research communications
Structural characterization of two tetrachloridozincate salts of 4-carboxy-1H-imidazol-3-ium: a salt hydrate and a salt hydrate
aDepartment of Chemistry, SUNY–College at Geneseo, Geneseo, New York 14454, USA
*Correspondence e-mail: geiger@geneseo.edu
Imidazole-containing compounds exhibit a myriad of pharmacological activities. Two tetrachloridozincate salts of 4-carboxy-1H-imidazol-3-ium, ImHCO2H+, are reported. Bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate monohydrate, (C4H5N2O2)2[ZnCl4]·H2O, (I), crystallizes as a monohydrate salt, while bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate bis(1H-imidazol-3-ium-4-carboxylato) monohydrate, (C4H5N2O2)2[ZnCl4]·2C4H4N2O2·H2O, (II), is a salt with six residues: two ImHCO2H+ cations, two formula units of the zwitterionic 1H-imidazol-3-ium-4-carboxylate, ImHCO2, one tetrachloridozincate anion and one water molecule disordered over two sites in a 0.60 (4):0.40 (4) ratio. The geometric parameters of the ImHCO2H+ and the ImHCO2 moieties are the same within the standard uncertainties of the measurements. Both compounds exhibit extensive hydrogen bonding, including involvement of the tetrachloridozincate anion, resulting in interconnected chains of anions joined by water molecules.
Keywords: crystal structure; co-crystal; hydrate; tetrachloridozincate; imidazolium.
1. Chemical context
Imidazole-containing compounds find use in numerous pharmaceuticals including fungicides, antiviral agents, antiarrhythmics, antihistamines, and anthelmintics (Varala et al., 2007; Horton et al., 2003; López-Rodríguez et al., 1999). Recent studies have shown that imidazole and benzimidazole derivatives exhibit pharmacological activity in histamine signaling (Tichenor et al., 2015; Marson, 2011), and act as tau aggregation inhibitors for Alzheimer's disease (Bulic et al., 2013), and in the central nervous system (Robichaud et al., 2011; Sheffler et al., 2011). Further, derivatized imidazole-5-carboxylic acids have been shown to be angiotensin-converting enzyme (ACE) inhibitors (Jallapally et al., 2015; Li et al., 1998; Yanagisawa et al., 1996).
As a result of the myriad binding modes available to imidazole ligands that bear carboxylic acid substituents, they have found use in the preparation of several metal organic frameworks, MOFs (Starosta & Leciejewicz, 2006; Yin et al., 2009, 2012; Sun & Yang, 2007; Sun et al., 2006). The synthesis and characterization of novel MOFs is an area of active research because of their potential use in such diverse areas as gas storage, catalysis, chemical sensors and molecular separation (Dey et al., 2014; Kreno et al., 2012; Farha & Hupp, 2010). Neutral carboxyimidazoles exist in their zwitterionic form and none of the reported compounds have the carboxyimidazole ligand in the fully protonated form. However, there are examples of MOFs with anionic repeating units and imidazolium cations (Shao & Yu, 2014; Wang et al., 2013).
Although the structures of the zwitterionic 1H-imidazol-3-ium-4-carboxylate, (III), (Cao et al., 2012) and the corresponding 2-isopropyl (Du et al., 2011) and 2-methyl (Guo, 2009) derivatives have been reported, to our knowledge, fully protonated imidazolecarboxylic acid species have not been structurally characterized. Compounds (I) and (II) possess the carboxyimidazole in its fully protonated form and so contribute to the knowledge base of this class of compounds.
2. Structural commentary
Fig. 1 shows the atom-labeling scheme employed for (I). The consists of two 4-carboxy-1H-imidazol-3-ium cations (ImHCO2H+), one tetrachloridozincate anion, and one water molecule. Thus, compound (I) is classified as a salt solvate (Grothe et al., 2016) with four residues.
Compound (II) is an example of a rare salt solvate with six residues (Grothe et al., 2016). The consists of two ImHCO2H+ cations, one tetrachloridozincate anion, two 1H-imidazol-3-ium-4-carboxylate (ImHCO2), and one water molecule. The atom-labeling scheme employed is shown in Fig. 2.
The geometric parameters determined for the tetrachloridozincate anions in (I) and (II) are found in Tables 1 and 2, respectively. The average Zn—Cl bond length is 2.273 (3) and 2.272 (15) Å, respectively, for (I) and (II), which are within the range 2.2409 (3)–2.3085 (7) Å found in other examples of tetrachloridozincate salts (Govindan et al., 2014a,b; Leesakul et al., 2012; Goh et al., 2012; Kefi et al., 2011). The same example structures exhibit Cl—Zn—Cl angles in the range 102.256 (10) to 112.72 (3)°. The average angles found in (I) and (II) are 109 (2)° and 109 (3)°, respectively, and the individual values exhibit comparable ranges (Tables 1 and 2).
|
|
There are no noteworthy differences in the C—C and C—N bond lengths between the ImHCO2H+ cations and ImHCO2 found in (I) and (II). The N—C′ bond length, where C′ is the carbon atom bonded to both nitrogen atoms in a given ring (formally, the 2 position in the ring), is consistently shorter than the N—C′′ bond length, where C′′ represents the carbon in the formal 4 or 5 position in the ring, for all of the ImHCO2H+ and ImHCO2 residues. This observation is consistent with other reported imidazoles and imidazolium salts (e.g., Mohamed et al., 2014; Trifa et al., 2013; Chérif et al., 2013; Yu, 2012; Zhu, 2012).
The carboxy and carboxylate groups are tilted slightly from the imidazole plane in all cases. The N—C—C—O torsion angles are reported in Tables 1 and 2. In both (I) and (II), the carboxy and carboxylate groups are unsymmetrical. For the carboxy groups, the C—OH bond is longer than the C=O bond. These observations are consistent with the geometric parameters found in similar imidazolecarboxylic acids (Cao et al., 2012; Du et al., 2011; Guo, 2009). The observed O—C—O bond angles of the fully protonated form in (I) and (II) and the zwitterionic form in (II) are the same within the standard uncertainties of the refinement.
3. Supramolecular features
An extensive hydrogen-bonding network in (I) involving the tetrachloridozincate anion and the water of hydration results in chains parallel to [20], as seen in Fig. 3 and Table 3. Additional Cl⋯H—O—H⋯Cl interactions along [100] join the chains (Fig. 4). N—H⋯O(water), N—H⋯Cl, and O—H⋯O hydrogen bonds incorporate the ImHCO2H+ cations into the three-dimensional extended structure. Using graph-set analysis to describe the hydrogen bonding (Etter et al., 1990), an R44(20) ring is observed with four oxygen acceptors, two oxygen donors and two nitrogen donors. One oxygen donor, two oxygen acceptor rings, R12(4), involving a carboxy group are also present.
Figs. 5 and 6 show two views of the crystal packing observed in (II). Hydrogen-bonding parameters are found in Table 4. As seen in Fig. 5, there are several hydrogen-bonding ring motifs that are common to (I) and (II). An R44(20) ring is observed with four oxygen acceptors, two oxygen donors and two nitrogen donors, and there is a one oxygen donor, two oxygen acceptor ring, R12(4), involving a carboxy group. R22(7) rings involving two nitrogen donors and two oxygen acceptors are also observed. There are two rings containing chlorine acceptor atoms: an R44(15) system with one oxygen donor, three nitrogen donors, one oxygen acceptor and three chlorine acceptors; and an R12(4) ring with a single oxygen donor and two chlorine acceptors. Similarly to (I), chains of hydrogen-bonded tetrachloridozincate anions and water molecules of hydration are found parallel to [20].
|
In (I), a weak π–π interaction between ImHCO2H+ cations related by a crystallographically imposed center of symmetry is observed with a centroid-to-centroid distance of 3.5781 (15) Å and an interplanar distance of 3.4406 (9) Å, corresponding to 0.983 Å slippage (Spek, 2009). Two independent weak π–π interactions between ImHCO2H+ cations and ImHCO2 are observed in (II). The principal one involves the rings containing N1 and N7 with a centroid-to-centroid distance of 3.5871 (3) Å, an interplanar distance of 3.3591 (18) Å and a dihedral angle of 2.6 (2)° between rings (Spek, 2009). The weaker π–π interaction involves the rings containing N3 and N5 and has a centroid-to-centroid distance of 3.740 (3) Å, an interplanar distance of 3.3140 (17) Å and a dihedral angle of 1.2 (2) Å between planes.
Fig. 7 shows representations of the observed π stacking in which members of interacting pairs of molecules are projected into the same plane. A π–π interaction is also observed in the solid-state structure of the ImHCO2 zwitterion, labeled (III) (Cao et al., 2012). In (III), the centroid–centroid distance is longer [3.674 (4) Å] than that observed between the fully protonated form in (I) and the principal interaction between the zwitterion and the protonated form in (II). In all of the pairs except in (I), the members of the pairs are arranged in a head-to-head configuration.
4. Database survey
The structure of 1-H-imidazol-3-ium-4-carboxylate has been reported (Cao et al., 2012) and the structures of the 2-methyl and 2-isopropyl derivatives of the zwitterion 5-carboxy-1H-3-ium-4-carboxylate monohydrate have been reported (Guo, 2009; Du et al., 2011). Several polymeric compounds with bridging 1H-imidazole-4-carboxylato ligands have been reported, including one with CaII (Starosta & Leciejewicz, 2006) and two with CdII (Yin et al., 2009, 2012). The structures of monomeric compounds with 1H-imidazole-4-carboxylato-κ2N,O ligands and MgII (Gryz et al., 2007), MnII (Xiong et al., 2013), CoII (Chen, 2012; Artetxe et al., 2013), NiII (Zheng et al., 2011), CuII (Reinoso et al., 2015), and ZnII (Gryz et al., 2007; He, 2006; Shuai et al., 2011) have been determined. Tetranuclear MnII complexes with 1H-imidazole-4-carboxylato-κ2N,O and the structurally similar 4-imidazoleacetate ligand have also been characterized (Boskovic et al., 2000). The structures of numerous imidazolium salts are known (e.g., Mohamed et al.,, 2014; Trifa et al., 2013; Chérif et al., 2013; Yu, 2012; Zhu, 2012; Ishida & Kashino, 2001; Gili et al., 2000; Pavan Kumar & Kumara Swamy, 2005; Hashizume et al., 2001; Moreno-Fuquen et al., 2009a,b, 2011; Zhang et al., 2011; Sun et al., 2002; Fukunaga & Ishida, 2003). There are many examples of reported structures of tetrachloridozincate salts (e.g., Govindan et al., 2014a,b; Leesakul et al., 2012; Goh et al., 2012; Kefi et al., 2011).
5. Synthesis and crystallization
Compounds (I) and (II) were obtained during the attempted syntheses of ZnII coordination polymers. (I) was obtained by dissolving 113 mg (0.829 mmol) ZnCl2 and 194 mg (1.73 mmol) 1H-imidazole-4-carboxylic acid in ethanol. Six drops of 6 M HCl were added and the mixture was heated to reflux with stirring. The warm solution was filtered and the filtrate was allowed to cool. After a few days, crystalline clumps of the product were obtained. 1H NMR (400 MHz, dmso-d6, p.p.m.): 7.97 (s, 2H), 8.51 (s, 2H). 13C NMR (100 MHz, dmso-d6, p.p.m.): 126.1, 127.4, 137.7, 161.3. A crystal cut from a larger mass of crystals was used for X-ray analysis.
Compound (II) was prepared similarly to (I) except that methanol was the solvent and no HCl was added to the reaction mixture. Single crystals for X-ray analysis were obtained by slow evaporation of a methanol solution.1H NMR (400 MHz, dmso-d6, p.p.m.): 8.15 (s, 4H), 8.95 (s, 4H). 13C NMR (100 MHz, dmso-d6, p.p.m.): 125.4, 126.1, 137.6, 160.3.
6. Refinement
Crystal data, data collection and structure . For (I), data completeness was 97.9% and for (II) it was 95.2%. For both (I) and (II), all hydrogen atoms were located in difference Fourier maps. The hydrogen atoms bonded to carbon were refined using a riding model with a C—H distance of 0.95 Å and hydrogen-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The O—H and N—H distances were restrained to 0.84 and 0.88 Å, respectively. The isotropic displacement parameters of the hydrogen atoms bonded to nitrogen were set using the approximation Uiso(H) = 1.2Ueq(N). In (I), isotropic displacement parameters of the hydrogen atoms bonded to oxygen were refined freely, but for (II) they were set using the approximation Uiso(H) = 1.5Ueq(O). For (II), the water molecule is disordered over two positions. In addition to the aforementioned distance restraint, an H—O—H angle restraint of 105° was employed. The occupancies refined to 0.60 (4):0.40 (4).
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989017000317/pj2040sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000317/pj2040Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017000317/pj2040IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017000317/pj2040Isup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989017000317/pj2040IIsup5.mol
For both compounds, data collection: APEX2 (Bruker, 2013); cell
APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C4H5N2O2)2[ZnCl4]·H2O | Z = 2 |
Mr = 451.39 | F(000) = 452 |
Triclinic, P1 | Dx = 1.783 Mg m−3 |
a = 6.9094 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.5828 (12) Å | Cell parameters from 6894 reflections |
c = 16.468 (3) Å | θ = 2.5–27.5° |
α = 79.455 (4)° | µ = 2.12 mm−1 |
β = 84.489 (4)° | T = 200 K |
γ = 83.833 (4)° | Plate, clear colourless |
V = 840.7 (2) Å3 | 0.60 × 0.50 × 0.20 mm |
Bruker SMART X2S benchtop diffractometer | 3375 independent reflections |
Radiation source: sealed microfocus tube | 2995 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.032 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −9→9 |
Tmin = 0.41, Tmax = 0.68 | l = −20→19 |
10429 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0292P)2 + 0.2531P] where P = (Fo2 + 2Fc2)/3 |
3375 reflections | (Δ/σ)max = 0.001 |
227 parameters | Δρmax = 0.53 e Å−3 |
8 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.24426 (3) | 0.35245 (3) | 0.23892 (2) | 0.03225 (8) | |
Cl1 | 0.07702 (7) | 0.58951 (7) | 0.29003 (3) | 0.04037 (13) | |
Cl2 | 0.56514 (8) | 0.40109 (8) | 0.22143 (4) | 0.04596 (14) | |
Cl3 | 0.14855 (8) | 0.32216 (8) | 0.11448 (3) | 0.04391 (14) | |
Cl4 | 0.19391 (9) | 0.09768 (8) | 0.33224 (3) | 0.04754 (14) | |
O1S | 0.7881 (4) | 0.0065 (3) | 0.25272 (16) | 0.0744 (6) | |
H1SA | 0.755 (6) | 0.114 (3) | 0.256 (2) | 0.113 (16)* | |
H1SB | 0.902 (3) | −0.023 (6) | 0.241 (3) | 0.112 (17)* | |
O1 | 0.2088 (3) | 0.8341 (3) | 0.57654 (11) | 0.0583 (5) | |
H1A | 0.096 (3) | 0.846 (4) | 0.5976 (19) | 0.080 (11)* | |
O2 | 0.0547 (2) | 0.7334 (2) | 0.48378 (10) | 0.0499 (4) | |
O3 | 0.4700 (2) | 0.1089 (2) | 0.82247 (10) | 0.0488 (4) | |
H3A | 0.371 (3) | 0.082 (4) | 0.8047 (18) | 0.068 (9)* | |
O4 | 0.2491 (2) | 0.1786 (3) | 0.92209 (10) | 0.0509 (4) | |
N1 | 0.4180 (2) | 0.6761 (2) | 0.39214 (10) | 0.0328 (4) | |
H1N | 0.328 (3) | 0.656 (3) | 0.3653 (13) | 0.039* | |
N2 | 0.7041 (3) | 0.6977 (3) | 0.42572 (12) | 0.0398 (4) | |
H2N | 0.830 (2) | 0.694 (3) | 0.4249 (15) | 0.048* | |
N3 | 0.5549 (2) | 0.2595 (2) | 1.00903 (11) | 0.0354 (4) | |
H3N | 0.448 (3) | 0.280 (3) | 1.0351 (14) | 0.042* | |
N4 | 0.8615 (3) | 0.2308 (3) | 0.97687 (12) | 0.0414 (4) | |
H4N | 0.985 (2) | 0.234 (3) | 0.9774 (16) | 0.05* | |
C1 | 0.2014 (3) | 0.7670 (3) | 0.50896 (12) | 0.0340 (4) | |
C2 | 0.3956 (3) | 0.7354 (3) | 0.46709 (12) | 0.0304 (4) | |
C3 | 0.6053 (3) | 0.6554 (3) | 0.36821 (13) | 0.0374 (5) | |
H3 | 0.6597 | 0.6168 | 0.3185 | 0.045* | |
C4 | 0.5780 (3) | 0.7487 (3) | 0.48777 (13) | 0.0365 (4) | |
H4 | 0.6113 | 0.7864 | 0.5362 | 0.044* | |
C5 | 0.4145 (3) | 0.1639 (3) | 0.89239 (12) | 0.0352 (4) | |
C6 | 0.5806 (3) | 0.2008 (3) | 0.93398 (12) | 0.0320 (4) | |
C7 | 0.7275 (3) | 0.2773 (3) | 1.03332 (14) | 0.0404 (5) | |
H7 | 0.7507 | 0.3166 | 1.0828 | 0.048* | |
C8 | 0.7758 (3) | 0.1833 (3) | 0.91435 (13) | 0.0395 (5) | |
H8 | 0.8402 | 0.1452 | 0.8661 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03082 (14) | 0.03910 (14) | 0.02828 (13) | −0.00235 (10) | −0.00091 (9) | −0.01089 (10) |
Cl1 | 0.0302 (3) | 0.0506 (3) | 0.0444 (3) | 0.0027 (2) | −0.0016 (2) | −0.0234 (2) |
Cl2 | 0.0303 (3) | 0.0544 (3) | 0.0579 (3) | −0.0051 (2) | −0.0010 (2) | −0.0226 (3) |
Cl3 | 0.0329 (3) | 0.0699 (4) | 0.0337 (3) | −0.0025 (2) | −0.0048 (2) | −0.0219 (2) |
Cl4 | 0.0491 (3) | 0.0446 (3) | 0.0421 (3) | 0.0028 (2) | 0.0056 (2) | 0.0016 (2) |
O1S | 0.0736 (16) | 0.0632 (14) | 0.0966 (17) | 0.0020 (12) | −0.0382 (14) | −0.0293 (12) |
O1 | 0.0376 (10) | 0.0984 (14) | 0.0484 (10) | −0.0049 (9) | −0.0019 (8) | −0.0392 (10) |
O2 | 0.0282 (8) | 0.0812 (12) | 0.0462 (9) | −0.0099 (8) | −0.0035 (7) | −0.0234 (8) |
O3 | 0.0444 (10) | 0.0668 (11) | 0.0403 (9) | −0.0072 (8) | −0.0005 (7) | −0.0231 (8) |
O4 | 0.0276 (8) | 0.0815 (12) | 0.0447 (9) | −0.0031 (8) | −0.0002 (7) | −0.0164 (8) |
N1 | 0.0264 (9) | 0.0406 (9) | 0.0332 (9) | −0.0024 (7) | −0.0075 (7) | −0.0089 (7) |
N2 | 0.0227 (9) | 0.0491 (10) | 0.0480 (10) | −0.0037 (8) | −0.0042 (8) | −0.0081 (8) |
N3 | 0.0266 (9) | 0.0453 (10) | 0.0340 (9) | −0.0015 (8) | 0.0024 (7) | −0.0098 (8) |
N4 | 0.0235 (9) | 0.0515 (11) | 0.0478 (11) | −0.0049 (8) | −0.0014 (8) | −0.0046 (9) |
C1 | 0.0316 (11) | 0.0408 (11) | 0.0299 (10) | −0.0025 (9) | −0.0045 (8) | −0.0064 (8) |
C2 | 0.0286 (10) | 0.0335 (10) | 0.0297 (9) | −0.0016 (8) | −0.0055 (8) | −0.0060 (8) |
C3 | 0.0308 (11) | 0.0429 (11) | 0.0383 (11) | −0.0020 (9) | −0.0016 (9) | −0.0080 (9) |
C4 | 0.0323 (11) | 0.0411 (11) | 0.0381 (11) | −0.0051 (9) | −0.0085 (9) | −0.0082 (9) |
C5 | 0.0343 (12) | 0.0373 (11) | 0.0324 (10) | −0.0011 (9) | −0.0016 (8) | −0.0034 (8) |
C6 | 0.0295 (11) | 0.0351 (10) | 0.0298 (9) | −0.0017 (8) | 0.0008 (8) | −0.0043 (8) |
C7 | 0.0330 (12) | 0.0484 (12) | 0.0410 (11) | −0.0048 (9) | −0.0045 (9) | −0.0094 (10) |
C8 | 0.0310 (11) | 0.0479 (12) | 0.0369 (11) | −0.0013 (9) | 0.0063 (9) | −0.0062 (9) |
Zn1—Cl2 | 2.2690 (7) | N2—C4 | 1.362 (3) |
Zn1—Cl3 | 2.2704 (6) | N2—H2N | 0.864 (16) |
Zn1—Cl4 | 2.2737 (6) | N3—C7 | 1.321 (3) |
Zn1—Cl1 | 2.2794 (6) | N3—C6 | 1.378 (2) |
O1S—H1SA | 0.829 (19) | N3—H3N | 0.830 (16) |
O1S—H1SB | 0.806 (18) | N4—C7 | 1.316 (3) |
O1—C1 | 1.313 (2) | N4—C8 | 1.356 (3) |
O1—H1A | 0.828 (18) | N4—H4N | 0.858 (16) |
O2—C1 | 1.200 (2) | C1—C2 | 1.465 (3) |
O3—C5 | 1.305 (2) | C2—C4 | 1.355 (3) |
O3—H3A | 0.827 (17) | C3—H3 | 0.95 |
O4—C5 | 1.201 (3) | C4—H4 | 0.95 |
N1—C3 | 1.317 (3) | C5—C6 | 1.468 (3) |
N1—C2 | 1.379 (2) | C6—C8 | 1.354 (3) |
N1—H1N | 0.838 (16) | C7—H7 | 0.95 |
N2—C3 | 1.323 (3) | C8—H8 | 0.95 |
Cl2—Zn1—Cl3 | 107.93 (2) | O1—C1—C2 | 112.04 (17) |
Cl2—Zn1—Cl4 | 111.11 (2) | C4—C2—N1 | 106.33 (17) |
Cl3—Zn1—Cl4 | 109.21 (3) | C4—C2—C1 | 132.70 (18) |
Cl2—Zn1—Cl1 | 107.85 (2) | N1—C2—C1 | 120.95 (17) |
Cl3—Zn1—Cl1 | 112.84 (2) | N1—C3—N2 | 107.86 (18) |
Cl4—Zn1—Cl1 | 107.92 (2) | N1—C3—H3 | 126.1 |
H1SA—O1S—H1SB | 119 (4) | N2—C3—H3 | 126.1 |
C1—O1—H1A | 107 (2) | C2—C4—N2 | 106.69 (18) |
C5—O3—H3A | 107 (2) | C2—C4—H4 | 126.7 |
C3—N1—C2 | 109.33 (16) | N2—C4—H4 | 126.7 |
C3—N1—H1N | 124.5 (16) | O4—C5—O3 | 125.4 (2) |
C2—N1—H1N | 126.2 (16) | O4—C5—C6 | 122.53 (18) |
C3—N2—C4 | 109.79 (17) | O3—C5—C6 | 112.00 (18) |
C3—N2—H2N | 125.9 (17) | C8—C6—N3 | 106.23 (18) |
C4—N2—H2N | 124.3 (17) | C8—C6—C5 | 132.12 (18) |
C7—N3—C6 | 109.06 (17) | N3—C6—C5 | 121.61 (17) |
C7—N3—H3N | 125.3 (17) | N4—C7—N3 | 107.89 (19) |
C6—N3—H3N | 125.6 (17) | N4—C7—H7 | 126.1 |
C7—N4—C8 | 110.01 (18) | N3—C7—H7 | 126.1 |
C7—N4—H4N | 126.0 (17) | C6—C8—N4 | 106.81 (18) |
C8—N4—H4N | 123.9 (17) | C6—C8—H8 | 126.6 |
O2—C1—O1 | 124.9 (2) | N4—C8—H8 | 126.6 |
O2—C1—C2 | 123.11 (18) | ||
C3—N1—C2—C4 | −0.3 (2) | C7—N3—C6—C8 | 0.2 (2) |
C3—N1—C2—C1 | −178.98 (18) | C7—N3—C6—C5 | 178.29 (19) |
O2—C1—C2—C4 | −173.6 (2) | O4—C5—C6—C8 | 175.7 (2) |
O1—C1—C2—C4 | 6.0 (3) | O3—C5—C6—C8 | −2.2 (3) |
O2—C1—C2—N1 | 4.6 (3) | O4—C5—C6—N3 | −1.8 (3) |
O1—C1—C2—N1 | −175.81 (19) | O3—C5—C6—N3 | −179.68 (18) |
C2—N1—C3—N2 | 0.6 (2) | C8—N4—C7—N3 | 0.5 (3) |
C4—N2—C3—N1 | −0.6 (2) | C6—N3—C7—N4 | −0.5 (3) |
N1—C2—C4—N2 | −0.1 (2) | N3—C6—C8—N4 | 0.1 (2) |
C1—C2—C4—N2 | 178.4 (2) | C5—C6—C8—N4 | −177.7 (2) |
C3—N2—C4—C2 | 0.4 (2) | C7—N4—C8—C6 | −0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1SA···Cl2 | 0.83 (2) | 2.42 (2) | 3.192 (3) | 155 (4) |
O1S—H1SB···Cl4i | 0.81 (2) | 2.94 (4) | 3.392 (2) | 118 (3) |
O1S—H1SB···Cl1ii | 0.81 (2) | 3.05 (4) | 3.540 (3) | 122 (4) |
O1—H1A···Cl4iii | 0.83 (2) | 2.25 (2) | 3.0723 (19) | 171 (3) |
O3—H3A···O1Siv | 0.83 (2) | 1.77 (2) | 2.576 (3) | 163 (3) |
N1—H1N···Cl1 | 0.84 (2) | 2.37 (2) | 3.2105 (17) | 178 (2) |
N2—H2N···Cl1i | 0.86 (2) | 2.85 (2) | 3.3787 (19) | 122 (2) |
N2—H2N···O2i | 0.86 (2) | 1.99 (2) | 2.745 (2) | 146 (2) |
N3—H3N···Cl3v | 0.83 (2) | 2.37 (2) | 3.1941 (18) | 177 (2) |
N4—H4N···Cl3vi | 0.86 (2) | 2.83 (2) | 3.3586 (19) | 121 (2) |
N4—H4N···O4i | 0.86 (2) | 2.00 (2) | 2.753 (2) | 146 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x+1, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) x, y, z+1; (vi) x+1, y, z+1. |
(C4H4N2O2)2[ZnCl4]·2C4H5N2O2H2O | Z = 2 |
Mr = 675.57 | F(000) = 684 |
Triclinic, P1 | Dx = 1.728 Mg m−3 |
a = 6.9369 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.9624 (15) Å | Cell parameters from 3388 reflections |
c = 28.483 (8) Å | θ = 3.1–23.6° |
α = 89.524 (9)° | µ = 1.42 mm−1 |
β = 85.622 (9)° | T = 200 K |
γ = 71.202 (8)° | Block, clear colourless |
V = 1298.3 (6) Å3 | 0.50 × 0.25 × 0.20 mm |
Bruker SMART X2S benchtop diffractometer | 4855 independent reflections |
Radiation source: sealed microfocus tube | 3619 reflections with I > 2σ(I) |
Detector resolution: 8.3330 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −8→8 |
Tmin = 0.50, Tmax = 0.76 | k = −8→7 |
10560 measured reflections | l = −35→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0739P)2 + 0.0203P] where P = (Fo2 + 2Fc2)/3 |
4855 reflections | (Δ/σ)max < 0.001 |
395 parameters | Δρmax = 0.63 e Å−3 |
16 restraints | Δρmin = −0.71 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | −0.05225 (7) | 0.61778 (7) | 0.24502 (2) | 0.03731 (17) | |
Cl1 | −0.26017 (17) | 0.82285 (19) | 0.19411 (4) | 0.0531 (3) | |
Cl2 | 0.05785 (16) | 0.29226 (16) | 0.21504 (3) | 0.0436 (3) | |
Cl3 | 0.23787 (18) | 0.6937 (2) | 0.25097 (4) | 0.0560 (3) | |
Cl4 | −0.22620 (16) | 0.63506 (17) | 0.31606 (3) | 0.0408 (3) | |
O1 | 0.3219 (4) | 0.2856 (5) | 0.02796 (9) | 0.0471 (8) | |
O2 | 0.1247 (4) | 0.3358 (5) | 0.09533 (10) | 0.0517 (8) | |
O3 | 0.3667 (5) | 0.1705 (6) | 0.39393 (12) | 0.0661 (10) | |
O4 | 0.4907 (5) | 0.2123 (5) | 0.46135 (10) | 0.0559 (9) | |
H4A | 0.379 (5) | 0.223 (8) | 0.4788 (16) | 0.084* | |
O5 | −0.1453 (5) | 0.7598 (5) | 0.50318 (10) | 0.0537 (8) | |
O6 | −0.2533 (5) | 0.6845 (6) | 0.43625 (10) | 0.0615 (9) | |
O7 | −0.2136 (5) | 0.8281 (6) | 0.07375 (11) | 0.0685 (10) | |
O8 | −0.0196 (5) | 0.7583 (5) | 0.00627 (10) | 0.0508 (8) | |
H8A | −0.114 (6) | 0.723 (8) | −0.0045 (16) | 0.076* | |
O1S | 0.414 (2) | 0.099 (2) | 0.2899 (6) | 0.070 (4) | 0.60 (4) |
H1A | 0.334 (16) | 0.176 (12) | 0.272 (3) | 0.105* | 0.60 (4) |
H1B | 0.459 (16) | −0.021 (6) | 0.279 (3) | 0.105* | 0.60 (4) |
O2S | 0.495 (5) | 0.150 (4) | 0.2703 (12) | 0.093 (10) | 0.40 (4) |
H2A | 0.381 (15) | 0.15 (3) | 0.262 (8) | 0.14* | 0.40 (4) |
H2B | 0.59 (2) | 0.08 (3) | 0.251 (5) | 0.14* | 0.40 (4) |
N1 | 0.7400 (5) | 0.3481 (6) | 0.12509 (13) | 0.0451 (9) | |
H1N | 0.870 (3) | 0.342 (7) | 0.1225 (15) | 0.054* | |
N2 | 0.4407 (5) | 0.3466 (6) | 0.14633 (11) | 0.0392 (8) | |
H2N | 0.328 (4) | 0.352 (6) | 0.1626 (12) | 0.047* | |
N3 | 0.7314 (6) | 0.1382 (5) | 0.34378 (11) | 0.0405 (8) | |
H3N | 0.644 (5) | 0.134 (6) | 0.3241 (12) | 0.049* | |
N4 | 1.0110 (6) | 0.1551 (6) | 0.36673 (14) | 0.0460 (9) | |
H4N | 1.133 (4) | 0.158 (7) | 0.3638 (15) | 0.055* | |
N5 | 0.1092 (5) | 0.6640 (5) | 0.38684 (11) | 0.0370 (8) | |
H5N | 0.024 (5) | 0.646 (6) | 0.3686 (12) | 0.044* | |
N6 | 0.3850 (5) | 0.6882 (6) | 0.41028 (12) | 0.0437 (9) | |
H6N | 0.511 (4) | 0.687 (7) | 0.4100 (15) | 0.052* | |
N7 | 0.1081 (5) | 0.8476 (5) | 0.12179 (11) | 0.0370 (8) | |
H7N | 0.006 (5) | 0.834 (6) | 0.1409 (12) | 0.044* | |
N8 | 0.4083 (5) | 0.8406 (5) | 0.09664 (12) | 0.0392 (8) | |
H8N | 0.533 (4) | 0.846 (6) | 0.0945 (14) | 0.047* | |
C1 | 0.4601 (6) | 0.3304 (6) | 0.09817 (12) | 0.0317 (9) | |
C2 | 0.6497 (6) | 0.3318 (6) | 0.08465 (14) | 0.0403 (10) | |
H2 | 0.7095 | 0.3232 | 0.0533 | 0.048* | |
C3 | 0.6112 (6) | 0.3560 (7) | 0.16165 (15) | 0.0463 (11) | |
H3 | 0.6366 | 0.3667 | 0.1937 | 0.056* | |
C4 | 0.2872 (6) | 0.3160 (6) | 0.07221 (13) | 0.0352 (9) | |
C5 | 0.7016 (6) | 0.1709 (6) | 0.39137 (13) | 0.0349 (9) | |
C6 | 0.8780 (6) | 0.1832 (6) | 0.40570 (13) | 0.0385 (9) | |
H6 | 0.9044 | 0.207 | 0.437 | 0.046* | |
C7 | 0.9189 (7) | 0.1297 (6) | 0.32923 (14) | 0.0443 (10) | |
H7 | 0.9775 | 0.1092 | 0.2977 | 0.053* | |
C8 | 0.5038 (7) | 0.1835 (6) | 0.41683 (14) | 0.0412 (10) | |
C9 | 0.0765 (6) | 0.6982 (6) | 0.43471 (12) | 0.0332 (9) | |
C10 | 0.2521 (6) | 0.7147 (6) | 0.44949 (13) | 0.0411 (10) | |
H10 | 0.2774 | 0.7396 | 0.4808 | 0.049* | |
C11 | 0.2965 (6) | 0.6581 (7) | 0.37284 (14) | 0.0415 (10) | |
H11 | 0.357 | 0.6361 | 0.3415 | 0.05* | |
C12 | −0.1239 (6) | 0.7129 (6) | 0.45951 (13) | 0.0387 (9) | |
C13 | 0.1228 (6) | 0.8218 (6) | 0.07366 (12) | 0.0327 (9) | |
C14 | 0.3108 (6) | 0.8187 (6) | 0.05808 (13) | 0.0359 (9) | |
H14 | 0.3661 | 0.804 | 0.0262 | 0.043* | |
C15 | 0.2828 (6) | 0.8583 (6) | 0.13502 (13) | 0.0395 (10) | |
H15 | 0.313 | 0.8756 | 0.1664 | 0.047* | |
C16 | −0.0527 (6) | 0.8025 (6) | 0.04986 (13) | 0.0371 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0263 (3) | 0.0572 (3) | 0.0303 (2) | −0.0159 (2) | −0.00276 (18) | 0.0010 (2) |
Cl1 | 0.0298 (6) | 0.0833 (8) | 0.0449 (6) | −0.0162 (6) | −0.0066 (4) | 0.0210 (5) |
Cl2 | 0.0350 (6) | 0.0569 (7) | 0.0396 (5) | −0.0163 (5) | 0.0002 (4) | −0.0053 (4) |
Cl3 | 0.0384 (7) | 0.0955 (9) | 0.0465 (6) | −0.0383 (7) | −0.0061 (5) | 0.0008 (6) |
Cl4 | 0.0300 (6) | 0.0627 (7) | 0.0325 (5) | −0.0195 (5) | 0.0005 (4) | −0.0008 (4) |
O1 | 0.0278 (17) | 0.083 (2) | 0.0384 (15) | −0.0286 (17) | −0.0010 (12) | −0.0070 (14) |
O2 | 0.0223 (16) | 0.092 (2) | 0.0451 (16) | −0.0247 (17) | 0.0012 (12) | −0.0051 (15) |
O3 | 0.034 (2) | 0.106 (3) | 0.067 (2) | −0.032 (2) | −0.0113 (16) | −0.0099 (19) |
O4 | 0.0332 (19) | 0.089 (2) | 0.0449 (18) | −0.0209 (19) | 0.0054 (13) | −0.0038 (16) |
O5 | 0.0321 (18) | 0.090 (2) | 0.0411 (16) | −0.0239 (18) | 0.0005 (13) | −0.0055 (15) |
O6 | 0.0292 (18) | 0.112 (3) | 0.0530 (18) | −0.035 (2) | −0.0055 (14) | −0.0124 (18) |
O7 | 0.0241 (18) | 0.138 (3) | 0.0505 (18) | −0.036 (2) | 0.0012 (14) | −0.0083 (19) |
O8 | 0.0326 (18) | 0.086 (2) | 0.0427 (16) | −0.0312 (18) | −0.0062 (13) | −0.0057 (15) |
O1S | 0.042 (6) | 0.110 (6) | 0.048 (6) | −0.008 (5) | −0.014 (5) | −0.020 (4) |
O2S | 0.060 (14) | 0.130 (12) | 0.068 (13) | 0.008 (11) | −0.035 (11) | −0.019 (11) |
N1 | 0.0172 (19) | 0.063 (2) | 0.060 (2) | −0.0188 (19) | −0.0057 (16) | −0.0067 (18) |
N2 | 0.0176 (18) | 0.060 (2) | 0.0417 (18) | −0.0154 (18) | −0.0014 (14) | −0.0019 (16) |
N3 | 0.032 (2) | 0.052 (2) | 0.0397 (18) | −0.0163 (18) | −0.0075 (15) | 0.0016 (16) |
N4 | 0.023 (2) | 0.050 (2) | 0.069 (2) | −0.0163 (18) | −0.0057 (17) | 0.0118 (18) |
N5 | 0.0210 (18) | 0.052 (2) | 0.0406 (18) | −0.0135 (17) | −0.0100 (14) | −0.0015 (15) |
N6 | 0.0174 (18) | 0.060 (2) | 0.058 (2) | −0.0166 (18) | −0.0085 (16) | 0.0067 (17) |
N7 | 0.0236 (19) | 0.056 (2) | 0.0353 (17) | −0.0183 (17) | −0.0008 (13) | 0.0015 (15) |
N8 | 0.0171 (18) | 0.050 (2) | 0.056 (2) | −0.0168 (17) | −0.0054 (15) | 0.0018 (16) |
C1 | 0.020 (2) | 0.040 (2) | 0.0378 (19) | −0.0145 (18) | −0.0013 (15) | −0.0030 (16) |
C2 | 0.020 (2) | 0.055 (3) | 0.044 (2) | −0.011 (2) | 0.0009 (16) | −0.0067 (19) |
C3 | 0.028 (2) | 0.068 (3) | 0.047 (2) | −0.020 (2) | −0.0079 (19) | −0.002 (2) |
C4 | 0.023 (2) | 0.045 (2) | 0.041 (2) | −0.0149 (19) | −0.0041 (16) | 0.0011 (17) |
C5 | 0.031 (2) | 0.036 (2) | 0.040 (2) | −0.0118 (19) | −0.0084 (17) | 0.0009 (17) |
C6 | 0.036 (2) | 0.043 (2) | 0.040 (2) | −0.015 (2) | −0.0093 (18) | −0.0013 (17) |
C7 | 0.039 (3) | 0.050 (3) | 0.044 (2) | −0.015 (2) | 0.0016 (19) | 0.0033 (19) |
C8 | 0.027 (2) | 0.049 (3) | 0.050 (2) | −0.015 (2) | −0.0047 (18) | −0.0028 (19) |
C9 | 0.020 (2) | 0.044 (2) | 0.0370 (19) | −0.0120 (19) | −0.0081 (15) | 0.0046 (17) |
C10 | 0.031 (2) | 0.056 (3) | 0.038 (2) | −0.014 (2) | −0.0110 (17) | −0.0017 (18) |
C11 | 0.026 (2) | 0.058 (3) | 0.042 (2) | −0.015 (2) | −0.0014 (17) | 0.0025 (19) |
C12 | 0.025 (2) | 0.052 (3) | 0.041 (2) | −0.014 (2) | −0.0040 (17) | −0.0012 (18) |
C13 | 0.022 (2) | 0.044 (2) | 0.0352 (19) | −0.0141 (19) | −0.0042 (15) | 0.0015 (16) |
C14 | 0.023 (2) | 0.047 (2) | 0.038 (2) | −0.013 (2) | −0.0007 (16) | −0.0019 (17) |
C15 | 0.032 (2) | 0.052 (3) | 0.039 (2) | −0.017 (2) | −0.0118 (17) | 0.0020 (18) |
C16 | 0.020 (2) | 0.055 (3) | 0.039 (2) | −0.015 (2) | −0.0053 (16) | 0.0019 (18) |
Zn1—Cl3 | 2.2577 (12) | N4—H4N | 0.849 (19) |
Zn1—Cl4 | 2.2589 (11) | N5—C11 | 1.317 (5) |
Zn1—Cl1 | 2.2758 (12) | N5—C9 | 1.375 (5) |
Zn1—Cl2 | 2.2948 (12) | N5—H5N | 0.858 (19) |
O1—C4 | 1.271 (4) | N6—C11 | 1.321 (5) |
O2—C4 | 1.229 (4) | N6—C10 | 1.367 (5) |
O3—C8 | 1.220 (5) | N6—H6N | 0.868 (19) |
O4—C8 | 1.277 (5) | N7—C15 | 1.321 (5) |
O4—H4A | 0.87 (2) | N7—C13 | 1.376 (4) |
O5—C12 | 1.274 (5) | N7—H7N | 0.889 (19) |
O6—C12 | 1.222 (5) | N8—C15 | 1.325 (5) |
O7—C16 | 1.224 (5) | N8—C14 | 1.367 (5) |
O8—C16 | 1.267 (5) | N8—H8N | 0.872 (19) |
O8—H8A | 0.851 (19) | C1—C2 | 1.345 (5) |
O1S—H1A | 0.85 (2) | C1—C4 | 1.487 (5) |
O1S—H1B | 0.84 (2) | C2—H2 | 0.95 |
O2S—H2A | 0.85 (2) | C3—H3 | 0.95 |
O2S—H2B | 0.85 (2) | C5—C6 | 1.347 (5) |
N1—C3 | 1.309 (5) | C5—C8 | 1.479 (5) |
N1—C2 | 1.375 (5) | C6—H6 | 0.95 |
N1—H1N | 0.884 (19) | C7—H7 | 0.95 |
N2—C3 | 1.312 (5) | C9—C10 | 1.357 (5) |
N2—C1 | 1.370 (5) | C9—C12 | 1.484 (5) |
N2—H2N | 0.871 (19) | C10—H10 | 0.95 |
N3—C7 | 1.318 (5) | C11—H11 | 0.95 |
N3—C5 | 1.365 (5) | C13—C14 | 1.339 (5) |
N3—H3N | 0.866 (19) | C13—C16 | 1.481 (5) |
N4—C7 | 1.327 (6) | C14—H14 | 0.95 |
N4—C6 | 1.361 (5) | C15—H15 | 0.95 |
Cl3—Zn1—Cl4 | 111.21 (4) | N1—C3—H3 | 126.0 |
Cl3—Zn1—Cl1 | 112.42 (5) | N2—C3—H3 | 126.0 |
Cl4—Zn1—Cl1 | 109.31 (5) | O2—C4—O1 | 126.3 (4) |
Cl3—Zn1—Cl2 | 104.23 (5) | O2—C4—C1 | 117.2 (3) |
Cl4—Zn1—Cl2 | 110.95 (4) | O1—C4—C1 | 116.5 (3) |
Cl1—Zn1—Cl2 | 108.62 (5) | C6—C5—N3 | 106.6 (3) |
C8—O4—H4A | 122 (4) | C6—C5—C8 | 132.8 (4) |
C16—O8—H8A | 113 (3) | N3—C5—C8 | 120.6 (3) |
H1A—O1S—H1B | 111 (5) | C5—C6—N4 | 106.8 (3) |
H2A—O2S—H2B | 113 (6) | C5—C6—H6 | 126.6 |
C3—N1—C2 | 109.4 (3) | N4—C6—H6 | 126.6 |
C3—N1—H1N | 132 (3) | N3—C7—N4 | 107.5 (4) |
C2—N1—H1N | 118 (3) | N3—C7—H7 | 126.3 |
C3—N2—C1 | 109.7 (3) | N4—C7—H7 | 126.3 |
C3—N2—H2N | 128 (3) | O3—C8—O4 | 125.6 (4) |
C1—N2—H2N | 122 (3) | O3—C8—C5 | 118.2 (4) |
C7—N3—C5 | 109.6 (3) | O4—C8—C5 | 116.2 (4) |
C7—N3—H3N | 121 (3) | C10—C9—N5 | 106.6 (3) |
C5—N3—H3N | 129 (3) | C10—C9—C12 | 133.0 (3) |
C7—N4—C6 | 109.4 (4) | N5—C9—C12 | 120.4 (3) |
C7—N4—H4N | 120 (3) | C9—C10—N6 | 106.2 (3) |
C6—N4—H4N | 130 (3) | C9—C10—H10 | 126.9 |
C11—N5—C9 | 109.5 (3) | N6—C10—H10 | 126.9 |
C11—N5—H5N | 124 (3) | N5—C11—N6 | 107.7 (3) |
C9—N5—H5N | 126 (3) | N5—C11—H11 | 126.1 |
C11—N6—C10 | 110.0 (3) | N6—C11—H11 | 126.1 |
C11—N6—H6N | 125 (3) | O6—C12—O5 | 126.3 (4) |
C10—N6—H6N | 125 (3) | O6—C12—C9 | 117.6 (3) |
C15—N7—C13 | 109.3 (3) | O5—C12—C9 | 116.1 (3) |
C15—N7—H7N | 126 (3) | C14—C13—N7 | 106.7 (3) |
C13—N7—H7N | 124 (3) | C14—C13—C16 | 133.2 (3) |
C15—N8—C14 | 109.4 (3) | N7—C13—C16 | 120.1 (3) |
C15—N8—H8N | 128 (3) | C13—C14—N8 | 107.0 (3) |
C14—N8—H8N | 122 (3) | C13—C14—H14 | 126.5 |
C2—C1—N2 | 106.3 (3) | N8—C14—H14 | 126.5 |
C2—C1—C4 | 133.6 (3) | N7—C15—N8 | 107.6 (3) |
N2—C1—C4 | 120.2 (3) | N7—C15—H15 | 126.2 |
C1—C2—N1 | 106.6 (3) | N8—C15—H15 | 126.2 |
C1—C2—H2 | 126.7 | O7—C16—O8 | 126.3 (4) |
N1—C2—H2 | 126.7 | O7—C16—C13 | 117.8 (3) |
N1—C3—N2 | 108.0 (4) | O8—C16—C13 | 115.9 (3) |
C3—N2—C1—C2 | −0.4 (5) | C11—N5—C9—C10 | 0.5 (5) |
C3—N2—C1—C4 | 179.6 (4) | C11—N5—C9—C12 | 179.7 (4) |
N2—C1—C2—N1 | 0.2 (5) | N5—C9—C10—N6 | −0.5 (5) |
C4—C1—C2—N1 | −179.9 (4) | C12—C9—C10—N6 | −179.6 (4) |
C3—N1—C2—C1 | 0.1 (5) | C11—N6—C10—C9 | 0.4 (5) |
C2—N1—C3—N2 | −0.4 (5) | C9—N5—C11—N6 | −0.2 (5) |
C1—N2—C3—N1 | 0.5 (5) | C10—N6—C11—N5 | −0.1 (5) |
C2—C1—C4—O2 | −174.2 (5) | C10—C9—C12—O6 | −177.8 (5) |
N2—C1—C4—O2 | 5.7 (6) | N5—C9—C12—O6 | 3.2 (6) |
C2—C1—C4—O1 | 5.4 (7) | C10—C9—C12—O5 | 4.0 (7) |
N2—C1—C4—O1 | −174.7 (4) | N5—C9—C12—O5 | −175.0 (4) |
C7—N3—C5—C6 | 0.3 (5) | C15—N7—C13—C14 | −0.4 (5) |
C7—N3—C5—C8 | −179.0 (4) | C15—N7—C13—C16 | 179.2 (4) |
N3—C5—C6—N4 | −0.8 (5) | N7—C13—C14—N8 | 0.5 (5) |
C8—C5—C6—N4 | 178.4 (4) | C16—C13—C14—N8 | −179.0 (4) |
C7—N4—C6—C5 | 1.1 (5) | C15—N8—C14—C13 | −0.4 (5) |
C5—N3—C7—N4 | 0.4 (5) | C13—N7—C15—N8 | 0.1 (5) |
C6—N4—C7—N3 | −0.9 (5) | C14—N8—C15—N7 | 0.2 (5) |
C6—C5—C8—O3 | 178.6 (5) | C14—C13—C16—O7 | −174.2 (5) |
N3—C5—C8—O3 | −2.3 (6) | N7—C13—C16—O7 | 6.3 (6) |
C6—C5—C8—O4 | 0.2 (7) | C14—C13—C16—O8 | 6.5 (7) |
N3—C5—C8—O4 | 179.3 (4) | N7—C13—C16—O8 | −173.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O5i | 0.87 (2) | 1.63 (2) | 2.476 (4) | 163 (5) |
O4—H4A···O6i | 0.87 (2) | 2.52 (4) | 3.205 (4) | 136 (4) |
O8—H8A···O1ii | 0.85 (2) | 1.65 (2) | 2.484 (4) | 166 (5) |
O8—H8A···O2ii | 0.85 (2) | 2.63 (4) | 3.162 (4) | 122 (4) |
O1S—H1A···Cl2 | 0.85 (2) | 2.52 (5) | 3.330 (9) | 159 (10) |
O1S—H1B···Cl1iii | 0.84 (2) | 2.97 (9) | 3.546 (15) | 128 (10) |
O1S—H1B···Cl4iii | 0.84 (2) | 2.93 (7) | 3.499 (11) | 127 (8) |
O2S—H2A···Cl2 | 0.85 (2) | 2.61 (12) | 3.382 (17) | 150.20 |
O2S—H2B···Cl1iii | 0.85 (2) | 2.36 (10) | 3.13 (2) | 150 (17) |
N1—H1N···O2iv | 0.88 (2) | 1.86 (2) | 2.712 (4) | 160 (4) |
N2—H2N···Cl2 | 0.87 (2) | 2.44 (2) | 3.297 (3) | 167 (4) |
N3—H3N···O1S | 0.87 (2) | 2.01 (2) | 2.860 (10) | 168 (4) |
N3—H3N···O2S | 0.87 (2) | 1.89 (2) | 2.739 (12) | 165 (4) |
N4—H4N···O3iv | 0.85 (2) | 1.92 (3) | 2.677 (5) | 148 (4) |
N5—H5N···Cl4 | 0.86 (2) | 2.39 (2) | 3.247 (3) | 173 (4) |
N6—H6N···O6iv | 0.87 (2) | 1.85 (3) | 2.661 (4) | 156 (4) |
N7—H7N···Cl1 | 0.89 (2) | 2.32 (2) | 3.205 (3) | 175 (4) |
N8—H8N···O7iv | 0.87 (2) | 1.78 (2) | 2.628 (4) | 164 (4) |
C2—H2···O8v | 0.95 | 2.55 | 3.414 (5) | 152 |
C3—H3···Cl2iv | 0.95 | 2.91 | 3.454 (4) | 118 |
C6—H6···O5vi | 0.95 | 2.54 | 3.400 (5) | 151 |
C7—H7···Cl2iv | 0.95 | 2.77 | 3.599 (4) | 146 |
C10—H10···O4vi | 0.95 | 2.49 | 3.345 (5) | 151 |
C11—H11···Cl3 | 0.95 | 2.75 | 3.523 (4) | 139 |
C11—H11···Cl4iv | 0.95 | 2.92 | 3.528 (4) | 123 |
C14—H14···O1v | 0.95 | 2.47 | 3.303 (5) | 147 |
C15—H15···Cl3 | 0.95 | 2.8 | 3.511 (4) | 132 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x+1, y−1, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer and a grant from the Geneseo Foundation.
Funding information
Funding for this research was provided by: U.S. Department of Educationhttps://doi.org/10.13039/100000138 (award No. P116Z100020); Geneseo Foundation
References
Artetxe, B., San Felices, L., Pache, A., Reinoso, S. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m94. CSD CrossRef IUCr Journals Google Scholar
Boskovic, C., Folting, K. & Christou, G. (2000). Polyhedron, 19, 2111–2118. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bulic, B., Pickhardt, M. & Mandelkow, E. (2013). J. Med. Chem. 56, 4135–4155. Web of Science CrossRef CAS Google Scholar
Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134–o135. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, W.-S. (2012). Acta Cryst. E68, m1246. CSD CrossRef IUCr Journals Google Scholar
Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m667–m668. CSD CrossRef IUCr Journals Google Scholar
Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, o1837. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166–1175. Web of Science CrossRef CAS PubMed Google Scholar
Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, o1869–o1871. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441–e442. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464–m465. CSD CrossRef IUCr Journals Google Scholar
Govindan, E., Thirumurugan, S., Ganeshraja, A. S., Anbalagan, K. & SubbiahPandi, A. (2014a). Acta Cryst. E70, m53. CSD CrossRef IUCr Journals Google Scholar
Govindan, E., Thirumurugan, S., Rajkumar, K., Anbalagan, K. & SubbiahPandi, A. (2014b). Acta Cryst. E70, m303. CSD CrossRef IUCr Journals Google Scholar
Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243. Web of Science CrossRef CAS Google Scholar
Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546. Web of Science CSD CrossRef CAS Google Scholar
Guo, Y.-P. (2009). Acta Cryst. E65, o22. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). Acta Cryst. C57, 1067–1072. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
He, H.-S. (2006). Acta Cryst. E62, m3535–m3536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930. Web of Science CrossRef PubMed CAS Google Scholar
Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476–479. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jallapally, A., Addla, D., Bagul, P., Sridhar, B., Banerjee, S. K. & Kantevari, S. (2015). Bioorg. Med. Chem. 23, 3526–3533. Web of Science CSD CrossRef CAS Google Scholar
Kefi, R., Lefebvre, F., Zeller, M. & Ben Nasr, C. (2011). Acta Cryst. E67, m343. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed Google Scholar
Leesakul, N., Runrueng, W., Saithong, S. & Pakawatchai, C. (2012). Acta Cryst. E68, m837. CSD CrossRef IUCr Journals Google Scholar
Li, Y.-K., Hsu, H.-S., Chang, L.-F. & Chen, G. (1998). J. Biochem. 123, 416–422. CrossRef CAS Google Scholar
López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejada, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marson, C. M. (2011). Chem. Rev. 111, 7121–7156. Web of Science CrossRef CAS Google Scholar
Mohamed, S. K., Akkurt, M., Potgieter, H. & Ali, M. (2014). Acta Cryst. E70, o979–o980. CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044–o3045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2005). Acta Cryst. C61, o668–o670. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reinoso, S., Artetxe, B., Castillo, O., Luque, A. & Gutiérrez-Zorrilla, J. M. (2015). Acta Cryst. E71, m232–m233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Robichaud, A. J., Engers, D. W., Lindsley, C. W. & Hopkins, C. R. (2011). ACS Chem. Neurosci. 2, 433–449. Web of Science CrossRef CAS Google Scholar
Shao, X.-D. & Yu, C.-H. (2014). Acta Cryst. C70, 603–605. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheffler, D. J., Pinkerton, A. B., Dahl, R., Markou, A. & Cosford, N. D. P. (2011). ACS Chem. Neurosci. 2, 382–393. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771–3781. Web of Science CSD CrossRef Google Scholar
Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o1100–o1102. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947–1949. Web of Science CrossRef Google Scholar
Tichenor, M. S., Thurmond, R. L., Venable, J. D. & Savall, B. M. (2015). J. Med. Chem. 58, 7119–7127. Web of Science CrossRef CAS Google Scholar
Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2013). Acta Cryst. E69, m303–m304. CSD CrossRef IUCr Journals Google Scholar
Varala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). Tetrahedron Lett. 48, 69–72. Web of Science CrossRef CAS Google Scholar
Wang, B.-Q., Yan, H.-B., Huang, Z.-Q. & Zhang, Z. (2013). Acta Cryst. C69, 616–619. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiong, Z.-Y., Li, L., Zhao, X.-J. & Chen, H.-M. (2013). Acta Cryst. E69, m172. CSD CrossRef IUCr Journals Google Scholar
Yanagisawa, H., Amemiya, Y., Kanazaki, T., Shimoji, Y., Fujimoto, K., Kitahara, Y., Sada, T., Mizuno, M., Ikeda, M., Miyamoto, S., Furukawa, Y. & Koike, H. (1996). J. Med. Chem. 39, 323–338. CSD CrossRef CAS Web of Science Google Scholar
Yin, X., Cai, S.-L., Zheng, S.-R., Fan, J. & Zhang, W.-G. (2012). Acta Cryst. C68, m177–m180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159. CAS Google Scholar
Yu, C.-H. (2012). Acta Cryst. E68, o2295. CSD CrossRef IUCr Journals Google Scholar
Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569–m570. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, R.-Q. (2012). Acta Cryst. E68, m389. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.