*
H21B0.37020.97360.11810.123*
H21C0.52190.91480.07460.123*
C220.9152 (2)0.17131 (13)0.29922 (9)0.0383 (3)
C230.7324 (2)0.16747 (15)0.30518 (9)0.0435 (4)
H230.67600.22970.27890.052*
C240.6325 (2)0.07153 (17)0.35007 (11)0.0536 (4)
H240.50910.06980.35280.064*
C250.7110 (3)0.02137 (16)0.39079 (11)0.0569 (5)
C260.8952 (3)0.01318 (16)0.38729 (11)0.0575 (5)
H260.95280.07240.41620.069*
C270.9956 (2)0.08046 (15)0.34213 (10)0.0494 (4)
H271.11940.08280.34040.059*
C280.6003 (4)0.1312 (2)0.43490 (16)0.0927 (8)
H28A0.48220.11160.44150.139*
H28B0.66080.13720.49060.139*
H28C0.58740.21500.40070.139*
O11.33429 (15)0.29405 (12)0.31246 (9)0.0629 (3)
O21.0894 (2)0.07656 (13)0.16239 (9)0.0765 (4)
O31.17487 (19)0.28042 (13)0.11870 (8)0.0680 (4)
O40.7426 (2)0.22389 (12)0.10391 (8)0.0720 (4)
O50.84266 (17)0.43348 (11)0.07425 (7)0.0588 (3)
O60.42858 (19)0.81619 (13)0.16963 (9)0.0736 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (8)0.0370 (7)0.0416 (8)0.0024 (6)0.0060 (6)0.0053 (6)
C20.0525 (9)0.0418 (8)0.0484 (9)0.0102 (7)0.0033 (7)0.0000 (7)
C30.0607 (11)0.0499 (9)0.0493 (9)0.0035 (8)0.0019 (8)0.0061 (7)
C40.0537 (10)0.0613 (11)0.0525 (10)0.0007 (8)0.0102 (8)0.0034 (8)
C50.0391 (9)0.0574 (10)0.0646 (11)0.0051 (7)0.0072 (8)0.0061 (8)
C60.0318 (8)0.0415 (8)0.0495 (8)0.0014 (6)0.0035 (6)0.0044 (6)
C70.0355 (8)0.0419 (8)0.0577 (9)0.0070 (7)0.0095 (7)0.0103 (7)
C80.0398 (8)0.0357 (7)0.0450 (8)0.0086 (6)0.0099 (6)0.0031 (6)
C90.0377 (8)0.0368 (7)0.0407 (7)0.0038 (6)0.0075 (6)0.0057 (6)
C100.0359 (8)0.0346 (7)0.0404 (7)0.0035 (6)0.0073 (6)0.0064 (6)
C110.0462 (9)0.0358 (7)0.0380 (7)0.0076 (6)0.0027 (6)0.0035 (6)
C120.0503 (9)0.0400 (8)0.0504 (9)0.0023 (7)0.0011 (7)0.0060 (7)
C130.0724 (12)0.0339 (8)0.0481 (9)0.0083 (8)0.0030 (8)0.0071 (7)
C140.0622 (11)0.0471 (9)0.0459 (8)0.0219 (8)0.0059 (7)0.0024 (7)
C150.0471 (10)0.0586 (11)0.0754 (12)0.0143 (8)0.0035 (8)0.0188 (9)
C160.0472 (10)0.0434 (9)0.0674 (10)0.0084 (7)0.0058 (8)0.0178 (8)
C170.0515 (9)0.0404 (8)0.0432 (8)0.0041 (7)0.0068 (7)0.0026 (7)
C180.1029 (17)0.0871 (15)0.0472 (10)0.0074 (13)0.0152 (10)0.0165 (10)
C190.0560 (10)0.0487 (10)0.0569 (10)0.0157 (8)0.0199 (8)0.0045 (8)
C200.153 (3)0.1032 (18)0.0904 (17)0.0530 (18)0.0810 (18)0.0205 (14)
C210.1208 (19)0.0549 (11)0.0772 (14)0.0400 (12)0.0099 (13)0.0101 (10)
C220.0435 (8)0.0317 (7)0.0391 (7)0.0057 (6)0.0063 (6)0.0000 (6)
C230.0445 (9)0.0430 (8)0.0434 (8)0.0083 (7)0.0073 (6)0.0042 (6)
C240.0519 (10)0.0529 (10)0.0541 (9)0.0010 (8)0.0181 (8)0.0030 (8)
C250.0831 (13)0.0392 (9)0.0477 (9)0.0033 (8)0.0232 (9)0.0035 (7)
C260.0863 (14)0.0385 (8)0.0514 (9)0.0189 (9)0.0104 (9)0.0084 (7)
C270.0538 (10)0.0401 (8)0.0563 (9)0.0140 (7)0.0066 (7)0.0046 (7)
C280.129 (2)0.0605 (12)0.0908 (16)0.0013 (13)0.0515 (15)0.0203 (11)
O10.0382 (6)0.0576 (7)0.0956 (9)0.0162 (5)0.0070 (6)0.0054 (6)
O20.1068 (11)0.0500 (8)0.0825 (9)0.0275 (7)0.0436 (8)0.0008 (6)
O30.0830 (9)0.0626 (8)0.0690 (8)0.0226 (7)0.0432 (7)0.0144 (6)
O40.0977 (10)0.0488 (7)0.0551 (7)0.0138 (7)0.0069 (7)0.0012 (6)
O50.0773 (8)0.0510 (7)0.0415 (6)0.0017 (6)0.0036 (5)0.0095 (5)
O60.0803 (10)0.0613 (8)0.0852 (9)0.0335 (7)0.0090 (7)0.0141 (7)
Geometric parameters (Å, º) top
C1—C21.389 (2)C17—O41.1990 (19)
C1—C61.397 (2)C17—O51.3204 (19)
C1—C101.472 (2)C18—O51.438 (2)
C2—C31.379 (2)C18—H18A0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.369 (2)C18—H18C0.9600
C3—H30.9300C19—O21.186 (2)
C4—C51.373 (2)C19—O31.331 (2)
C4—H40.9300C20—O31.444 (2)
C5—C61.383 (2)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C6—C71.473 (2)C20—H20C0.9600
C7—O11.2134 (18)C21—O61.412 (3)
C7—C81.531 (2)C21—H21A0.9600
C8—C91.522 (2)C21—H21B0.9600
C8—C191.535 (2)C21—H21C0.9600
C8—C221.542 (2)C22—C231.380 (2)
C9—C101.342 (2)C22—C271.383 (2)
C9—C171.487 (2)C23—C241.384 (2)
C10—C111.487 (2)C23—H230.9300
C11—C121.380 (2)C24—C251.375 (3)
C11—C161.381 (2)C24—H240.9300
C12—C131.384 (2)C25—C261.379 (3)
C12—H120.9300C25—C281.506 (3)
C13—C141.377 (3)C26—C271.373 (2)
C13—H130.9300C26—H260.9300
C14—O61.364 (2)C27—H270.9300
C14—C151.374 (2)C28—H28A0.9600
C15—C161.374 (2)C28—H28B0.9600
C15—H150.9300C28—H28C0.9600
C16—H160.9300
C2—C1—C6117.75 (13)O4—C17—O5123.66 (15)
C2—C1—C10122.02 (13)O4—C17—C9123.29 (14)
C6—C1—C10120.21 (13)O5—C17—C9112.94 (13)
C3—C2—C1121.18 (15)O5—C18—H18A109.5
C3—C2—H2119.4O5—C18—H18B109.5
C1—C2—H2119.4H18A—C18—H18B109.5
C4—C3—C2120.32 (15)O5—C18—H18C109.5
C4—C3—H3119.8H18A—C18—H18C109.5
C2—C3—H3119.8H18B—C18—H18C109.5
C3—C4—C5119.76 (15)O2—C19—O3124.44 (15)
C3—C4—H4120.1O2—C19—C8126.23 (15)
C5—C4—H4120.1O3—C19—C8109.33 (13)
C4—C5—C6120.48 (16)O3—C20—H20A109.5
C4—C5—H5119.8O3—C20—H20B109.5
C6—C5—H5119.8H20A—C20—H20B109.5
C5—C6—C1120.50 (14)O3—C20—H20C109.5
C5—C6—C7119.92 (14)H20A—C20—H20C109.5
C1—C6—C7119.58 (13)H20B—C20—H20C109.5
O1—C7—C6122.60 (15)O6—C21—H21A109.5
O1—C7—C8121.18 (14)O6—C21—H21B109.5
C6—C7—C8116.07 (12)H21A—C21—H21B109.5
C9—C8—C7110.59 (11)O6—C21—H21C109.5
C9—C8—C19110.62 (12)H21A—C21—H21C109.5
C7—C8—C19107.56 (12)H21B—C21—H21C109.5
C9—C8—C22113.30 (12)C23—C22—C27118.00 (14)
C7—C8—C22104.74 (11)C23—C22—C8122.47 (13)
C19—C8—C22109.74 (12)C27—C22—C8119.53 (13)
C10—C9—C17122.91 (13)C22—C23—C24120.40 (15)
C10—C9—C8122.15 (13)C22—C23—H23119.8
C17—C9—C8114.88 (12)C24—C23—H23119.8
C9—C10—C1120.24 (13)C25—C24—C23121.70 (16)
C9—C10—C11121.87 (13)C25—C24—H24119.2
C1—C10—C11117.65 (12)C23—C24—H24119.2
C12—C11—C16117.89 (14)C24—C25—C26117.36 (15)
C12—C11—C10123.18 (14)C24—C25—C28121.8 (2)
C16—C11—C10118.88 (13)C26—C25—C28120.81 (19)
C11—C12—C13121.32 (15)C27—C26—C25121.52 (16)
C11—C12—H12119.3C27—C26—H26119.2
C13—C12—H12119.3C25—C26—H26119.2
C14—C13—C12119.67 (15)C26—C27—C22120.94 (16)
C14—C13—H13120.2C26—C27—H27119.5
C12—C13—H13120.2C22—C27—H27119.5
O6—C14—C15115.00 (16)C25—C28—H28A109.5
O6—C14—C13125.43 (16)C25—C28—H28B109.5
C15—C14—C13119.57 (15)H28A—C28—H28B109.5
C16—C15—C14120.27 (17)C25—C28—H28C109.5
C16—C15—H15119.9H28A—C28—H28C109.5
C14—C15—H15119.9H28B—C28—H28C109.5
C15—C16—C11121.27 (15)C19—O3—C20115.56 (15)
C15—C16—H16119.4C17—O5—C18116.25 (13)
C11—C16—H16119.4C14—O6—C21118.23 (17)
C6—C1—C2—C30.6 (2)C11—C12—C13—C141.2 (2)
C10—C1—C2—C3179.19 (14)C12—C13—C14—O6178.48 (15)
C1—C2—C3—C40.4 (3)C12—C13—C14—C150.7 (2)
C2—C3—C4—C50.3 (3)O6—C14—C15—C16179.47 (16)
C3—C4—C5—C60.7 (3)C13—C14—C15—C160.2 (3)
C4—C5—C6—C10.5 (2)C14—C15—C16—C110.7 (3)
C4—C5—C6—C7179.96 (15)C12—C11—C16—C150.2 (2)
C2—C1—C6—C50.1 (2)C10—C11—C16—C15177.47 (15)
C10—C1—C6—C5178.74 (14)C10—C9—C17—O4138.46 (18)
C2—C1—C6—C7179.29 (13)C8—C9—C17—O438.7 (2)
C10—C1—C6—C70.7 (2)C10—C9—C17—O545.2 (2)
C5—C6—C7—O120.2 (2)C8—C9—C17—O5137.56 (14)
C1—C6—C7—O1159.22 (15)C9—C8—C19—O2135.20 (19)
C5—C6—C7—C8155.47 (14)C7—C8—C19—O2103.9 (2)
C1—C6—C7—C825.1 (2)C22—C8—C19—O29.5 (2)
O1—C7—C8—C9146.10 (15)C9—C8—C19—O344.87 (18)
C6—C7—C8—C938.16 (17)C7—C8—C19—O376.01 (17)
O1—C7—C8—C1925.2 (2)C22—C8—C19—O3170.60 (13)
C6—C7—C8—C19159.05 (13)C9—C8—C22—C237.84 (19)
O1—C7—C8—C2291.51 (17)C7—C8—C22—C23128.45 (14)
C6—C7—C8—C2284.24 (15)C19—C8—C22—C23116.35 (15)
C7—C8—C9—C1029.46 (18)C9—C8—C22—C27173.06 (12)
C19—C8—C9—C10148.52 (14)C7—C8—C22—C2752.45 (16)
C22—C8—C9—C1087.78 (16)C19—C8—C22—C2762.75 (17)
C7—C8—C9—C17153.32 (12)C27—C22—C23—C242.6 (2)
C19—C8—C9—C1734.26 (17)C8—C22—C23—C24176.56 (13)
C22—C8—C9—C1789.44 (14)C22—C23—C24—C250.8 (2)
C17—C9—C10—C1177.56 (13)C23—C24—C25—C261.7 (2)
C8—C9—C10—C15.4 (2)C23—C24—C25—C28176.07 (17)
C17—C9—C10—C118.2 (2)C24—C25—C26—C272.5 (2)
C8—C9—C10—C11168.83 (13)C28—C25—C26—C27175.31 (17)
C2—C1—C10—C9170.09 (14)C25—C26—C27—C220.8 (2)
C6—C1—C10—C911.4 (2)C23—C22—C27—C261.8 (2)
C2—C1—C10—C114.4 (2)C8—C22—C27—C26177.35 (14)
C6—C1—C10—C11174.13 (12)O2—C19—O3—C202.7 (3)
C9—C10—C11—C12117.13 (17)C8—C19—O3—C20177.38 (18)
C1—C10—C11—C1268.45 (18)O4—C17—O5—C181.3 (3)
C9—C10—C11—C1665.36 (19)C9—C17—O5—C18177.56 (16)
C1—C10—C11—C16109.06 (16)C15—C14—O6—C21166.54 (17)
C16—C11—C12—C130.7 (2)C13—C14—O6—C2114.3 (2)
C10—C11—C12—C13178.28 (14)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C22–C27 benzene ring .
D—H···AD—HH···AD···AD—H···A
C27—H27···O10.932.523.109 (2)121
C16—H16···O1i0.932.523.344 (3)148
C3—H3···Cg4ii0.932.783.656 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
(II) Dimethyl 1-oxo-2-(pyren-4-yl)-4-(thiophen-2-yl)-1,2-dihydronaphthalene-2,3-dicarboxylate top
Crystal data top
C34H22O5SF(000) = 1128
Mr = 542.58Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4457 reflections
a = 10.9268 (10) Åθ = 2.0–25.0°
b = 18.9670 (14) ŵ = 0.17 mm1
c = 12.2628 (9) ÅT = 296 K
β = 93.030 (2)°Block, colourless
V = 2537.9 (4) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4457 independent reflections
Radiation source: fine-focus sealed tube3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω & φ scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.958, Tmax = 0.966k = 2222
21576 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 1.1182P]
where P = (Fo2 + 2Fc2)/3
4457 reflections(Δ/σ)max = 0.003
400 parametersΔρmax = 0.22 e Å3
56 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.53176 (18)0.11069 (10)0.09837 (15)0.0320 (5)
C20.4292 (2)0.11714 (12)0.02630 (16)0.0416 (5)
H20.36050.08950.03640.050*
C30.4284 (2)0.16390 (12)0.05966 (17)0.0478 (6)
H30.36010.16640.10800.057*
C40.5269 (2)0.20675 (12)0.07487 (18)0.0498 (6)
H40.52610.23750.13400.060*
C50.6268 (2)0.20404 (11)0.00227 (17)0.0452 (6)
H50.69230.23460.01060.054*
C60.63113 (19)0.15603 (10)0.08371 (15)0.0351 (5)
C70.73736 (19)0.15549 (11)0.16206 (16)0.0376 (5)
C80.76155 (18)0.08696 (10)0.22786 (15)0.0321 (5)
C90.64414 (18)0.04512 (9)0.24500 (15)0.0297 (4)
C100.53834 (18)0.05803 (10)0.18734 (15)0.0299 (4)
C110.42509 (18)0.02128 (10)0.21535 (16)0.0336 (5)
C150.84101 (19)0.04475 (11)0.15007 (16)0.0392 (5)
C160.8909 (2)0.06625 (13)0.0818 (2)0.0595 (7)
H16A0.87630.04970.00830.089*
H16B0.86520.11450.08650.089*
H16C0.97680.06290.10210.089*
C170.65383 (19)0.01355 (10)0.32741 (17)0.0355 (5)
C180.5913 (3)0.12957 (12)0.3641 (2)0.0642 (7)
H18A0.66830.14030.40180.096*
H18B0.56110.17070.32580.096*
H18C0.53330.11520.41580.096*
C190.83524 (18)0.10328 (10)0.33498 (15)0.0321 (4)
C200.94999 (19)0.07443 (11)0.35762 (18)0.0400 (5)
H200.98400.04560.30580.048*
C211.01527 (19)0.08713 (11)0.45472 (18)0.0417 (5)
H211.09150.06610.46770.050*
C220.96935 (18)0.13071 (10)0.53330 (16)0.0351 (5)
C231.0356 (2)0.14591 (12)0.63475 (18)0.0458 (6)
H231.11020.12360.65080.055*
C240.9928 (2)0.19113 (12)0.70620 (18)0.0472 (6)
H241.03940.20050.77020.057*
C250.8774 (2)0.22576 (11)0.68799 (16)0.0383 (5)
C260.8312 (2)0.27434 (12)0.76016 (18)0.0494 (6)
H260.87720.28550.82380.059*
C270.7194 (2)0.30626 (13)0.73977 (19)0.0507 (6)
H270.69150.33900.78920.061*
C280.6483 (2)0.29028 (11)0.64711 (17)0.0425 (5)
H280.57210.31150.63490.051*
C290.69065 (18)0.24205 (10)0.57106 (15)0.0333 (5)
C300.62192 (18)0.22445 (10)0.47291 (16)0.0366 (5)
H300.54430.24380.46020.044*
C310.66595 (18)0.18065 (10)0.39807 (16)0.0346 (5)
H310.61820.17120.33470.042*
C320.78410 (17)0.14808 (10)0.41282 (15)0.0301 (4)
C330.85277 (17)0.16242 (10)0.51215 (15)0.0305 (4)
C340.80620 (18)0.20967 (10)0.59065 (15)0.0315 (4)
O10.80805 (16)0.20458 (8)0.17246 (13)0.0578 (5)
O20.91056 (18)0.07160 (9)0.09104 (16)0.0783 (6)
O30.82234 (14)0.02357 (8)0.15510 (12)0.0491 (4)
O40.69985 (18)0.00824 (9)0.41768 (13)0.0651 (5)
O50.60807 (14)0.07340 (7)0.28718 (12)0.0445 (4)
S10.37700 (13)0.02866 (9)0.34494 (12)0.0438 (3)0.69
C120.3568 (12)0.0254 (7)0.1509 (9)0.064 (3)0.69
H120.37190.03670.07900.076*0.69
C130.2563 (11)0.0549 (7)0.2127 (7)0.0570 (16)0.69
H130.19930.08780.18560.068*0.69
C140.2593 (8)0.0272 (5)0.3137 (6)0.0508 (18)0.69
H140.20050.03810.36330.061*0.69
S1'0.3399 (8)0.0324 (4)0.1337 (6)0.0532 (11)0.31
C12'0.3651 (16)0.0294 (11)0.3107 (10)0.077 (5)0.31
H12'0.38390.06690.35740.092*0.31
C13'0.270 (2)0.0228 (15)0.3377 (19)0.064 (4)0.31
H13'0.23730.03370.40400.077*0.31
C14'0.245 (3)0.0501 (17)0.2351 (16)0.055 (3)0.31
H14'0.17680.07840.22140.066*0.31
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (12)0.0319 (10)0.0268 (10)0.0001 (9)0.0069 (9)0.0045 (8)
C20.0402 (13)0.0480 (13)0.0368 (12)0.0005 (10)0.0029 (10)0.0000 (10)
C30.0518 (15)0.0551 (14)0.0360 (12)0.0084 (12)0.0025 (10)0.0018 (11)
C40.0671 (17)0.0462 (13)0.0363 (12)0.0051 (12)0.0041 (12)0.0081 (10)
C50.0577 (15)0.0386 (12)0.0398 (12)0.0069 (11)0.0081 (11)0.0050 (10)
C60.0437 (12)0.0311 (11)0.0310 (11)0.0019 (9)0.0056 (9)0.0008 (9)
C70.0419 (12)0.0364 (11)0.0352 (11)0.0094 (10)0.0084 (9)0.0010 (9)
C80.0318 (11)0.0348 (11)0.0304 (10)0.0047 (9)0.0060 (8)0.0018 (8)
C90.0353 (11)0.0288 (10)0.0257 (10)0.0042 (8)0.0069 (8)0.0049 (8)
C100.0337 (11)0.0302 (10)0.0261 (10)0.0023 (9)0.0062 (8)0.0045 (8)
C110.0324 (11)0.0337 (11)0.0351 (11)0.0021 (9)0.0053 (9)0.0010 (9)
C150.0368 (12)0.0459 (13)0.0355 (11)0.0059 (10)0.0080 (10)0.0035 (10)
C160.0592 (16)0.0565 (15)0.0646 (16)0.0104 (13)0.0199 (13)0.0144 (13)
C170.0347 (11)0.0372 (12)0.0349 (12)0.0044 (9)0.0057 (9)0.0014 (9)
C180.0783 (19)0.0404 (13)0.0748 (18)0.0105 (13)0.0119 (15)0.0184 (13)
C190.0314 (11)0.0302 (10)0.0346 (11)0.0046 (9)0.0025 (9)0.0009 (8)
C200.0345 (12)0.0371 (11)0.0488 (13)0.0013 (9)0.0049 (10)0.0054 (10)
C210.0278 (11)0.0399 (12)0.0567 (14)0.0032 (9)0.0037 (10)0.0009 (10)
C220.0299 (11)0.0310 (11)0.0437 (12)0.0026 (9)0.0037 (9)0.0029 (9)
C230.0347 (12)0.0481 (13)0.0529 (14)0.0006 (10)0.0138 (11)0.0051 (11)
C240.0488 (14)0.0503 (14)0.0406 (12)0.0083 (11)0.0159 (11)0.0001 (11)
C250.0412 (12)0.0385 (11)0.0345 (11)0.0091 (10)0.0050 (9)0.0015 (9)
C260.0578 (16)0.0552 (14)0.0346 (12)0.0111 (12)0.0027 (11)0.0090 (11)
C270.0560 (16)0.0532 (14)0.0437 (13)0.0039 (12)0.0099 (12)0.0147 (11)
C280.0395 (12)0.0454 (12)0.0432 (12)0.0003 (10)0.0065 (10)0.0029 (10)
C290.0345 (12)0.0323 (11)0.0332 (11)0.0048 (9)0.0031 (9)0.0003 (9)
C300.0284 (11)0.0394 (12)0.0418 (12)0.0037 (9)0.0007 (9)0.0019 (9)
C310.0330 (11)0.0367 (11)0.0334 (11)0.0001 (9)0.0052 (9)0.0013 (9)
C320.0297 (10)0.0270 (10)0.0334 (10)0.0035 (8)0.0002 (8)0.0011 (8)
C330.0298 (11)0.0273 (10)0.0340 (11)0.0057 (8)0.0027 (8)0.0036 (8)
C340.0335 (11)0.0290 (10)0.0317 (10)0.0065 (9)0.0002 (9)0.0033 (8)
O10.0631 (11)0.0459 (9)0.0633 (11)0.0261 (9)0.0084 (9)0.0094 (8)
O20.0911 (15)0.0622 (11)0.0875 (13)0.0153 (11)0.0616 (12)0.0073 (10)
O30.0542 (10)0.0388 (8)0.0567 (10)0.0007 (7)0.0249 (8)0.0075 (7)
O40.0869 (14)0.0657 (11)0.0405 (10)0.0292 (10)0.0160 (9)0.0160 (8)
O50.0590 (10)0.0298 (8)0.0451 (8)0.0050 (7)0.0070 (7)0.0016 (6)
S10.0458 (6)0.0438 (6)0.0437 (7)0.0005 (5)0.0210 (6)0.0062 (5)
C120.041 (5)0.068 (6)0.083 (6)0.010 (3)0.011 (4)0.009 (4)
C130.037 (3)0.052 (3)0.083 (4)0.013 (2)0.006 (3)0.001 (3)
C140.038 (3)0.055 (3)0.062 (5)0.004 (2)0.026 (3)0.014 (3)
S1'0.044 (2)0.0488 (18)0.066 (2)0.0163 (16)0.0030 (15)0.0054 (15)
C12'0.100 (8)0.062 (7)0.068 (9)0.009 (6)0.009 (7)0.003 (7)
C13'0.070 (7)0.066 (7)0.057 (6)0.005 (5)0.001 (5)0.001 (6)
C14'0.048 (7)0.057 (6)0.058 (6)0.012 (5)0.004 (5)0.001 (5)
Geometric parameters (Å, º) top
C1—C21.395 (3)C20—C211.376 (3)
C1—C61.404 (3)C20—H200.9300
C1—C101.478 (3)C21—C221.384 (3)
C2—C31.377 (3)C21—H210.9300
C2—H20.9300C22—C331.420 (3)
C3—C41.369 (3)C22—C231.435 (3)
C3—H30.9300C23—C241.329 (3)
C4—C51.373 (3)C23—H230.9300
C4—H40.9300C24—C251.429 (3)
C5—C61.392 (3)C24—H240.9300
C5—H50.9300C25—C261.391 (3)
C6—C71.467 (3)C25—C341.423 (3)
C7—O11.212 (2)C26—C271.375 (3)
C7—C81.545 (3)C26—H260.9300
C8—C91.533 (3)C27—C281.376 (3)
C8—C191.536 (3)C27—H270.9300
C8—C151.547 (3)C28—C291.402 (3)
C9—C101.345 (3)C28—H280.9300
C9—C171.503 (3)C29—C341.413 (3)
C10—C111.477 (3)C29—C301.424 (3)
C11—C12'1.379 (9)C30—C311.346 (3)
C11—C121.380 (7)C30—H300.9300
C11—S1'1.676 (5)C31—C321.434 (3)
C11—S11.706 (2)C31—H310.9300
C15—O21.191 (2)C32—C331.423 (3)
C15—O31.314 (2)C33—C341.429 (3)
C16—O31.448 (2)S1—C141.695 (6)
C16—H16A0.9600C12—C131.477 (8)
C16—H16B0.9600C12—H120.9300
C16—H16C0.9600C13—C141.345 (6)
C17—O41.196 (2)C13—H130.9300
C17—O51.325 (2)C14—H140.9300
C18—O51.441 (3)S1'—C14'1.691 (9)
C18—H18A0.9600C12'—C13'1.483 (10)
C18—H18B0.9600C12'—H12'0.9300
C18—H18C0.9600C13'—C14'1.375 (10)
C19—C201.383 (3)C13'—H13'0.9300
C19—C321.415 (3)C14'—H14'0.9300
C2—C1—C6117.75 (18)C20—C21—C22121.10 (19)
C2—C1—C10122.20 (18)C20—C21—H21119.4
C6—C1—C10120.04 (18)C22—C21—H21119.4
C3—C2—C1120.9 (2)C21—C22—C33118.72 (18)
C3—C2—H2119.5C21—C22—C23122.59 (19)
C1—C2—H2119.5C33—C22—C23118.68 (19)
C4—C3—C2120.9 (2)C24—C23—C22121.4 (2)
C4—C3—H3119.6C24—C23—H23119.3
C2—C3—H3119.6C22—C23—H23119.3
C3—C4—C5119.6 (2)C23—C24—C25122.2 (2)
C3—C4—H4120.2C23—C24—H24118.9
C5—C4—H4120.2C25—C24—H24118.9
C4—C5—C6120.6 (2)C26—C25—C34118.4 (2)
C4—C5—H5119.7C26—C25—C24123.5 (2)
C6—C5—H5119.7C34—C25—C24118.11 (19)
C5—C6—C1120.2 (2)C27—C26—C25121.7 (2)
C5—C6—C7119.62 (19)C27—C26—H26119.2
C1—C6—C7120.15 (17)C25—C26—H26119.2
O1—C7—C6122.77 (19)C26—C27—C28120.7 (2)
O1—C7—C8120.05 (19)C26—C27—H27119.6
C6—C7—C8117.08 (17)C28—C27—H27119.6
C9—C8—C19113.08 (15)C27—C28—C29120.1 (2)
C9—C8—C7112.70 (16)C27—C28—H28120.0
C19—C8—C7110.16 (15)C29—C28—H28120.0
C9—C8—C15108.53 (15)C28—C29—C34119.58 (18)
C19—C8—C15110.24 (16)C28—C29—C30122.49 (19)
C7—C8—C15101.51 (15)C34—C29—C30117.93 (17)
C10—C9—C17121.08 (17)C31—C30—C29121.97 (19)
C10—C9—C8122.41 (17)C31—C30—H30119.0
C17—C9—C8116.48 (17)C29—C30—H30119.0
C9—C10—C11119.94 (17)C30—C31—C32122.13 (19)
C9—C10—C1121.19 (17)C30—C31—H31118.9
C11—C10—C1118.83 (17)C32—C31—H31118.9
C12'—C11—C12106.9 (10)C19—C32—C33118.90 (17)
C12'—C11—C10125.9 (8)C19—C32—C31123.96 (18)
C12—C11—C10127.2 (5)C33—C32—C31117.14 (17)
C12'—C11—S1'107.5 (8)C22—C33—C32120.18 (18)
C10—C11—S1'126.4 (3)C22—C33—C34119.39 (17)
C12—C11—S1113.7 (5)C32—C33—C34120.43 (17)
C10—C11—S1118.77 (15)C29—C34—C25119.55 (18)
S1'—C11—S1114.7 (3)C29—C34—C33120.33 (17)
O2—C15—O3123.8 (2)C25—C34—C33120.10 (18)
O2—C15—C8123.4 (2)C15—O3—C16115.83 (17)
O3—C15—C8112.83 (16)C17—O5—C18116.64 (17)
O3—C16—H16A109.5C14—S1—C1190.3 (3)
O3—C16—H16B109.5C11—C12—C13110.1 (10)
H16A—C16—H16B109.5C11—C12—H12124.9
O3—C16—H16C109.5C13—C12—H12124.9
H16A—C16—H16C109.5C14—C13—C12110.0 (9)
H16B—C16—H16C109.5C14—C13—H13125.0
O4—C17—O5123.28 (19)C12—C13—H13125.0
O4—C17—C9124.84 (19)C13—C14—S1115.7 (7)
O5—C17—C9111.85 (17)C13—C14—H14122.2
O5—C18—H18A109.5S1—C14—H14122.2
O5—C18—H18B109.5C11—S1'—C14'91.3 (11)
H18A—C18—H18B109.5C11—C12'—C13'119.0 (16)
O5—C18—H18C109.5C11—C12'—H12'120.5
H18A—C18—H18C109.5C13'—C12'—H12'120.5
H18B—C18—H18C109.5C14'—C13'—C12'99 (2)
C20—C19—C32119.24 (18)C14'—C13'—H13'130.6
C20—C19—C8121.39 (17)C12'—C13'—H13'130.6
C32—C19—C8119.36 (17)C13'—C14'—S1'120 (2)
C21—C20—C19121.83 (19)C13'—C14'—H14'120.0
C21—C20—H20119.1S1'—C14'—H14'120.0
C19—C20—H20119.1
C6—C1—C2—C33.3 (3)C33—C22—C23—C243.1 (3)
C10—C1—C2—C3176.23 (19)C22—C23—C24—C251.7 (3)
C1—C2—C3—C41.9 (3)C23—C24—C25—C26178.7 (2)
C2—C3—C4—C51.3 (3)C23—C24—C25—C341.2 (3)
C3—C4—C5—C62.8 (3)C34—C25—C26—C270.4 (3)
C4—C5—C6—C11.3 (3)C24—C25—C26—C27179.7 (2)
C4—C5—C6—C7178.3 (2)C25—C26—C27—C280.8 (4)
C2—C1—C6—C51.8 (3)C26—C27—C28—C291.3 (3)
C10—C1—C6—C5177.82 (18)C27—C28—C29—C340.5 (3)
C2—C1—C6—C7175.18 (18)C27—C28—C29—C30178.9 (2)
C10—C1—C6—C75.2 (3)C28—C29—C30—C31176.80 (19)
C5—C6—C7—O118.2 (3)C34—C29—C30—C312.6 (3)
C1—C6—C7—O1158.8 (2)C29—C30—C31—C320.9 (3)
C5—C6—C7—C8158.20 (18)C20—C19—C32—C330.3 (3)
C1—C6—C7—C824.8 (3)C8—C19—C32—C33179.53 (16)
O1—C7—C8—C9154.96 (19)C20—C19—C32—C31179.83 (18)
C6—C7—C8—C928.6 (2)C8—C19—C32—C310.6 (3)
O1—C7—C8—C1927.7 (3)C30—C31—C32—C19178.20 (19)
C6—C7—C8—C19155.88 (16)C30—C31—C32—C331.7 (3)
O1—C7—C8—C1589.1 (2)C21—C22—C33—C321.4 (3)
C6—C7—C8—C1587.3 (2)C23—C22—C33—C32179.49 (18)
C19—C8—C9—C10140.57 (18)C21—C22—C33—C34177.61 (18)
C7—C8—C9—C1014.8 (2)C23—C22—C33—C341.5 (3)
C15—C8—C9—C1096.8 (2)C19—C32—C33—C221.5 (3)
C19—C8—C9—C1741.6 (2)C31—C32—C33—C22178.61 (17)
C7—C8—C9—C17167.35 (15)C19—C32—C33—C34177.44 (17)
C15—C8—C9—C1781.0 (2)C31—C32—C33—C342.4 (3)
C17—C9—C10—C118.8 (3)C28—C29—C34—C250.8 (3)
C8—C9—C10—C11173.51 (16)C30—C29—C34—C25179.80 (17)
C17—C9—C10—C1173.60 (16)C28—C29—C34—C33177.67 (17)
C8—C9—C10—C14.1 (3)C30—C29—C34—C331.7 (3)
C2—C1—C10—C9169.55 (18)C26—C25—C34—C291.2 (3)
C6—C1—C10—C910.0 (3)C24—C25—C34—C29178.88 (18)
C2—C1—C10—C1112.8 (3)C26—C25—C34—C33177.23 (18)
C6—C1—C10—C11167.65 (17)C24—C25—C34—C332.6 (3)
C9—C10—C11—C12'66.1 (11)C22—C33—C34—C29179.72 (17)
C1—C10—C11—C12'111.6 (10)C32—C33—C34—C290.8 (3)
C9—C10—C11—C12116.3 (9)C22—C33—C34—C251.3 (3)
C1—C10—C11—C1266.0 (9)C32—C33—C34—C25177.69 (17)
C9—C10—C11—S1'119.4 (5)O2—C15—O3—C161.0 (3)
C1—C10—C11—S1'62.9 (5)C8—C15—O3—C16178.13 (18)
C9—C10—C11—S156.8 (2)O4—C17—O5—C1813.1 (3)
C1—C10—C11—S1120.94 (18)C9—C17—O5—C18168.72 (18)
C9—C8—C15—O2151.5 (2)C12'—C11—S1—C1448 (5)
C19—C8—C15—O284.2 (3)C12—C11—S1—C143.0 (9)
C7—C8—C15—O232.5 (3)C10—C11—S1—C14177.0 (4)
C9—C8—C15—O327.7 (2)S1'—C11—S1—C140.4 (6)
C19—C8—C15—O396.7 (2)C12'—C11—C12—C136.8 (16)
C7—C8—C15—O3146.61 (18)C10—C11—C12—C13175.2 (8)
C10—C9—C17—O4133.5 (2)S1'—C11—C12—C13111 (20)
C8—C9—C17—O448.6 (3)S1—C11—C12—C131.8 (14)
C10—C9—C17—O548.3 (2)C11—C12—C13—C140.7 (17)
C8—C9—C17—O5129.53 (18)C12—C13—C14—S13.0 (16)
C9—C8—C19—C20114.1 (2)C11—S1—C14—C133.5 (10)
C7—C8—C19—C20118.8 (2)C12'—C11—S1'—C14'8.1 (16)
C15—C8—C19—C207.6 (2)C12—C11—S1'—C14'68 (19)
C9—C8—C19—C3265.1 (2)C10—C11—S1'—C14'176.6 (12)
C7—C8—C19—C3262.0 (2)S1—C11—S1'—C14'0.3 (14)
C15—C8—C19—C32173.17 (17)C12—C11—C12'—C13'16 (2)
C32—C19—C20—C211.1 (3)C10—C11—C12'—C13'165.9 (17)
C8—C19—C20—C21178.12 (18)S1'—C11—C12'—C13'19 (2)
C19—C20—C21—C221.3 (3)S1—C11—C12'—C13'115 (6)
C20—C21—C22—C330.0 (3)C11—C12'—C13'—C14'20 (3)
C20—C21—C22—C23179.1 (2)C12'—C13'—C14'—S1'13 (3)
C21—C22—C23—C24176.0 (2)C11—S1'—C14'—C13'4 (3)
(III) Ethyl 4-oxo-3-phenyl-1,3-bis(thiophen-2-yl)-3,4-dihydronaphthalene-2-carboxylate top
Crystal data top
C27H20O3S2F(000) = 952
Mr = 456.55Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4110 reflections
a = 12.1263 (11) Åθ = 2.4–25.4°
b = 11.8009 (11) ŵ = 0.26 mm1
c = 16.0657 (13) ÅT = 296 K
β = 100.181 (2)°Block, green
V = 2262.8 (3) Å30.25 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4110 independent reflections
Radiation source: fine-focus sealed tube2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω & φ scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.937, Tmax = 0.962k = 1414
29901 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0338P)2 + 2.9594P]
where P = (Fo2 + 2Fc2)/3
4110 reflections(Δ/σ)max = 0.004
364 parametersΔρmax = 0.24 e Å3
100 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C70.6147 (3)0.7554 (3)0.11948 (19)0.0431 (7)
C60.5745 (2)0.7440 (3)0.02783 (18)0.0395 (7)
C50.4953 (3)0.6615 (3)0.0013 (2)0.0520 (8)
H50.46860.61430.03710.062*
C40.4560 (3)0.6491 (3)0.0866 (2)0.0601 (10)
H40.40340.59340.10590.072*
C30.4950 (3)0.7196 (3)0.1430 (2)0.0576 (9)
H30.46870.71120.20060.069*
C20.5725 (3)0.8026 (3)0.11538 (19)0.0481 (8)
H20.59760.84990.15440.058*
C10.6138 (2)0.8164 (3)0.02929 (18)0.0370 (7)
C100.6948 (2)0.9062 (2)0.00282 (17)0.0353 (7)
C90.7444 (2)0.9089 (2)0.08432 (18)0.0369 (7)
C80.7274 (2)0.8172 (3)0.14761 (17)0.0386 (7)
C220.7307 (3)0.8700 (3)0.23534 (18)0.0425 (7)
C230.8062 (3)0.8363 (3)0.30966 (19)0.0466 (8)
H230.85690.77740.30820.056*
C240.8016 (4)0.8933 (4)0.3830 (2)0.0775 (13)
H240.85070.87240.43190.093*
C250.7296 (4)0.9778 (4)0.3875 (3)0.0819 (14)
H250.72971.01430.43880.098*
C260.6569 (4)1.0107 (4)0.3185 (3)0.0730 (12)
H260.60651.06890.32250.088*
C270.6573 (3)0.9589 (3)0.2428 (2)0.0556 (9)
H270.60760.98310.19530.067*
C150.8246 (3)1.0013 (3)0.11778 (19)0.0451 (8)
C160.8442 (4)1.2004 (4)0.1385 (3)0.0863 (14)
H16A0.80151.25420.16570.104*
H16B0.90871.17710.17960.104*
C170.8813 (6)1.2539 (5)0.0680 (4)0.124 (2)
H17A0.92951.20310.04450.185*
H17B0.92151.32190.08660.185*
H17C0.81751.27230.02560.185*
C110.7228 (2)0.9919 (3)0.05704 (19)0.0409 (7)
S1'0.8516 (4)0.9932 (5)0.0827 (3)0.0552 (9)0.472 (4)
C12'0.6539 (15)1.0804 (16)0.0903 (16)0.074 (5)0.472 (4)
H12'0.58211.09240.07910.089*0.472 (4)
C13'0.7087 (15)1.154 (2)0.1462 (17)0.069 (4)0.472 (4)
H13'0.67831.21690.17660.083*0.472 (4)
C14'0.8130 (17)1.1091 (17)0.1435 (15)0.055 (3)0.472 (4)
H14'0.86251.14190.17460.066*0.472 (4)
S10.6308 (4)1.0925 (5)0.1018 (4)0.0706 (11)0.528 (4)
C120.8224 (10)1.0023 (18)0.0856 (12)0.073 (5)0.528 (4)
H120.88090.95140.06970.087*0.528 (4)
C130.8323 (16)1.0985 (17)0.1430 (16)0.062 (3)0.528 (4)
H130.89401.12040.16620.075*0.528 (4)
C140.7295 (12)1.1467 (19)0.1535 (15)0.060 (3)0.528 (4)
H140.71301.20910.18880.072*0.528 (4)
C180.8130 (3)0.7232 (3)0.14620 (19)0.0449 (8)
S20.8057 (3)0.5957 (2)0.1928 (2)0.0789 (10)0.632 (5)
C190.9075 (11)0.7382 (13)0.1097 (12)0.065 (4)0.632 (5)
H190.92680.80320.08290.078*0.632 (5)
C200.9724 (10)0.6299 (8)0.1219 (8)0.068 (2)0.632 (5)
H201.03760.61910.10000.081*0.632 (5)
C210.9295 (7)0.5467 (11)0.1678 (7)0.077 (2)0.632 (5)
H210.96190.47650.18260.093*0.632 (5)
S2'0.9239 (6)0.7245 (7)0.0999 (7)0.083 (2)0.368 (5)
C19'0.795 (2)0.6210 (14)0.1856 (19)0.111 (7)0.368 (5)
H19'0.73610.60200.21320.133*0.368 (5)
C20'0.8928 (18)0.550 (2)0.1728 (18)0.099 (5)0.368 (5)
H20'0.90040.47660.19510.119*0.368 (5)
C21'0.973 (2)0.5912 (13)0.1278 (19)0.099 (6)0.368 (5)
H21'1.03650.55540.11590.119*0.368 (5)
O10.5657 (2)0.7135 (2)0.17142 (14)0.0628 (7)
O20.9203 (2)0.9858 (2)0.14859 (17)0.0693 (7)
O30.7748 (2)1.1019 (2)0.11081 (16)0.0624 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0479 (18)0.0445 (18)0.0371 (17)0.0016 (15)0.0082 (14)0.0013 (14)
C60.0351 (16)0.0466 (18)0.0378 (17)0.0002 (14)0.0087 (13)0.0070 (14)
C50.0491 (19)0.057 (2)0.051 (2)0.0095 (17)0.0123 (15)0.0075 (17)
C40.051 (2)0.069 (2)0.058 (2)0.0145 (18)0.0020 (17)0.0168 (19)
C30.055 (2)0.073 (3)0.042 (2)0.0038 (19)0.0012 (16)0.0138 (18)
C20.0466 (18)0.059 (2)0.0382 (18)0.0012 (16)0.0058 (14)0.0005 (16)
C10.0297 (14)0.0450 (18)0.0358 (16)0.0059 (13)0.0042 (12)0.0034 (14)
C100.0298 (14)0.0426 (17)0.0340 (16)0.0048 (13)0.0068 (12)0.0004 (13)
C90.0313 (15)0.0416 (17)0.0379 (17)0.0010 (13)0.0064 (12)0.0004 (13)
C80.0386 (16)0.0447 (18)0.0315 (16)0.0007 (14)0.0039 (12)0.0026 (13)
C220.0429 (17)0.0500 (19)0.0358 (17)0.0068 (15)0.0100 (13)0.0039 (14)
C230.0436 (18)0.060 (2)0.0358 (18)0.0077 (16)0.0056 (14)0.0081 (15)
C240.076 (3)0.108 (4)0.046 (2)0.022 (3)0.002 (2)0.005 (2)
C250.083 (3)0.100 (4)0.067 (3)0.024 (3)0.027 (3)0.033 (3)
C260.081 (3)0.066 (3)0.081 (3)0.008 (2)0.037 (3)0.019 (2)
C270.058 (2)0.062 (2)0.049 (2)0.0018 (18)0.0173 (16)0.0053 (18)
C150.0445 (19)0.053 (2)0.0372 (17)0.0040 (16)0.0067 (14)0.0016 (15)
C160.103 (3)0.060 (3)0.089 (3)0.021 (2)0.003 (3)0.018 (2)
C170.173 (6)0.097 (4)0.107 (4)0.066 (4)0.041 (4)0.014 (3)
C110.0370 (16)0.0463 (18)0.0384 (17)0.0006 (14)0.0041 (13)0.0021 (14)
S1'0.0554 (17)0.070 (2)0.0429 (15)0.0061 (15)0.0166 (12)0.0080 (13)
C12'0.079 (10)0.073 (9)0.065 (8)0.008 (7)0.003 (7)0.024 (6)
C13'0.080 (8)0.066 (7)0.057 (6)0.008 (6)0.004 (6)0.014 (6)
C14'0.064 (7)0.067 (6)0.033 (5)0.017 (5)0.010 (5)0.013 (5)
S10.0579 (16)0.0710 (19)0.080 (3)0.0160 (13)0.0031 (15)0.0267 (15)
C120.069 (8)0.066 (6)0.079 (8)0.004 (6)0.004 (6)0.011 (5)
C130.054 (5)0.066 (6)0.066 (6)0.002 (4)0.006 (5)0.004 (5)
C140.051 (5)0.064 (5)0.063 (6)0.005 (4)0.003 (4)0.016 (5)
C180.051 (2)0.048 (2)0.0341 (17)0.0095 (15)0.0014 (14)0.0020 (14)
S20.103 (2)0.0537 (14)0.0785 (15)0.0134 (14)0.0121 (13)0.0161 (12)
C190.068 (6)0.057 (5)0.069 (6)0.048 (4)0.005 (5)0.010 (4)
C200.059 (4)0.065 (5)0.074 (5)0.042 (4)0.001 (3)0.019 (4)
C210.090 (6)0.059 (5)0.070 (5)0.039 (5)0.022 (5)0.009 (4)
S2'0.064 (3)0.083 (4)0.108 (4)0.010 (3)0.029 (3)0.027 (3)
C19'0.114 (11)0.091 (11)0.126 (13)0.074 (9)0.018 (9)0.014 (9)
C20'0.106 (10)0.074 (7)0.113 (10)0.073 (8)0.006 (8)0.008 (7)
C21'0.102 (10)0.084 (10)0.107 (11)0.061 (9)0.005 (8)0.020 (9)
O10.0707 (16)0.0789 (18)0.0417 (14)0.0247 (14)0.0178 (12)0.0002 (12)
O20.0445 (14)0.0748 (18)0.0813 (18)0.0079 (13)0.0092 (13)0.0116 (14)
O30.0657 (16)0.0459 (14)0.0711 (17)0.0045 (12)0.0003 (12)0.0055 (12)
Geometric parameters (Å, º) top
C7—O11.212 (4)C16—H16B0.9700
C7—C61.473 (4)C17—H17A0.9600
C7—C81.544 (4)C17—H17B0.9600
C6—C51.390 (4)C17—H17C0.9600
C6—C11.397 (4)C11—C121.371 (9)
C5—C41.377 (5)C11—C12'1.384 (9)
C5—H50.9300C11—S1'1.686 (4)
C4—C31.375 (5)C11—S11.699 (4)
C4—H40.9300S1'—C14'1.698 (9)
C3—C21.375 (5)C12'—C13'1.487 (10)
C3—H30.9300C12'—H12'0.9300
C2—C11.395 (4)C13'—C14'1.365 (9)
C2—H20.9300C13'—H13'0.9300
C1—C101.476 (4)C14'—H14'0.9300
C10—C91.341 (4)S1—C141.697 (8)
C10—C111.475 (4)C12—C131.481 (9)
C9—C151.497 (4)C12—H120.9300
C9—C81.524 (4)C13—C141.353 (8)
C8—C181.523 (4)C13—H130.9300
C8—C221.535 (4)C14—H140.9300
C22—C271.395 (4)C18—C191.387 (9)
C22—C231.427 (4)C18—C19'1.397 (10)
C23—C241.367 (5)C18—S2'1.648 (6)
C23—H230.9300C18—S21.690 (4)
C24—C251.336 (6)S2—C211.720 (7)
C24—H240.9300C19—C201.496 (9)
C25—C261.346 (6)C19—H190.9300
C25—H250.9300C20—C211.383 (8)
C26—C271.361 (5)C20—H200.9300
C26—H260.9300C21—H210.9300
C27—H270.9300S2'—C21'1.713 (9)
C15—O21.192 (4)C19'—C20'1.500 (10)
C15—O31.328 (4)C19'—H19'0.9300
C16—C171.437 (6)C20'—C21'1.397 (10)
C16—O31.458 (4)C20'—H20'0.9300
C16—H16A0.9700C21'—H21'0.9300
O1—C7—C6122.3 (3)H17A—C17—H17B109.5
O1—C7—C8120.5 (3)C16—C17—H17C109.5
C6—C7—C8117.1 (3)H17A—C17—H17C109.5
C5—C6—C1120.2 (3)H17B—C17—H17C109.5
C5—C6—C7119.2 (3)C12—C11—C12'108.1 (12)
C1—C6—C7120.6 (3)C12—C11—C10126.6 (8)
C4—C5—C6120.4 (3)C12'—C11—C10125.2 (9)
C4—C5—H5119.8C12'—C11—S1'114.9 (8)
C6—C5—H5119.8C10—C11—S1'119.7 (3)
C3—C4—C5119.5 (3)C12—C11—S1110.3 (7)
C3—C4—H4120.2C10—C11—S1123.1 (3)
C5—C4—H4120.2S1'—C11—S1117.2 (3)
C2—C3—C4120.9 (3)C11—S1'—C14'88.6 (8)
C2—C3—H3119.5C11—C12'—C13'111.7 (17)
C4—C3—H3119.5C11—C12'—H12'124.1
C3—C2—C1120.5 (3)C13'—C12'—H12'124.1
C3—C2—H2119.7C14'—C13'—C12'105 (2)
C1—C2—H2119.7C14'—C13'—H13'127.3
C2—C1—C6118.4 (3)C12'—C13'—H13'127.3
C2—C1—C10122.0 (3)C13'—C14'—S1'119.4 (17)
C6—C1—C10119.5 (3)C13'—C14'—H14'120.3
C9—C10—C11120.4 (3)S1'—C14'—H14'120.3
C9—C10—C1120.9 (3)C14—S1—C1190.2 (8)
C11—C10—C1118.7 (2)C11—C12—C13116.8 (15)
C10—C9—C15121.2 (3)C11—C12—H12121.6
C10—C9—C8123.0 (3)C13—C12—H12121.6
C15—C9—C8115.7 (2)C14—C13—C12103.0 (19)
C18—C8—C9109.6 (2)C14—C13—H13128.5
C18—C8—C22113.7 (2)C12—C13—H13128.5
C9—C8—C22109.8 (2)C13—C14—S1119.7 (16)
C18—C8—C7102.9 (2)C13—C14—H14120.2
C9—C8—C7110.9 (2)S1—C14—H14120.2
C22—C8—C7109.8 (2)C19—C18—C19'120.7 (10)
C27—C22—C23117.6 (3)C19—C18—C8122.0 (6)
C27—C22—C8118.1 (3)C19'—C18—C8117.3 (9)
C23—C22—C8124.3 (3)C19'—C18—S2'114.8 (9)
C24—C23—C22117.8 (3)C8—C18—S2'127.8 (4)
C24—C23—H23121.1C19—C18—S2114.4 (6)
C22—C23—H23121.1C8—C18—S2123.5 (3)
C25—C24—C23122.7 (4)S2'—C18—S2108.7 (4)
C25—C24—H24118.7C18—S2—C2194.5 (5)
C23—C24—H24118.7C18—C19—C20106.8 (10)
C24—C25—C26120.7 (4)C18—C19—H19126.6
C24—C25—H25119.6C20—C19—H19126.6
C26—C25—H25119.6C21—C20—C19115.9 (11)
C25—C26—C27120.1 (4)C21—C20—H20122.0
C25—C26—H26120.0C19—C20—H20122.0
C27—C26—H26120.0C20—C21—S2108.2 (10)
C26—C27—C22121.2 (4)C20—C21—H21125.9
C26—C27—H27119.4S2—C21—H21125.9
C22—C27—H27119.4C18—S2'—C21'98.3 (11)
O2—C15—O3124.6 (3)C18—C19'—C20'103.3 (18)
O2—C15—C9124.1 (3)C18—C19'—H19'128.3
O3—C15—C9111.3 (3)C20'—C19'—H19'128.3
C17—C16—O3110.7 (4)C21'—C20'—C19'121 (2)
C17—C16—H16A109.5C21'—C20'—H20'119.6
O3—C16—H16A109.5C19'—C20'—H20'119.6
C17—C16—H16B109.5C20'—C21'—S2'103 (2)
O3—C16—H16B109.5C20'—C21'—H21'128.7
H16A—C16—H16B108.1S2'—C21'—H21'128.7
C16—C17—H17A109.5C15—O3—C16117.2 (3)
C16—C17—H17B109.5
O1—C7—C6—C516.1 (5)C1—C10—C11—S169.7 (5)
C8—C7—C6—C5160.0 (3)C12—C11—S1'—C14'13 (9)
O1—C7—C6—C1162.8 (3)C12'—C11—S1'—C14'3.0 (18)
C8—C7—C6—C121.1 (4)C10—C11—S1'—C14'177.8 (10)
C1—C6—C5—C40.9 (5)S1—C11—S1'—C14'1.5 (11)
C7—C6—C5—C4179.8 (3)C12—C11—C12'—C13'1 (3)
C6—C5—C4—C30.5 (5)C10—C11—C12'—C13'177.9 (17)
C5—C4—C3—C20.2 (6)S1'—C11—C12'—C13'3 (3)
C4—C3—C2—C10.4 (5)S1—C11—C12'—C13'118 (16)
C3—C2—C1—C60.0 (4)C11—C12'—C13'—C14'2 (3)
C3—C2—C1—C10178.5 (3)C12'—C13'—C14'—S1'0 (3)
C5—C6—C1—C20.7 (4)C11—S1'—C14'—C13'2 (2)
C7—C6—C1—C2179.6 (3)C12—C11—S1—C141.9 (16)
C5—C6—C1—C10177.8 (3)C12'—C11—S1—C1461 (14)
C7—C6—C1—C101.1 (4)C10—C11—S1—C14178.9 (10)
C2—C1—C10—C9171.3 (3)S1'—C11—S1—C140.4 (11)
C6—C1—C10—C910.3 (4)C12'—C11—C12—C131 (3)
C2—C1—C10—C117.2 (4)C10—C11—C12—C13177.5 (17)
C6—C1—C10—C11171.2 (3)S1'—C11—C12—C13166 (11)
C11—C10—C9—C153.0 (4)S1—C11—C12—C133 (3)
C1—C10—C9—C15178.6 (3)C11—C12—C13—C143 (3)
C11—C10—C9—C8174.3 (3)C12—C13—C14—S12 (3)
C1—C10—C9—C84.2 (4)C11—S1—C14—C130 (2)
C10—C9—C8—C1888.2 (3)C9—C8—C18—C1915.9 (11)
C15—C9—C8—C1889.2 (3)C22—C8—C18—C19107.4 (11)
C10—C9—C8—C22146.3 (3)C7—C8—C18—C19133.9 (11)
C15—C9—C8—C2236.3 (3)C9—C8—C18—C19'166.1 (16)
C10—C9—C8—C724.7 (4)C22—C8—C18—C19'70.7 (16)
C15—C9—C8—C7157.9 (3)C7—C8—C18—C19'48.0 (16)
O1—C7—C8—C1891.3 (3)C9—C8—C18—S2'11.2 (6)
C6—C7—C8—C1884.9 (3)C22—C8—C18—S2'112.1 (6)
O1—C7—C8—C9151.7 (3)C7—C8—C18—S2'129.2 (6)
C6—C7—C8—C932.1 (4)C9—C8—C18—S2167.6 (3)
O1—C7—C8—C2230.1 (4)C22—C8—C18—S269.1 (4)
C6—C7—C8—C22153.7 (3)C7—C8—C18—S249.6 (3)
C18—C8—C22—C27178.5 (3)C19—C18—S2—C210.5 (11)
C9—C8—C22—C2755.3 (3)C19'—C18—S2—C21170 (14)
C7—C8—C22—C2766.9 (4)C8—C18—S2—C21177.2 (5)
C18—C8—C22—C230.1 (4)S2'—C18—S2—C213.8 (6)
C9—C8—C22—C23123.0 (3)C19'—C18—C19—C201 (2)
C7—C8—C22—C23114.8 (3)C8—C18—C19—C20178.8 (8)
C27—C22—C23—C240.1 (5)S2'—C18—C19—C2033 (8)
C8—C22—C23—C24178.2 (3)S2—C18—C19—C202.0 (16)
C22—C23—C24—C250.3 (6)C18—C19—C20—C213.2 (19)
C23—C24—C25—C260.2 (7)C19—C20—C21—S22.9 (15)
C24—C25—C26—C270.9 (7)C18—S2—C21—C201.4 (9)
C25—C26—C27—C221.1 (6)C19—C18—S2'—C21'145 (10)
C23—C22—C27—C260.6 (5)C19'—C18—S2'—C21'3 (2)
C8—C22—C27—C26179.0 (3)C8—C18—S2'—C21'179.9 (11)
C10—C9—C15—O2119.3 (4)S2—C18—S2'—C21'1.0 (12)
C8—C9—C15—O258.2 (4)C19—C18—C19'—C20'2 (3)
C10—C9—C15—O362.5 (4)C8—C18—C19'—C20'179.8 (15)
C8—C9—C15—O3120.1 (3)S2'—C18—C19'—C20'3 (3)
C9—C10—C11—C1269.2 (13)S2—C18—C19'—C20'12 (12)
C1—C10—C11—C12109.3 (12)C18—C19'—C20'—C21'1 (4)
C9—C10—C11—C12'106.8 (15)C19'—C20'—C21'—S2'0 (4)
C1—C10—C11—C12'74.7 (15)C18—S2'—C21'—C20'2 (2)
C9—C10—C11—S1'67.6 (4)O2—C15—O3—C163.7 (5)
C1—C10—C11—S1'111.0 (4)C9—C15—O3—C16178.1 (3)
C9—C10—C11—S1111.7 (4)C17—C16—O3—C1596.6 (5)
 

Acknowledgements

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationAitken, C. L., McHattie, J. S. & Paul, D. R. (1992). Macromolecules, 25, 2910–2922.  CrossRef CAS Web of Science Google Scholar
First citationBianchi, D., Bernardi, A., Bosetti, A., Bortolo, R., Cidaria, D., Crespi, E. & Gagliardi, I. (1997). Appl. Microbiol. Biotechnol. 48, 363–366.  CrossRef CAS Google Scholar
First citationBlundell, D. J. & Buckingham, K. A. (1985). Polymer, 26, 1623–1627.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowther, A. F. & Smith, L. H. (1968). J. Med. Chem. 11, 1009–1013.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarriz, P. I., Alvarez, H. L. & Colavita, G. M. (2004). Acta Hortic. 636, 325–330.  CrossRef CAS Google Scholar
First citationGoudie, A. C., Gaster, L. M., Lake, A. W., Rose, C. J., Freeman, P. C., Hughes, B. O. & Miller, D. (1978). J. Med. Chem. 21, 1260–1264.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, I. T., Lewis, B., Nelson, P., Rooks, W., Roszkowski, A., Tomolonis, A. & Fried, J. H. (1970). J. Med. Chem. 13, 203–205.  CrossRef CAS Web of Science Google Scholar
First citationJerussi, T. P., Fang, Q. K. & Currie, M. G. (2004). PCT Int. Appl. WO 2004042669 A1 200440325.  Google Scholar
First citationLi, J., Huang, X. & Huang, H. (2004). Huanan Nongye Daxue Xuebao Ziran Kexueban, 25, 10–12.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorikawa, H. & Takahashi, M. (2004). US Patent 6800482.  Google Scholar
First citationRay, J. K., Roy, B. C., Pan, D., Canle, L. M., Santaballa, J. A. & Mahía, J. (2003). Acta Cryst. E59, o514–o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, S. B. & Ishida, H. (1996). J. Appl. Polym. Sci. 61, 1595–1605.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process Res. Dev. 8, 385–388.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds