research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of two tetra­chlorido­zincate salts of 4-carb­­oxy-1H-imidazol-3-ium: a salt hydrate and a co-crystal salt hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY–College at Geneseo, Geneseo, New York 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by T. J. Prior, University of Hull, England (Received 20 December 2016; accepted 7 January 2017; online 13 January 2017)

Imidazole-containing compounds exhibit a myriad of pharmacological activities. Two tetra­chlorido­zincate salts of 4-carb­oxy-1H-imidazol-3-ium, ImHCO2H+, are reported. Bis(4-carb­oxy-1H-imidazol-3-ium) tetra­chlorido­zincate monohydrate, (C4H5N2O2)2[ZnCl4]·H2O, (I), crystallizes as a monohydrate salt, while bis­(4-carb­oxy-1H-imidazol-3-ium) tetra­chlorido­zincate bis­(1H-imidazol-3-ium-4-carboxyl­ato) monohydrate, (C4H5N2O2)2[ZnCl4]·2C4H4N2O2·H2O, (II), is a co-crystal salt with six residues: two ImHCO2H+ cations, two formula units of the zwitterionic 1H-imidazol-3-ium-4-carboxyl­ate, ImHCO2, one tetra­chlorido­zincate anion and one water mol­ecule disordered over two sites in a 0.60 (4):0.40 (4) ratio. The geometric parameters of the ImHCO2H+ and the ImHCO2 moieties are the same within the standard uncertainties of the measurements. Both compounds exhibit extensive hydrogen bonding, including involvement of the tetra­chlorido­zincate anion, resulting in inter­connected chains of anions joined by water mol­ecules.

1. Chemical context

Imidazole-containing compounds find use in numerous pharmaceuticals including fungicides, anti­viral agents, anti­arrhythmics, anti­histamines, and anthelmintics (Varala et al., 2007[Varala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). Tetrahedron Lett. 48, 69-72.]; Horton et al., 2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]; López-Rodríguez et al., 1999[López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejada, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020-5028.]). Recent studies have shown that imidazole and benzimidazole derivatives exhibit pharmacological activity in histamine signaling (Tichenor et al., 2015[Tichenor, M. S., Thurmond, R. L., Venable, J. D. & Savall, B. M. (2015). J. Med. Chem. 58, 7119-7127.]; Marson, 2011[Marson, C. M. (2011). Chem. Rev. 111, 7121-7156.]), and act as tau aggregation inhibitors for Alzheimer's disease (Bulic et al., 2013[Bulic, B., Pickhardt, M. & Mandelkow, E. (2013). J. Med. Chem. 56, 4135-4155.]), and in the central nervous system (Robichaud et al., 2011[Robichaud, A. J., Engers, D. W., Lindsley, C. W. & Hopkins, C. R. (2011). ACS Chem. Neurosci. 2, 433-449.]; Sheffler et al., 2011[Sheffler, D. J., Pinkerton, A. B., Dahl, R., Markou, A. & Cosford, N. D. P. (2011). ACS Chem. Neurosci. 2, 382-393.]). Further, derivatized imidazole-5-carb­oxy­lic acids have been shown to be angiotensin-converting enzyme (ACE) inhibitors (Jallapally et al., 2015[Jallapally, A., Addla, D., Bagul, P., Sridhar, B., Banerjee, S. K. & Kantevari, S. (2015). Bioorg. Med. Chem. 23, 3526-3533.]; Li et al., 1998[Li, Y.-K., Hsu, H.-S., Chang, L.-F. & Chen, G. (1998). J. Biochem. 123, 416-422.]; Yanagisawa et al., 1996[Yanagisawa, H., Amemiya, Y., Kanazaki, T., Shimoji, Y., Fujimoto, K., Kitahara, Y., Sada, T., Mizuno, M., Ikeda, M., Miyamoto, S., Furukawa, Y. & Koike, H. (1996). J. Med. Chem. 39, 323-338.]).

As a result of the myriad binding modes available to imidazole ligands that bear carb­oxy­lic acid substituents, they have found use in the preparation of several metal organic frameworks, MOFs (Starosta & Leciejewicz, 2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]; Yin et al., 2009[Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.], 2012[Yin, X., Cai, S.-L., Zheng, S.-R., Fan, J. & Zhang, W.-G. (2012). Acta Cryst. C68, m177-m180.]; Sun & Yang, 2007[Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771-3781.]; Sun et al., 2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947-1949.]). The synthesis and characterization of novel MOFs is an area of active research because of their potential use in such diverse areas as gas storage, catalysis, chemical sensors and mol­ecular separation (Dey et al., 2014[Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3-10.]; Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]; Farha & Hupp, 2010[Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166-1175.]). Neutral carb­oxy­imidazoles exist in their zwitterionic form and none of the reported compounds have the carb­oxy­imidazole ligand in the fully protonated form. However, there are examples of MOFs with anionic repeating units and imidazolium cations (Shao & Yu, 2014[Shao, X.-D. & Yu, C.-H. (2014). Acta Cryst. C70, 603-605.]; Wang et al., 2013[Wang, B.-Q., Yan, H.-B., Huang, Z.-Q. & Zhang, Z. (2013). Acta Cryst. C69, 616-619.]).

[Scheme 1]

Although the structures of the zwitterionic 1H-imidazol-3-ium-4-carboxyl­ate, (III), (Cao et al., 2012[Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134-o135.]) and the corresponding 2-isopropyl (Du et al., 2011[Du, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, o1837.]) and 2-methyl (Guo, 2009[Guo, Y.-P. (2009). Acta Cryst. E65, o22.]) derivatives have been reported, to our knowledge, fully protonated imidazole­carb­oxy­lic acid species have not been structurally characterized. Compounds (I)[link] and (II)[link] possess the carb­oxy­imidazole in its fully protonated form and so contribute to the knowledge base of this class of compounds.

2. Structural commentary

Fig. 1[link] shows the atom-labeling scheme employed for (I)[link]. The asymmetric unit consists of two 4-carb­oxy-1H-imidazol-3-ium cations (ImHCO2H+), one tetra­chlorido­zincate anion, and one water mol­ecule. Thus, compound (I)[link] is classified as a salt solvate (Grothe et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]) with four residues.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labeling scheme. Non-hydrogen anisotropic displacement parameters are drawn at the 50% probability level.

Compound (II)[link] is an example of a rare co-crystal salt solvate with six residues (Grothe et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]). The asymmetric unit consists of two ImHCO2H+ cations, one tetra­chlorido­zincate anion, two 1H-imidazol-3-ium-4-carboxylate zwitterions (ImHCO2), and one water mol­ecule. The atom-labeling scheme employed is shown in Fig. 2[link].

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-labeling scheme. Non-hydrogen anisotropic displacement parameters are drawn at the 50% probability level.

The geometric parameters determined for the tetra­chlorido­zincate anions in (I)[link] and (II)[link] are found in Tables 1[link] and 2[link], respectively. The average Zn—Cl bond length is 2.273 (3) and 2.272 (15) Å, respectively, for (I)[link] and (II)[link], which are within the range 2.2409 (3)–2.3085 (7) Å found in other examples of tetra­chlorido­zincate salts (Govindan et al., 2014a[Govindan, E., Thirumurugan, S., Ganeshraja, A. S., Anbalagan, K. & SubbiahPandi, A. (2014a). Acta Cryst. E70, m53.],b[Govindan, E., Thirumurugan, S., Rajkumar, K., Anbalagan, K. & SubbiahPandi, A. (2014b). Acta Cryst. E70, m303.]; Leesakul et al., 2012[Leesakul, N., Runrueng, W., Saithong, S. & Pakawatchai, C. (2012). Acta Cryst. E68, m837.]; Goh et al., 2012[Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464-m465.]; Kefi et al., 2011[Kefi, R., Lefebvre, F., Zeller, M. & Ben Nasr, C. (2011). Acta Cryst. E67, m343.]). The same example structures exhibit Cl—Zn—Cl angles in the range 102.256 (10) to 112.72 (3)°. The average angles found in (I)[link] and (II)[link] are 109 (2)° and 109 (3)°, respectively, and the individual values exhibit comparable ranges (Tables 1[link] and 2[link]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Zn1—Cl2 2.2690 (7) O1—C1 1.313 (2)
Zn1—Cl3 2.2704 (6) O2—C1 1.200 (2)
Zn1—Cl4 2.2737 (6) O3—C5 1.305 (2)
Zn1—Cl1 2.2794 (6) O4—C5 1.201 (3)
       
Cl2—Zn1—Cl3 107.93 (2) Cl3—Zn1—Cl1 112.84 (2)
Cl2—Zn1—Cl4 111.11 (2) Cl4—Zn1—Cl1 107.92 (2)
Cl3—Zn1—Cl4 109.21 (3) O2—C1—O1 124.9 (2)
Cl2—Zn1—Cl1 107.85 (2) O4—C5—O3 125.4 (2)
       
O2—C1—C2—N1 4.6 (3) O4—C5—C6—N3 −1.8 (3)

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Zn1—Cl3 2.2577 (12) O3—C8 1.220 (5)
Zn1—Cl4 2.2589 (11) O4—C8 1.277 (5)
Zn1—Cl1 2.2758 (12) O5—C12 1.274 (5)
Zn1—Cl2 2.2948 (12) O6—C12 1.222 (5)
O1—C4 1.271 (4) O7—C16 1.224 (5)
O2—C4 1.229 (4) O8—C16 1.267 (5)
       
Cl3—Zn1—Cl4 111.21 (4) Cl1—Zn1—Cl2 108.62 (5)
Cl3—Zn1—Cl1 112.42 (5) O2—C4—O1 126.3 (4)
Cl4—Zn1—Cl1 109.31 (5) O3—C8—O4 125.6 (4)
Cl3—Zn1—Cl2 104.23 (5) O6—C12—O5 126.3 (4)
Cl4—Zn1—Cl2 110.95 (4) O7—C16—O8 126.3 (4)
       
N2—C1—C4—O2 5.7 (6) N5—C9—C12—O6 3.2 (6)
N3—C5—C8—O3 −2.3 (6) N7—C13—C16—O7 6.3 (6)

There are no noteworthy differences in the C—C and C—N bond lengths between the ImHCO2H+ cations and ImHCO2 zwitterions found in (I)[link] and (II)[link]. The N—C′ bond length, where C′ is the carbon atom bonded to both nitro­gen atoms in a given ring (formally, the 2 position in the ring), is consistently shorter than the N—C′′ bond length, where C′′ represents the carbon in the formal 4 or 5 position in the ring, for all of the ImHCO2H+ and ImHCO2 residues. This observation is consistent with other reported imidazoles and imidazolium salts (e.g., Mohamed et al., 2014[Mohamed, S. K., Akkurt, M., Potgieter, H. & Ali, M. (2014). Acta Cryst. E70, o979-o980.]; Trifa et al., 2013[Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2013). Acta Cryst. E69, m303-m304.]; Chérif et al., 2013[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m667-m668.]; Yu, 2012[Yu, C.-H. (2012). Acta Cryst. E68, o2295.]; Zhu, 2012[Zhu, R.-Q. (2012). Acta Cryst. E68, m389.]).

The carb­oxy and carboxyl­ate groups are tilted slightly from the imidazole plane in all cases. The N—C—C—O torsion angles are reported in Tables 1[link] and 2[link]. In both (I)[link] and (II)[link], the carb­oxy and carboxyl­ate groups are unsymmetrical. For the carb­oxy groups, the C—OH bond is longer than the C=O bond. These observations are consistent with the geometric parameters found in similar imidazole­carb­oxy­lic acids (Cao et al., 2012[Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134-o135.]; Du et al., 2011[Du, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, o1837.]; Guo, 2009[Guo, Y.-P. (2009). Acta Cryst. E65, o22.]). The observed O—C—O bond angles of the fully protonated form in (I)[link] and (II)[link] and the zwitterionic form in (II)[link] are the same within the standard uncertainties of the refinement.

3. Supra­molecular features

An extensive hydrogen-bonding network in (I)[link] involving the tetra­chlorido­zincate anion and the water of hydration results in chains parallel to [2[\overline{2}]0], as seen in Fig. 3[link] and Table 3[link]. Additional Cl⋯H—O—H⋯Cl inter­actions along [100] join the chains (Fig. 4[link]). N—H⋯O(water), N—H⋯Cl, and O—H⋯O hydrogen bonds incorporate the ImHCO2H+ cations into the three-dimensional extended structure. Using graph-set analysis to describe the hydrogen bonding (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), an R44(20) ring is observed with four oxygen acceptors, two oxygen donors and two nitro­gen donors. One oxygen donor, two oxygen acceptor rings, R12(4), involving a carb­oxy group are also present.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯Cl2 0.83 (2) 2.42 (2) 3.192 (3) 155 (4)
O1S—H1SB⋯Cl4i 0.81 (2) 2.94 (4) 3.392 (2) 118 (3)
O1S—H1SB⋯Cl1ii 0.81 (2) 3.05 (4) 3.540 (3) 122 (4)
O1—H1A⋯Cl4iii 0.83 (2) 2.25 (2) 3.0723 (19) 171 (3)
O3—H3A⋯O1Siv 0.83 (2) 1.77 (2) 2.576 (3) 163 (3)
N1—H1N⋯Cl1 0.84 (2) 2.37 (2) 3.2105 (17) 178 (2)
N2—H2N⋯Cl1i 0.86 (2) 2.85 (2) 3.3787 (19) 122 (2)
N2—H2N⋯O2i 0.86 (2) 1.99 (2) 2.745 (2) 146 (2)
N3—H3N⋯Cl3v 0.83 (2) 2.37 (2) 3.1941 (18) 177 (2)
N4—H4N⋯Cl3vi 0.86 (2) 2.83 (2) 3.3586 (19) 121 (2)
N4—H4N⋯O4i 0.86 (2) 2.00 (2) 2.753 (2) 146 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) x, y, z+1; (vi) x+1, y, z+1.
[Figure 3]
Figure 3
Partial packing diagram of (I)[link], showing the water–tetra­chlorido­zincate chains. Only the tetra­chlorido­zincate anion and the water of hydration are shown.
[Figure 4]
Figure 4
Packing diagram of (I)[link], showing the hydrogen-bonding scheme. Only H atoms involved in the inter­actions are shown.

Figs. 5[link] and 6[link] show two views of the crystal packing observed in (II)[link]. Hydrogen-bonding parameters are found in Table 4[link]. As seen in Fig. 5[link], there are several hydrogen-bonding ring motifs that are common to (I)[link] and (II)[link]. An R44(20) ring is observed with four oxygen acceptors, two oxygen donors and two nitro­gen donors, and there is a one oxygen donor, two oxygen acceptor ring, R12(4), involving a carb­oxy group. R22(7) rings involving two nitro­gen donors and two oxygen acceptors are also observed. There are two rings containing chlorine acceptor atoms: an R44(15) system with one oxygen donor, three nitro­gen donors, one oxygen acceptor and three chlorine acceptors; and an R12(4) ring with a single oxygen donor and two chlorine acceptors. Similarly to (I)[link], chains of hydrogen-bonded tetra­chlorido­zincate anions and water mol­ecules of hydration are found parallel to [2[\overline{2}]0].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O5i 0.87 (2) 1.63 (2) 2.476 (4) 163 (5)
O4—H4A⋯O6i 0.87 (2) 2.52 (4) 3.205 (4) 136 (4)
O8—H8A⋯O1ii 0.85 (2) 1.65 (2) 2.484 (4) 166 (5)
O8—H8A⋯O2ii 0.85 (2) 2.63 (4) 3.162 (4) 122 (4)
O1S—H1A⋯Cl2 0.85 (2) 2.52 (5) 3.330 (9) 159 (10)
O1S—H1B⋯Cl1iii 0.84 (2) 2.97 (9) 3.546 (15) 128 (10)
O1S—H1B⋯Cl4iii 0.84 (2) 2.93 (7) 3.499 (11) 127 (8)
O2S—H2A⋯Cl2 0.85 (2) 2.61 (12) 3.382 (17) 150.20
O2S—H2B⋯Cl1iii 0.85 (2) 2.36 (10) 3.13 (2) 150 (17)
N1—H1N⋯O2iv 0.88 (2) 1.86 (2) 2.712 (4) 160 (4)
N2—H2N⋯Cl2 0.87 (2) 2.44 (2) 3.297 (3) 167 (4)
N3—H3N⋯O1S 0.87 (2) 2.01 (2) 2.860 (10) 168 (4)
N3—H3N⋯O2S 0.87 (2) 1.89 (2) 2.739 (12) 165 (4)
N4—H4N⋯O3iv 0.85 (2) 1.92 (3) 2.677 (5) 148 (4)
N5—H5N⋯Cl4 0.86 (2) 2.39 (2) 3.247 (3) 173 (4)
N6—H6N⋯O6iv 0.87 (2) 1.85 (3) 2.661 (4) 156 (4)
N7—H7N⋯Cl1 0.89 (2) 2.32 (2) 3.205 (3) 175 (4)
N8—H8N⋯O7iv 0.87 (2) 1.78 (2) 2.628 (4) 164 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x+1, y-1, z; (iv) x+1, y, z.
[Figure 5]
Figure 5
A view of the hydrogen bonding in (II)[link], showing the ring motifs. Only H atoms involved in the inter­actions are shown. Only the major contributor to the disorder model of the water mol­ecule is shown.
[Figure 6]
Figure 6
A second view of the hydrogen bonding in (II)[link]. Only H atoms involved in the hydrogen bonds are shown. Only the major contributor to the disorder model of the water mol­ecule is shown.

In (I)[link], a weak ππ inter­action between ImHCO2H+ cations related by a crystallographically imposed center of symmetry is observed with a centroid-to-centroid distance of 3.5781 (15) Å and an inter­planar distance of 3.4406 (9) Å, corresponding to 0.983 Å slippage (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Two independent weak ππ inter­actions between ImHCO2H+ cations and ImHCO2 zwitterions are observed in (II)[link]. The principal one involves the rings containing N1 and N7 with a centroid-to-centroid distance of 3.5871 (3) Å, an inter­planar distance of 3.3591 (18) Å and a dihedral angle of 2.6 (2)° between rings (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The weaker ππ inter­action involves the rings containing N3 and N5 and has a centroid-to-centroid distance of 3.740 (3) Å, an inter­planar distance of 3.3140 (17) Å and a dihedral angle of 1.2 (2) Å between planes.

Fig. 7[link] shows representations of the observed π stacking in which members of inter­acting pairs of mol­ecules are projected into the same plane. A ππ inter­action is also observed in the solid-state structure of the ImHCO2 zwitterion, labeled (III) (Cao et al., 2012[Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134-o135.]). In (III), the centroid–centroid distance is longer [3.674 (4) Å] than that observed between the fully protonated form in (I)[link] and the principal inter­action between the zwitterion and the protonated form in (II)[link]. In all of the pairs except in (I)[link], the members of the pairs are arranged in a head-to-head configuration.

[Figure 7]
Figure 7
Projections of π-stacked mol­ecules. The mol­ecules are related by the symmetry transformations (I)[link]x + 1, −y + 1, −z + 1; (IIa) x, y, z; (IIb) x + 1, y − 1,z; (III) x, y, z + 1.

4. Database survey

The structure of 1-H-imidazol-3-ium-4-carboxyl­ate has been reported (Cao et al., 2012[Cao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134-o135.]) and the structures of the 2-methyl and 2-isopropyl derivatives of the zwitterion 5-carb­oxy-1H-3-ium-4-carboxyl­ate monohydrate have been reported (Guo, 2009[Guo, Y.-P. (2009). Acta Cryst. E65, o22.]; Du et al., 2011[Du, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, o1837.]). Several polymeric compounds with bridging 1H-imidazole-4-carboxyl­ato ligands have been reported, including one with CaII (Starosta & Leciejewicz, 2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]) and two with CdII (Yin et al., 2009[Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.], 2012[Yin, X., Cai, S.-L., Zheng, S.-R., Fan, J. & Zhang, W.-G. (2012). Acta Cryst. C68, m177-m180.]). The structures of monomeric compounds with 1H-imidazole-4-carboxyl­ato-κ2N,O ligands and MgII (Gryz et al., 2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]), MnII (Xiong et al., 2013[Xiong, Z.-Y., Li, L., Zhao, X.-J. & Chen, H.-M. (2013). Acta Cryst. E69, m172.]), CoII (Chen, 2012[Chen, W.-S. (2012). Acta Cryst. E68, m1246.]; Artetxe et al., 2013[Artetxe, B., San Felices, L., Pache, A., Reinoso, S. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m94.]), NiII (Zheng et al., 2011[Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.]), CuII (Reinoso et al., 2015[Reinoso, S., Artetxe, B., Castillo, O., Luque, A. & Gutiérrez-Zorrilla, J. M. (2015). Acta Cryst. E71, m232-m233.]), and ZnII (Gryz et al., 2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]; He, 2006[He, H.-S. (2006). Acta Cryst. E62, m3535-m3536.]; Shuai et al., 2011[Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.]) have been determined. Tetra­nuclear MnII complexes with 1H-imidazole-4-carboxyl­ato-κ2N,O and the structurally similar 4-imidazole­acetate ligand have also been characterized (Boskovic et al., 2000[Boskovic, C., Folting, K. & Christou, G. (2000). Polyhedron, 19, 2111-2118.]). The structures of numerous imidazolium salts are known (e.g., Mohamed et al.,, 2014[Mohamed, S. K., Akkurt, M., Potgieter, H. & Ali, M. (2014). Acta Cryst. E70, o979-o980.]; Trifa et al., 2013[Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2013). Acta Cryst. E69, m303-m304.]; Chérif et al., 2013[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m667-m668.]; Yu, 2012[Yu, C.-H. (2012). Acta Cryst. E68, o2295.]; Zhu, 2012[Zhu, R.-Q. (2012). Acta Cryst. E68, m389.]; Ishida & Kashino, 2001[Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476-479.]; Gili et al., 2000[Gili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441-e442.]; Pavan Kumar & Kumara Swamy, 2005[Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2005). Acta Cryst. C61, o668-o670.]; Hashizume et al., 2001[Hashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). Acta Cryst. C57, 1067-1072.]; Moreno-Fuquen et al., 2009a[Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717.],b[Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044-o3045.], 2011[Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.]; Zhang et al., 2011[Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569-m570.]; Sun et al., 2002[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o1100-o1102.]; Fukunaga & Ishida, 2003[Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, o1869-o1871.]). There are many examples of reported structures of tetra­chlorido­zincate salts (e.g., Govindan et al., 2014a[Govindan, E., Thirumurugan, S., Ganeshraja, A. S., Anbalagan, K. & SubbiahPandi, A. (2014a). Acta Cryst. E70, m53.],b[Govindan, E., Thirumurugan, S., Rajkumar, K., Anbalagan, K. & SubbiahPandi, A. (2014b). Acta Cryst. E70, m303.]; Leesakul et al., 2012[Leesakul, N., Runrueng, W., Saithong, S. & Pakawatchai, C. (2012). Acta Cryst. E68, m837.]; Goh et al., 2012[Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464-m465.]; Kefi et al., 2011[Kefi, R., Lefebvre, F., Zeller, M. & Ben Nasr, C. (2011). Acta Cryst. E67, m343.]).

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were obtained during the attempted syntheses of ZnII coordination polymers. (I)[link] was obtained by dissolving 113 mg (0.829 mmol) ZnCl2 and 194 mg (1.73 mmol) 1H-imidazole-4-carb­oxy­lic acid in ethanol. Six drops of 6 M HCl were added and the mixture was heated to reflux with stirring. The warm solution was filtered and the filtrate was allowed to cool. After a few days, crystalline clumps of the product were obtained. 1H NMR (400 MHz, dmso-d6, p.p.m.): 7.97 (s, 2H), 8.51 (s, 2H). 13C NMR (100 MHz, dmso-d6, p.p.m.): 126.1, 127.4, 137.7, 161.3. A crystal cut from a larger mass of crystals was used for X-ray analysis.

Compound (II)[link] was prepared similarly to (I)[link] except that methanol was the solvent and no HCl was added to the reaction mixture. Single crystals for X-ray analysis were obtained by slow evaporation of a methanol solution.1H NMR (400 MHz, dmso-d6, p.p.m.): 8.15 (s, 4H), 8.95 (s, 4H). 13C NMR (100 MHz, dmso-d6, p.p.m.): 125.4, 126.1, 137.6, 160.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For (I)[link], data completeness was 97.9% and for (II)[link] it was 95.2%. For both (I)[link] and (II)[link], all hydrogen atoms were located in difference Fourier maps. The hydrogen atoms bonded to carbon were refined using a riding model with a C—H distance of 0.95 Å and hydrogen-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The O—H and N—H distances were restrained to 0.84 and 0.88 Å, respectively. The isotropic displacement parameters of the hydrogen atoms bonded to nitro­gen were set using the approximation Uiso(H) = 1.2Ueq(N). In (I)[link], isotropic displacement parameters of the hydrogen atoms bonded to oxygen were refined freely, but for (II)[link] they were set using the approximation Uiso(H) = 1.5Ueq(O). For (II)[link], the water mol­ecule is disordered over two positions. In addition to the aforementioned distance restraint, an H—O—H angle restraint of 105° was employed. The occupancies refined to 0.60 (4):0.40 (4).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula (C4H5N2O2)2[ZnCl4]·H2O (C4H4N2O2)2[ZnCl4]·2C4H5N2O2H2O
Mr 451.39 675.57
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 200 200
a, b, c (Å) 6.9094 (10), 7.5828 (12), 16.468 (3) 6.9369 (19), 6.9624 (15), 28.483 (8)
α, β, γ (°) 79.455 (4), 84.489 (4), 83.833 (4) 89.524 (9), 85.622 (9), 71.202 (8)
V3) 840.7 (2) 1298.3 (6)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.12 1.42
Crystal size (mm) 0.60 × 0.50 × 0.20 0.50 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.41, 0.68 0.50, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 10429, 3375, 2995 10560, 4855, 3619
Rint 0.032 0.042
(sin θ/λ)max−1) 0.625 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.03 0.050, 0.135, 1.03
No. of reflections 3375 4855
No. of parameters 227 395
No. of restraints 8 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.28 0.63, −0.71
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate monohydrate top
Crystal data top
(C4H5N2O2)2[ZnCl4]·H2OZ = 2
Mr = 451.39F(000) = 452
Triclinic, P1Dx = 1.783 Mg m3
a = 6.9094 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5828 (12) ÅCell parameters from 6894 reflections
c = 16.468 (3) Åθ = 2.5–27.5°
α = 79.455 (4)°µ = 2.12 mm1
β = 84.489 (4)°T = 200 K
γ = 83.833 (4)°Plate, clear colourless
V = 840.7 (2) Å30.60 × 0.50 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3375 independent reflections
Radiation source: sealed microfocus tube2995 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.032
Detector resolution: 8.3330 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.41, Tmax = 0.68l = 2019
10429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.2531P]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.53 e Å3
8 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24426 (3)0.35245 (3)0.23892 (2)0.03225 (8)
Cl10.07702 (7)0.58951 (7)0.29003 (3)0.04037 (13)
Cl20.56514 (8)0.40109 (8)0.22143 (4)0.04596 (14)
Cl30.14855 (8)0.32216 (8)0.11448 (3)0.04391 (14)
Cl40.19391 (9)0.09768 (8)0.33224 (3)0.04754 (14)
O1S0.7881 (4)0.0065 (3)0.25272 (16)0.0744 (6)
H1SA0.755 (6)0.114 (3)0.256 (2)0.113 (16)*
H1SB0.902 (3)0.023 (6)0.241 (3)0.112 (17)*
O10.2088 (3)0.8341 (3)0.57654 (11)0.0583 (5)
H1A0.096 (3)0.846 (4)0.5976 (19)0.080 (11)*
O20.0547 (2)0.7334 (2)0.48378 (10)0.0499 (4)
O30.4700 (2)0.1089 (2)0.82247 (10)0.0488 (4)
H3A0.371 (3)0.082 (4)0.8047 (18)0.068 (9)*
O40.2491 (2)0.1786 (3)0.92209 (10)0.0509 (4)
N10.4180 (2)0.6761 (2)0.39214 (10)0.0328 (4)
H1N0.328 (3)0.656 (3)0.3653 (13)0.039*
N20.7041 (3)0.6977 (3)0.42572 (12)0.0398 (4)
H2N0.830 (2)0.694 (3)0.4249 (15)0.048*
N30.5549 (2)0.2595 (2)1.00903 (11)0.0354 (4)
H3N0.448 (3)0.280 (3)1.0351 (14)0.042*
N40.8615 (3)0.2308 (3)0.97687 (12)0.0414 (4)
H4N0.985 (2)0.234 (3)0.9774 (16)0.05*
C10.2014 (3)0.7670 (3)0.50896 (12)0.0340 (4)
C20.3956 (3)0.7354 (3)0.46709 (12)0.0304 (4)
C30.6053 (3)0.6554 (3)0.36821 (13)0.0374 (5)
H30.65970.61680.31850.045*
C40.5780 (3)0.7487 (3)0.48777 (13)0.0365 (4)
H40.61130.78640.53620.044*
C50.4145 (3)0.1639 (3)0.89239 (12)0.0352 (4)
C60.5806 (3)0.2008 (3)0.93398 (12)0.0320 (4)
C70.7275 (3)0.2773 (3)1.03332 (14)0.0404 (5)
H70.75070.31661.08280.048*
C80.7758 (3)0.1833 (3)0.91435 (13)0.0395 (5)
H80.84020.14520.86610.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03082 (14)0.03910 (14)0.02828 (13)0.00235 (10)0.00091 (9)0.01089 (10)
Cl10.0302 (3)0.0506 (3)0.0444 (3)0.0027 (2)0.0016 (2)0.0234 (2)
Cl20.0303 (3)0.0544 (3)0.0579 (3)0.0051 (2)0.0010 (2)0.0226 (3)
Cl30.0329 (3)0.0699 (4)0.0337 (3)0.0025 (2)0.0048 (2)0.0219 (2)
Cl40.0491 (3)0.0446 (3)0.0421 (3)0.0028 (2)0.0056 (2)0.0016 (2)
O1S0.0736 (16)0.0632 (14)0.0966 (17)0.0020 (12)0.0382 (14)0.0293 (12)
O10.0376 (10)0.0984 (14)0.0484 (10)0.0049 (9)0.0019 (8)0.0392 (10)
O20.0282 (8)0.0812 (12)0.0462 (9)0.0099 (8)0.0035 (7)0.0234 (8)
O30.0444 (10)0.0668 (11)0.0403 (9)0.0072 (8)0.0005 (7)0.0231 (8)
O40.0276 (8)0.0815 (12)0.0447 (9)0.0031 (8)0.0002 (7)0.0164 (8)
N10.0264 (9)0.0406 (9)0.0332 (9)0.0024 (7)0.0075 (7)0.0089 (7)
N20.0227 (9)0.0491 (10)0.0480 (10)0.0037 (8)0.0042 (8)0.0081 (8)
N30.0266 (9)0.0453 (10)0.0340 (9)0.0015 (8)0.0024 (7)0.0098 (8)
N40.0235 (9)0.0515 (11)0.0478 (11)0.0049 (8)0.0014 (8)0.0046 (9)
C10.0316 (11)0.0408 (11)0.0299 (10)0.0025 (9)0.0045 (8)0.0064 (8)
C20.0286 (10)0.0335 (10)0.0297 (9)0.0016 (8)0.0055 (8)0.0060 (8)
C30.0308 (11)0.0429 (11)0.0383 (11)0.0020 (9)0.0016 (9)0.0080 (9)
C40.0323 (11)0.0411 (11)0.0381 (11)0.0051 (9)0.0085 (9)0.0082 (9)
C50.0343 (12)0.0373 (11)0.0324 (10)0.0011 (9)0.0016 (8)0.0034 (8)
C60.0295 (11)0.0351 (10)0.0298 (9)0.0017 (8)0.0008 (8)0.0043 (8)
C70.0330 (12)0.0484 (12)0.0410 (11)0.0048 (9)0.0045 (9)0.0094 (10)
C80.0310 (11)0.0479 (12)0.0369 (11)0.0013 (9)0.0063 (9)0.0062 (9)
Geometric parameters (Å, º) top
Zn1—Cl22.2690 (7)N2—C41.362 (3)
Zn1—Cl32.2704 (6)N2—H2N0.864 (16)
Zn1—Cl42.2737 (6)N3—C71.321 (3)
Zn1—Cl12.2794 (6)N3—C61.378 (2)
O1S—H1SA0.829 (19)N3—H3N0.830 (16)
O1S—H1SB0.806 (18)N4—C71.316 (3)
O1—C11.313 (2)N4—C81.356 (3)
O1—H1A0.828 (18)N4—H4N0.858 (16)
O2—C11.200 (2)C1—C21.465 (3)
O3—C51.305 (2)C2—C41.355 (3)
O3—H3A0.827 (17)C3—H30.95
O4—C51.201 (3)C4—H40.95
N1—C31.317 (3)C5—C61.468 (3)
N1—C21.379 (2)C6—C81.354 (3)
N1—H1N0.838 (16)C7—H70.95
N2—C31.323 (3)C8—H80.95
Cl2—Zn1—Cl3107.93 (2)O1—C1—C2112.04 (17)
Cl2—Zn1—Cl4111.11 (2)C4—C2—N1106.33 (17)
Cl3—Zn1—Cl4109.21 (3)C4—C2—C1132.70 (18)
Cl2—Zn1—Cl1107.85 (2)N1—C2—C1120.95 (17)
Cl3—Zn1—Cl1112.84 (2)N1—C3—N2107.86 (18)
Cl4—Zn1—Cl1107.92 (2)N1—C3—H3126.1
H1SA—O1S—H1SB119 (4)N2—C3—H3126.1
C1—O1—H1A107 (2)C2—C4—N2106.69 (18)
C5—O3—H3A107 (2)C2—C4—H4126.7
C3—N1—C2109.33 (16)N2—C4—H4126.7
C3—N1—H1N124.5 (16)O4—C5—O3125.4 (2)
C2—N1—H1N126.2 (16)O4—C5—C6122.53 (18)
C3—N2—C4109.79 (17)O3—C5—C6112.00 (18)
C3—N2—H2N125.9 (17)C8—C6—N3106.23 (18)
C4—N2—H2N124.3 (17)C8—C6—C5132.12 (18)
C7—N3—C6109.06 (17)N3—C6—C5121.61 (17)
C7—N3—H3N125.3 (17)N4—C7—N3107.89 (19)
C6—N3—H3N125.6 (17)N4—C7—H7126.1
C7—N4—C8110.01 (18)N3—C7—H7126.1
C7—N4—H4N126.0 (17)C6—C8—N4106.81 (18)
C8—N4—H4N123.9 (17)C6—C8—H8126.6
O2—C1—O1124.9 (2)N4—C8—H8126.6
O2—C1—C2123.11 (18)
C3—N1—C2—C40.3 (2)C7—N3—C6—C80.2 (2)
C3—N1—C2—C1178.98 (18)C7—N3—C6—C5178.29 (19)
O2—C1—C2—C4173.6 (2)O4—C5—C6—C8175.7 (2)
O1—C1—C2—C46.0 (3)O3—C5—C6—C82.2 (3)
O2—C1—C2—N14.6 (3)O4—C5—C6—N31.8 (3)
O1—C1—C2—N1175.81 (19)O3—C5—C6—N3179.68 (18)
C2—N1—C3—N20.6 (2)C8—N4—C7—N30.5 (3)
C4—N2—C3—N10.6 (2)C6—N3—C7—N40.5 (3)
N1—C2—C4—N20.1 (2)N3—C6—C8—N40.1 (2)
C1—C2—C4—N2178.4 (2)C5—C6—C8—N4177.7 (2)
C3—N2—C4—C20.4 (2)C7—N4—C8—C60.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···Cl20.83 (2)2.42 (2)3.192 (3)155 (4)
O1S—H1SB···Cl4i0.81 (2)2.94 (4)3.392 (2)118 (3)
O1S—H1SB···Cl1ii0.81 (2)3.05 (4)3.540 (3)122 (4)
O1—H1A···Cl4iii0.83 (2)2.25 (2)3.0723 (19)171 (3)
O3—H3A···O1Siv0.83 (2)1.77 (2)2.576 (3)163 (3)
N1—H1N···Cl10.84 (2)2.37 (2)3.2105 (17)178 (2)
N2—H2N···Cl1i0.86 (2)2.85 (2)3.3787 (19)122 (2)
N2—H2N···O2i0.86 (2)1.99 (2)2.745 (2)146 (2)
N3—H3N···Cl3v0.83 (2)2.37 (2)3.1941 (18)177 (2)
N4—H4N···Cl3vi0.86 (2)2.83 (2)3.3586 (19)121 (2)
N4—H4N···O4i0.86 (2)2.00 (2)2.753 (2)146 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x+1, y, z+1.
(II) bis(4-carboxy-1H-imidazol-3-ium) tetrachloridozincate bis(1H-imidazol-3-ium-4-carboxylato) monohydrate top
Crystal data top
(C4H4N2O2)2[ZnCl4]·2C4H5N2O2H2OZ = 2
Mr = 675.57F(000) = 684
Triclinic, P1Dx = 1.728 Mg m3
a = 6.9369 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9624 (15) ÅCell parameters from 3388 reflections
c = 28.483 (8) Åθ = 3.1–23.6°
α = 89.524 (9)°µ = 1.42 mm1
β = 85.622 (9)°T = 200 K
γ = 71.202 (8)°Block, clear colourless
V = 1298.3 (6) Å30.50 × 0.25 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
4855 independent reflections
Radiation source: sealed microfocus tube3619 reflections with I > 2σ(I)
Detector resolution: 8.3330 pixels mm-1Rint = 0.042
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 88
Tmin = 0.50, Tmax = 0.76k = 87
10560 measured reflectionsl = 3521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.0203P]
where P = (Fo2 + 2Fc2)/3
4855 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.63 e Å3
16 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.05225 (7)0.61778 (7)0.24502 (2)0.03731 (17)
Cl10.26017 (17)0.82285 (19)0.19411 (4)0.0531 (3)
Cl20.05785 (16)0.29226 (16)0.21504 (3)0.0436 (3)
Cl30.23787 (18)0.6937 (2)0.25097 (4)0.0560 (3)
Cl40.22620 (16)0.63506 (17)0.31606 (3)0.0408 (3)
O10.3219 (4)0.2856 (5)0.02796 (9)0.0471 (8)
O20.1247 (4)0.3358 (5)0.09533 (10)0.0517 (8)
O30.3667 (5)0.1705 (6)0.39393 (12)0.0661 (10)
O40.4907 (5)0.2123 (5)0.46135 (10)0.0559 (9)
H4A0.379 (5)0.223 (8)0.4788 (16)0.084*
O50.1453 (5)0.7598 (5)0.50318 (10)0.0537 (8)
O60.2533 (5)0.6845 (6)0.43625 (10)0.0615 (9)
O70.2136 (5)0.8281 (6)0.07375 (11)0.0685 (10)
O80.0196 (5)0.7583 (5)0.00627 (10)0.0508 (8)
H8A0.114 (6)0.723 (8)0.0045 (16)0.076*
O1S0.414 (2)0.099 (2)0.2899 (6)0.070 (4)0.60 (4)
H1A0.334 (16)0.176 (12)0.272 (3)0.105*0.60 (4)
H1B0.459 (16)0.021 (6)0.279 (3)0.105*0.60 (4)
O2S0.495 (5)0.150 (4)0.2703 (12)0.093 (10)0.40 (4)
H2A0.381 (15)0.15 (3)0.262 (8)0.14*0.40 (4)
H2B0.59 (2)0.08 (3)0.251 (5)0.14*0.40 (4)
N10.7400 (5)0.3481 (6)0.12509 (13)0.0451 (9)
H1N0.870 (3)0.342 (7)0.1225 (15)0.054*
N20.4407 (5)0.3466 (6)0.14633 (11)0.0392 (8)
H2N0.328 (4)0.352 (6)0.1626 (12)0.047*
N30.7314 (6)0.1382 (5)0.34378 (11)0.0405 (8)
H3N0.644 (5)0.134 (6)0.3241 (12)0.049*
N41.0110 (6)0.1551 (6)0.36673 (14)0.0460 (9)
H4N1.133 (4)0.158 (7)0.3638 (15)0.055*
N50.1092 (5)0.6640 (5)0.38684 (11)0.0370 (8)
H5N0.024 (5)0.646 (6)0.3686 (12)0.044*
N60.3850 (5)0.6882 (6)0.41028 (12)0.0437 (9)
H6N0.511 (4)0.687 (7)0.4100 (15)0.052*
N70.1081 (5)0.8476 (5)0.12179 (11)0.0370 (8)
H7N0.006 (5)0.834 (6)0.1409 (12)0.044*
N80.4083 (5)0.8406 (5)0.09664 (12)0.0392 (8)
H8N0.533 (4)0.846 (6)0.0945 (14)0.047*
C10.4601 (6)0.3304 (6)0.09817 (12)0.0317 (9)
C20.6497 (6)0.3318 (6)0.08465 (14)0.0403 (10)
H20.70950.32320.05330.048*
C30.6112 (6)0.3560 (7)0.16165 (15)0.0463 (11)
H30.63660.36670.19370.056*
C40.2872 (6)0.3160 (6)0.07221 (13)0.0352 (9)
C50.7016 (6)0.1709 (6)0.39137 (13)0.0349 (9)
C60.8780 (6)0.1832 (6)0.40570 (13)0.0385 (9)
H60.90440.2070.4370.046*
C70.9189 (7)0.1297 (6)0.32923 (14)0.0443 (10)
H70.97750.10920.29770.053*
C80.5038 (7)0.1835 (6)0.41683 (14)0.0412 (10)
C90.0765 (6)0.6982 (6)0.43471 (12)0.0332 (9)
C100.2521 (6)0.7147 (6)0.44949 (13)0.0411 (10)
H100.27740.73960.48080.049*
C110.2965 (6)0.6581 (7)0.37284 (14)0.0415 (10)
H110.3570.63610.34150.05*
C120.1239 (6)0.7129 (6)0.45951 (13)0.0387 (9)
C130.1228 (6)0.8218 (6)0.07366 (12)0.0327 (9)
C140.3108 (6)0.8187 (6)0.05808 (13)0.0359 (9)
H140.36610.8040.02620.043*
C150.2828 (6)0.8583 (6)0.13502 (13)0.0395 (10)
H150.3130.87560.16640.047*
C160.0527 (6)0.8025 (6)0.04986 (13)0.0371 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0263 (3)0.0572 (3)0.0303 (2)0.0159 (2)0.00276 (18)0.0010 (2)
Cl10.0298 (6)0.0833 (8)0.0449 (6)0.0162 (6)0.0066 (4)0.0210 (5)
Cl20.0350 (6)0.0569 (7)0.0396 (5)0.0163 (5)0.0002 (4)0.0053 (4)
Cl30.0384 (7)0.0955 (9)0.0465 (6)0.0383 (7)0.0061 (5)0.0008 (6)
Cl40.0300 (6)0.0627 (7)0.0325 (5)0.0195 (5)0.0005 (4)0.0008 (4)
O10.0278 (17)0.083 (2)0.0384 (15)0.0286 (17)0.0010 (12)0.0070 (14)
O20.0223 (16)0.092 (2)0.0451 (16)0.0247 (17)0.0012 (12)0.0051 (15)
O30.034 (2)0.106 (3)0.067 (2)0.032 (2)0.0113 (16)0.0099 (19)
O40.0332 (19)0.089 (2)0.0449 (18)0.0209 (19)0.0054 (13)0.0038 (16)
O50.0321 (18)0.090 (2)0.0411 (16)0.0239 (18)0.0005 (13)0.0055 (15)
O60.0292 (18)0.112 (3)0.0530 (18)0.035 (2)0.0055 (14)0.0124 (18)
O70.0241 (18)0.138 (3)0.0505 (18)0.036 (2)0.0012 (14)0.0083 (19)
O80.0326 (18)0.086 (2)0.0427 (16)0.0312 (18)0.0062 (13)0.0057 (15)
O1S0.042 (6)0.110 (6)0.048 (6)0.008 (5)0.014 (5)0.020 (4)
O2S0.060 (14)0.130 (12)0.068 (13)0.008 (11)0.035 (11)0.019 (11)
N10.0172 (19)0.063 (2)0.060 (2)0.0188 (19)0.0057 (16)0.0067 (18)
N20.0176 (18)0.060 (2)0.0417 (18)0.0154 (18)0.0014 (14)0.0019 (16)
N30.032 (2)0.052 (2)0.0397 (18)0.0163 (18)0.0075 (15)0.0016 (16)
N40.023 (2)0.050 (2)0.069 (2)0.0163 (18)0.0057 (17)0.0118 (18)
N50.0210 (18)0.052 (2)0.0406 (18)0.0135 (17)0.0100 (14)0.0015 (15)
N60.0174 (18)0.060 (2)0.058 (2)0.0166 (18)0.0085 (16)0.0067 (17)
N70.0236 (19)0.056 (2)0.0353 (17)0.0183 (17)0.0008 (13)0.0015 (15)
N80.0171 (18)0.050 (2)0.056 (2)0.0168 (17)0.0054 (15)0.0018 (16)
C10.020 (2)0.040 (2)0.0378 (19)0.0145 (18)0.0013 (15)0.0030 (16)
C20.020 (2)0.055 (3)0.044 (2)0.011 (2)0.0009 (16)0.0067 (19)
C30.028 (2)0.068 (3)0.047 (2)0.020 (2)0.0079 (19)0.002 (2)
C40.023 (2)0.045 (2)0.041 (2)0.0149 (19)0.0041 (16)0.0011 (17)
C50.031 (2)0.036 (2)0.040 (2)0.0118 (19)0.0084 (17)0.0009 (17)
C60.036 (2)0.043 (2)0.040 (2)0.015 (2)0.0093 (18)0.0013 (17)
C70.039 (3)0.050 (3)0.044 (2)0.015 (2)0.0016 (19)0.0033 (19)
C80.027 (2)0.049 (3)0.050 (2)0.015 (2)0.0047 (18)0.0028 (19)
C90.020 (2)0.044 (2)0.0370 (19)0.0120 (19)0.0081 (15)0.0046 (17)
C100.031 (2)0.056 (3)0.038 (2)0.014 (2)0.0110 (17)0.0017 (18)
C110.026 (2)0.058 (3)0.042 (2)0.015 (2)0.0014 (17)0.0025 (19)
C120.025 (2)0.052 (3)0.041 (2)0.014 (2)0.0040 (17)0.0012 (18)
C130.022 (2)0.044 (2)0.0352 (19)0.0141 (19)0.0042 (15)0.0015 (16)
C140.023 (2)0.047 (2)0.038 (2)0.013 (2)0.0007 (16)0.0019 (17)
C150.032 (2)0.052 (3)0.039 (2)0.017 (2)0.0118 (17)0.0020 (18)
C160.020 (2)0.055 (3)0.039 (2)0.015 (2)0.0053 (16)0.0019 (18)
Geometric parameters (Å, º) top
Zn1—Cl32.2577 (12)N4—H4N0.849 (19)
Zn1—Cl42.2589 (11)N5—C111.317 (5)
Zn1—Cl12.2758 (12)N5—C91.375 (5)
Zn1—Cl22.2948 (12)N5—H5N0.858 (19)
O1—C41.271 (4)N6—C111.321 (5)
O2—C41.229 (4)N6—C101.367 (5)
O3—C81.220 (5)N6—H6N0.868 (19)
O4—C81.277 (5)N7—C151.321 (5)
O4—H4A0.87 (2)N7—C131.376 (4)
O5—C121.274 (5)N7—H7N0.889 (19)
O6—C121.222 (5)N8—C151.325 (5)
O7—C161.224 (5)N8—C141.367 (5)
O8—C161.267 (5)N8—H8N0.872 (19)
O8—H8A0.851 (19)C1—C21.345 (5)
O1S—H1A0.85 (2)C1—C41.487 (5)
O1S—H1B0.84 (2)C2—H20.95
O2S—H2A0.85 (2)C3—H30.95
O2S—H2B0.85 (2)C5—C61.347 (5)
N1—C31.309 (5)C5—C81.479 (5)
N1—C21.375 (5)C6—H60.95
N1—H1N0.884 (19)C7—H70.95
N2—C31.312 (5)C9—C101.357 (5)
N2—C11.370 (5)C9—C121.484 (5)
N2—H2N0.871 (19)C10—H100.95
N3—C71.318 (5)C11—H110.95
N3—C51.365 (5)C13—C141.339 (5)
N3—H3N0.866 (19)C13—C161.481 (5)
N4—C71.327 (6)C14—H140.95
N4—C61.361 (5)C15—H150.95
Cl3—Zn1—Cl4111.21 (4)N1—C3—H3126.0
Cl3—Zn1—Cl1112.42 (5)N2—C3—H3126.0
Cl4—Zn1—Cl1109.31 (5)O2—C4—O1126.3 (4)
Cl3—Zn1—Cl2104.23 (5)O2—C4—C1117.2 (3)
Cl4—Zn1—Cl2110.95 (4)O1—C4—C1116.5 (3)
Cl1—Zn1—Cl2108.62 (5)C6—C5—N3106.6 (3)
C8—O4—H4A122 (4)C6—C5—C8132.8 (4)
C16—O8—H8A113 (3)N3—C5—C8120.6 (3)
H1A—O1S—H1B111 (5)C5—C6—N4106.8 (3)
H2A—O2S—H2B113 (6)C5—C6—H6126.6
C3—N1—C2109.4 (3)N4—C6—H6126.6
C3—N1—H1N132 (3)N3—C7—N4107.5 (4)
C2—N1—H1N118 (3)N3—C7—H7126.3
C3—N2—C1109.7 (3)N4—C7—H7126.3
C3—N2—H2N128 (3)O3—C8—O4125.6 (4)
C1—N2—H2N122 (3)O3—C8—C5118.2 (4)
C7—N3—C5109.6 (3)O4—C8—C5116.2 (4)
C7—N3—H3N121 (3)C10—C9—N5106.6 (3)
C5—N3—H3N129 (3)C10—C9—C12133.0 (3)
C7—N4—C6109.4 (4)N5—C9—C12120.4 (3)
C7—N4—H4N120 (3)C9—C10—N6106.2 (3)
C6—N4—H4N130 (3)C9—C10—H10126.9
C11—N5—C9109.5 (3)N6—C10—H10126.9
C11—N5—H5N124 (3)N5—C11—N6107.7 (3)
C9—N5—H5N126 (3)N5—C11—H11126.1
C11—N6—C10110.0 (3)N6—C11—H11126.1
C11—N6—H6N125 (3)O6—C12—O5126.3 (4)
C10—N6—H6N125 (3)O6—C12—C9117.6 (3)
C15—N7—C13109.3 (3)O5—C12—C9116.1 (3)
C15—N7—H7N126 (3)C14—C13—N7106.7 (3)
C13—N7—H7N124 (3)C14—C13—C16133.2 (3)
C15—N8—C14109.4 (3)N7—C13—C16120.1 (3)
C15—N8—H8N128 (3)C13—C14—N8107.0 (3)
C14—N8—H8N122 (3)C13—C14—H14126.5
C2—C1—N2106.3 (3)N8—C14—H14126.5
C2—C1—C4133.6 (3)N7—C15—N8107.6 (3)
N2—C1—C4120.2 (3)N7—C15—H15126.2
C1—C2—N1106.6 (3)N8—C15—H15126.2
C1—C2—H2126.7O7—C16—O8126.3 (4)
N1—C2—H2126.7O7—C16—C13117.8 (3)
N1—C3—N2108.0 (4)O8—C16—C13115.9 (3)
C3—N2—C1—C20.4 (5)C11—N5—C9—C100.5 (5)
C3—N2—C1—C4179.6 (4)C11—N5—C9—C12179.7 (4)
N2—C1—C2—N10.2 (5)N5—C9—C10—N60.5 (5)
C4—C1—C2—N1179.9 (4)C12—C9—C10—N6179.6 (4)
C3—N1—C2—C10.1 (5)C11—N6—C10—C90.4 (5)
C2—N1—C3—N20.4 (5)C9—N5—C11—N60.2 (5)
C1—N2—C3—N10.5 (5)C10—N6—C11—N50.1 (5)
C2—C1—C4—O2174.2 (5)C10—C9—C12—O6177.8 (5)
N2—C1—C4—O25.7 (6)N5—C9—C12—O63.2 (6)
C2—C1—C4—O15.4 (7)C10—C9—C12—O54.0 (7)
N2—C1—C4—O1174.7 (4)N5—C9—C12—O5175.0 (4)
C7—N3—C5—C60.3 (5)C15—N7—C13—C140.4 (5)
C7—N3—C5—C8179.0 (4)C15—N7—C13—C16179.2 (4)
N3—C5—C6—N40.8 (5)N7—C13—C14—N80.5 (5)
C8—C5—C6—N4178.4 (4)C16—C13—C14—N8179.0 (4)
C7—N4—C6—C51.1 (5)C15—N8—C14—C130.4 (5)
C5—N3—C7—N40.4 (5)C13—N7—C15—N80.1 (5)
C6—N4—C7—N30.9 (5)C14—N8—C15—N70.2 (5)
C6—C5—C8—O3178.6 (5)C14—C13—C16—O7174.2 (5)
N3—C5—C8—O32.3 (6)N7—C13—C16—O76.3 (6)
C6—C5—C8—O40.2 (7)C14—C13—C16—O86.5 (7)
N3—C5—C8—O4179.3 (4)N7—C13—C16—O8173.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.87 (2)1.63 (2)2.476 (4)163 (5)
O4—H4A···O6i0.87 (2)2.52 (4)3.205 (4)136 (4)
O8—H8A···O1ii0.85 (2)1.65 (2)2.484 (4)166 (5)
O8—H8A···O2ii0.85 (2)2.63 (4)3.162 (4)122 (4)
O1S—H1A···Cl20.85 (2)2.52 (5)3.330 (9)159 (10)
O1S—H1B···Cl1iii0.84 (2)2.97 (9)3.546 (15)128 (10)
O1S—H1B···Cl4iii0.84 (2)2.93 (7)3.499 (11)127 (8)
O2S—H2A···Cl20.85 (2)2.61 (12)3.382 (17)150.20
O2S—H2B···Cl1iii0.85 (2)2.36 (10)3.13 (2)150 (17)
N1—H1N···O2iv0.88 (2)1.86 (2)2.712 (4)160 (4)
N2—H2N···Cl20.87 (2)2.44 (2)3.297 (3)167 (4)
N3—H3N···O1S0.87 (2)2.01 (2)2.860 (10)168 (4)
N3—H3N···O2S0.87 (2)1.89 (2)2.739 (12)165 (4)
N4—H4N···O3iv0.85 (2)1.92 (3)2.677 (5)148 (4)
N5—H5N···Cl40.86 (2)2.39 (2)3.247 (3)173 (4)
N6—H6N···O6iv0.87 (2)1.85 (3)2.661 (4)156 (4)
N7—H7N···Cl10.89 (2)2.32 (2)3.205 (3)175 (4)
N8—H8N···O7iv0.87 (2)1.78 (2)2.628 (4)164 (4)
C2—H2···O8v0.952.553.414 (5)152
C3—H3···Cl2iv0.952.913.454 (4)118
C6—H6···O5vi0.952.543.400 (5)151
C7—H7···Cl2iv0.952.773.599 (4)146
C10—H10···O4vi0.952.493.345 (5)151
C11—H11···Cl30.952.753.523 (4)139
C11—H11···Cl4iv0.952.923.528 (4)123
C14—H14···O1v0.952.473.303 (5)147
C15—H15···Cl30.952.83.511 (4)132
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer and a grant from the Geneseo Foundation.

Funding information

Funding for this research was provided by: U.S. Department of Education (award No. P116Z100020); Geneseo Foundation

References

First citationArtetxe, B., San Felices, L., Pache, A., Reinoso, S. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m94.  CSD CrossRef IUCr Journals Google Scholar
First citationBoskovic, C., Folting, K. & Christou, G. (2000). Polyhedron, 19, 2111–2118.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulic, B., Pickhardt, M. & Mandelkow, E. (2013). J. Med. Chem. 56, 4135–4155.  Web of Science CrossRef CAS Google Scholar
First citationCao, Q., Duan, B.-R., Zhu, B. & Cao, Z. (2012). Acta Cryst. E68, o134–o135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, W.-S. (2012). Acta Cryst. E68, m1246.  CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, m667–m668.  CSD CrossRef IUCr Journals Google Scholar
First citationDey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, C.-J., Shi, Z.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, o1837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166–1175.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, o1869–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441–e442.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464–m465.  CSD CrossRef IUCr Journals Google Scholar
First citationGovindan, E., Thirumurugan, S., Ganeshraja, A. S., Anbalagan, K. & SubbiahPandi, A. (2014a). Acta Cryst. E70, m53.  CSD CrossRef IUCr Journals Google Scholar
First citationGovindan, E., Thirumurugan, S., Rajkumar, K., Anbalagan, K. & SubbiahPandi, A. (2014b). Acta Cryst. E70, m303.  CSD CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.  Web of Science CrossRef CAS Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, Y.-P. (2009). Acta Cryst. E65, o22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). Acta Cryst. C57, 1067–1072.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, H.-S. (2006). Acta Cryst. E62, m3535–m3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshida, H. & Kashino, S. (2001). Acta Cryst. C57, 476–479.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJallapally, A., Addla, D., Bagul, P., Sridhar, B., Banerjee, S. K. & Kantevari, S. (2015). Bioorg. Med. Chem. 23, 3526–3533.  Web of Science CSD CrossRef CAS Google Scholar
First citationKefi, R., Lefebvre, F., Zeller, M. & Ben Nasr, C. (2011). Acta Cryst. E67, m343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLeesakul, N., Runrueng, W., Saithong, S. & Pakawatchai, C. (2012). Acta Cryst. E68, m837.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-K., Hsu, H.-S., Chang, L.-F. & Chen, G. (1998). J. Biochem. 123, 416–422.  CrossRef CAS Google Scholar
First citationLópez-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejada, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarson, C. M. (2011). Chem. Rev. 111, 7121–7156.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Potgieter, H. & Ali, M. (2014). Acta Cryst. E70, o979–o980.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044–o3045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavan Kumar, K. V. P. & Kumara Swamy, K. C. (2005). Acta Cryst. C61, o668–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReinoso, S., Artetxe, B., Castillo, O., Luque, A. & Gutiérrez-Zorrilla, J. M. (2015). Acta Cryst. E71, m232–m233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRobichaud, A. J., Engers, D. W., Lindsley, C. W. & Hopkins, C. R. (2011). ACS Chem. Neurosci. 2, 433–449.  Web of Science CrossRef CAS Google Scholar
First citationShao, X.-D. & Yu, C.-H. (2014). Acta Cryst. C70, 603–605.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheffler, D. J., Pinkerton, A. B., Dahl, R., Markou, A. & Cosford, N. D. P. (2011). ACS Chem. Neurosci. 2, 382–393.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771–3781.  Web of Science CSD CrossRef Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o1100–o1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947–1949.  Web of Science CrossRef Google Scholar
First citationTichenor, M. S., Thurmond, R. L., Venable, J. D. & Savall, B. M. (2015). J. Med. Chem. 58, 7119–7127.  Web of Science CrossRef CAS Google Scholar
First citationTrifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2013). Acta Cryst. E69, m303–m304.  CSD CrossRef IUCr Journals Google Scholar
First citationVarala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). Tetrahedron Lett. 48, 69–72.  Web of Science CrossRef CAS Google Scholar
First citationWang, B.-Q., Yan, H.-B., Huang, Z.-Q. & Zhang, Z. (2013). Acta Cryst. C69, 616–619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Z.-Y., Li, L., Zhao, X.-J. & Chen, H.-M. (2013). Acta Cryst. E69, m172.  CSD CrossRef IUCr Journals Google Scholar
First citationYanagisawa, H., Amemiya, Y., Kanazaki, T., Shimoji, Y., Fujimoto, K., Kitahara, Y., Sada, T., Mizuno, M., Ikeda, M., Miyamoto, S., Furukawa, Y. & Koike, H. (1996). J. Med. Chem. 39, 323–338.  CSD CrossRef CAS Web of Science Google Scholar
First citationYin, X., Cai, S.-L., Zheng, S.-R., Fan, J. & Zhang, W.-G. (2012). Acta Cryst. C68, m177–m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.  CAS Google Scholar
First citationYu, C.-H. (2012). Acta Cryst. E68, o2295.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569–m570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, R.-Q. (2012). Acta Cryst. E68, m389.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds