research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of isomeric 4-bromo-N-[(2-nitro­phen­yl)sulfon­yl]benzamide and 4-bromo-N-[(4-nitro­phen­yl)sulfon­yl]benzamide

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, bDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories
*Correspondence e-mail: pasuchetan@yahoo.co.in, muneer@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 December 2016; accepted 30 January 2017; online 3 February 2017)

The syntheses and crystal structures of the isomeric 4-bromo-N-[(2-nitro­phen­yl)sulfon­yl]benzamide, (I), and 4-bromo-N-[(4-nitro­phen­yl)sulfon­yl]benzamide, (II), are described (mol­ecular formula = C13H9BrN2O5S in each case). The asymmetric unit of (I) contains two independent mol­ecules [(IA) and (IB)], while that of (II) contains one mol­ecule. The benzoic acid aromatic ring of mol­ecule (IA) is disordered due to rotation about the Car—C(=O) bond over two orientations in a 0.525 (9):0.475 (9) ratio. The dihedral angle between the benzene rings is 85.9 (3)° in (IA) and 65.22 (19)° in (IB), while in (II), the corresponding value is 56.7 (7)°. In the crystals of (I) and (II), N—H⋯O, C—H⋯O and C—H⋯π inter­actions generate three-dimensional networks.

1. Chemical context

In recent years, N-(aryl­sulfon­yl)aryl­amides have received much attention as they constitute an important class of drugs for treating Alzheimer's disease (Hasegawa & Yamamoto, 2000[Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423-428.]) and acting as anti-bacterial inhibitors of tRNA synthetases (Banwell et al., 2000[Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263-2266.]), antagonists for angiotensin II (Chang et al., 1994[Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464-4478.]) and as leukotriene D4-receptors (Musser et al., 1990[Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240-245.]). Further, N-(aryl­sulfon­yl)-aryl­amides are known to be potent anti-tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in mice (Mader et al., 2005[Mader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617-620.]). In a continuation of our work on the synthesis and crystal structures of N-(2-nitro­phenyl­sulfon­yl)aryl­amides (Suchetan et al., 2012a[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012a). Acta Cryst. E68, o572.]) and N-(4-nitro­phenyl­sulfon­yl)aryl­amides (Suchetan et al., 2012b[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012b). Acta Cryst. E68, o888.]), compounds (I)[link] and (II)[link] were synthesized and their crystal structures determined.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] (Fig. 1[link]) contains two independent mol­ecules, (IA) and (IB), while that of (II)[link] contains one mol­ecule (Fig. 2[link]). In both mol­ecules (IA) and (IB), the ortho-nitro substitution on the benzene­sulfonyl ring is syn to the N—H bond in the central –C—SO2N—C(O)– segment (Fig. 1[link]). The benzoic acid ring of mol­ecule (IA) is disordered due to rotation about the Car—C(=O) bond over two orientations in a 0.525 (9):0.475 (9) ratio, which are inclined to each other by 45.5 (4)°. The nitro groups in both the A and B mol­ecules of (I)[link] and the mol­ecule of (II)[link] are twisted relative to the attached benzene­sulfonyl rings: the torsion angle C1—C2—N2—O4 in (IA) is 56.3 (4)°, while in (IB), the torsion angle C14—C15—N4—O9 is 35.6 (5)°, whereas in (II)[link], the C5—C4—N2—O4 torsion angle has a value of 19.4 (5)°. The dihedral angle between the benzene rings is 85.9 (3)° in (IA), 65.22 (19)° in (IB) and 56.7 (7)° in (II)[link]. The conformation of (II)[link] is supported by an intra­molecular C2—H2⋯O3 inter­action (Table 2[link]), forming an S(7) motif.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O3i 0.90 1.97 2.8530 168
C2—H2⋯O3 0.95 2.36 3.1280 138
C3—H3⋯O4ii 0.95 2.45 3.3199 152
C9—H9⋯O2iii 0.95 2.55 3.2599 132
C10—H10⋯O1iv 0.95 2.48 3.1081 124
C12—H12⋯O4v 0.95 2.56 3.4445 155
C13—H13⋯O3i 0.95 2.53 3.3182 141
Symmetry codes: (i) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1].
[Figure 1]
Figure 1
A view of (IA)[link], showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of (II)[link], showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of (I)[link] features two N—H⋯O hydrogen bonds, namely N1—HN1⋯O6 and N3—HN3⋯O4 (Table 1[link]) between the A and B mol­ecules, resulting in a hetero dimer with graph-set motif R22(11), which is consolidated by a C13—H13A⋯O6 inter­action between the A and B mol­ecules (Fig. 3[link]). The A + B dimers assemble along the a-axis direction via C23—H23⋯O8 inter­actions, forming C6 chains (Table 1[link], Fig. 3[link]). A dimeric R12(5) network generated by the C25—H25⋯O3 and C26—H26⋯O3 inter­actions (Table 1[link], Fig. 3[link]) and the R22(11) network, which alternate along the c-axis direction, build a network of C22(14) and C22(15) chains as part of a zigzag sheet propagating in the ac plane, which features a short Br2⋯O3 contact [3.212 (2) Å]. Further, C10—H10Bπ1 [where π1 is the nitro­benzene ring of mol­ecule (IB)] and C12—H12Aπ2 [π2 is the bromo­benzene ring of mol­ecule (IA)] extend the zigzag sheets into a three-dimensional architecture, which is consolidated by several aromatic ππ stacking inter­actions [centroid–centroid separations = 3.873 (4), 3.785 (5) and 3.698 (5) Å].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the bromo­benzene ring of mol­ecule A and nitro­benzene ring of mol­ecule B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O6 0.81 (4) 2.03 (4) 2.837 (4) 172 (5)
N3—HN3⋯O4 0.82 (6) 2.29 (5) 3.021 (4) 148 (4)
C13A—H13A⋯O6 0.95 2.41 3.210 (8) 141
C23—H23⋯O8i 0.95 2.50 3.425 (4) 165
C25—H25⋯O3ii 0.95 2.51 3.117 (4) 122
C26—H26⋯O3ii 0.95 2.51 3.123 (4) 122
C12A—H12ACg1iii 0.95 2.99 3.635 (9) 126
C10B—H10BCg2iii 0.95 2.76 3.532 (8) 139
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
The crystal packing of (I)[link], displaying the hetero R22(11) dimeric supra­molecular synthon. Mol­ecules assemble along the a axis forming C(6) chains via C—H⋯O inter­actions while two further C—H⋯O inter­actions involving the same acceptor atom lead to the formation of an R12(5) network.

The crystal structure of (II)[link] features N1—HN1⋯O3 hydrogen bonds forming C(4) chains along [100] (Table 2[link], Fig. 4[link]): these chains are further strengthened by C13—H13⋯O3 inter­actions (Table 2[link]) forming C(5) chains. The mol­ecules of neighbouring chains are inter­linked via C3—H3⋯O4 and C12—H12⋯O4 inter­actions (i.e. O4 acts as a double acceptor) and thus, a zigzag sheet propagates in the ac plane (Table 2[link]). The C12—H12⋯O4 and C3—H3⋯O4 inter­actions run as C(13) and C(5) chains, respectively, along [001]. Mol­ecules in adjacent layers are linked via C9—H9⋯O2 and C10—H10⋯O1 inter­actions that form C(7) and C(8) chains propagating along the b-axis direction, and thus a three-dimensional network is obtained. A short O5⋯Br1 [3.173 (4) Å] contact is observed.

[Figure 4]
Figure 4
Structure-directing C—H⋯O inter­actions in the crystal structure of (II)[link] propagating along the b axis as chains.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 82 phenyl­sulfonyl-aryl­amide structures with different substituents attached to the benzene rings including the parent compound N-benzoyl­benzene­sulfonamide (Gowda et al., 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]).

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared by refluxing a mixture of 4-bromo­benzoic acid, the corresponding substituted benzene­sulfonamide and phospho­rus oxychloride for 3 h on a water bath. The resultant mixtures were cooled and poured into ice-cold water. The solids obtained were filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solutions. The compounds were later reprecipitated by acidifying the filtered solutions with dilute HCl. They were filtered, dried and recrystallized. [m.p. = 486 for (I)[link] and 498 K for (II)]. Colourless prisms of (I)[link] and (II)[link] were obtained by slow evaporation of the respective solutions of the compounds in methanol (with a few added drops of water).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the NH groups in (I)[link] and (II)[link] were located in a difference map and later refined freely. The carbon-bound H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.95 Å, and with Uiso = 1.2Ueq(parent atom).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H9BrN2O5S C13H9BrN2O5S
Mr 385.19 385.19
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pbca
Temperature (K) 173 173
a, b, c (Å) 8.0209 (3), 14.5364 (5), 25.0008 (8) 9.6085 (4), 10.3246 (5), 27.7296 (13)
α, β, γ (°) 90, 98.499 (1), 90 90, 90, 90
V3) 2882.96 (17) 2750.9 (2)
Z 8 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 5.50 5.76
Crystal size (mm) 0.25 × 0.12 × 0.09 0.22 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.476, 0.610 0.491, 0.631
No. of measured, independent and observed [I > 2σ(I)] reflections 17578, 4732, 4576 12896, 2256, 2221
Rint 0.051 0.055
(sin θ/λ)max−1) 0.585 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.11 0.050, 0.138, 1.12
No. of reflections 4732 2256
No. of parameters 442 203
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −1.11 1.10, −1.69
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

(I) 4-Bromo-N-[(2-nitrophenyl)sulfonyl]benzamide top
Crystal data top
C13H9BrN2O5SPrism
Mr = 385.19Dx = 1.775 Mg m3
Monoclinic, P21/nMelting point: 486 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 8.0209 (3) ÅCell parameters from 173 reflections
b = 14.5364 (5) Åθ = 4.7–64.4°
c = 25.0008 (8) ŵ = 5.50 mm1
β = 98.499 (1)°T = 173 K
V = 2882.96 (17) Å3Prism, colourless
Z = 80.25 × 0.12 × 0.09 mm
F(000) = 1536
Data collection top
Bruker APEXII
diffractometer
4576 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.051
Graphite monochromatorθmax = 64.4°, θmin = 4.7°
phi and φ scansh = 79
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1616
Tmin = 0.476, Tmax = 0.610l = 2829
17578 measured reflections1 standard reflections every 1 reflections
4732 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0885P)2 + 3.8108P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
4732 reflectionsΔρmax = 0.71 e Å3
442 parametersΔρmin = 1.11 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
BR21.02710 (5)0.34737 (3)0.05488 (2)0.02901 (17)
BR10.79778 (5)0.67350 (3)0.56143 (2)0.03300 (18)
S10.70457 (10)0.15258 (5)0.40128 (3)0.0150 (2)
S20.41557 (9)0.38557 (5)0.30456 (3)0.0131 (2)
O30.8626 (3)0.21365 (18)0.50821 (9)0.0203 (5)
O10.6105 (3)0.16337 (17)0.34822 (9)0.0191 (5)
O40.8579 (3)0.29764 (17)0.32525 (9)0.0215 (5)
O60.5231 (3)0.38082 (18)0.35563 (9)0.0210 (5)
O80.3425 (3)0.40157 (18)0.18734 (9)0.0193 (5)
O20.6549 (3)0.08544 (17)0.43717 (10)0.0211 (5)
O70.2785 (3)0.32341 (17)0.29277 (10)0.0213 (5)
N10.7047 (3)0.2553 (2)0.42926 (11)0.0156 (6)
N20.9067 (4)0.2238 (2)0.31015 (11)0.0203 (6)
O50.8932 (4)0.2001 (2)0.26277 (11)0.0439 (8)
N30.5424 (4)0.3737 (2)0.25907 (11)0.0163 (6)
O90.6914 (4)0.5303 (3)0.31353 (14)0.0466 (8)
C70.7894 (4)0.2739 (2)0.48080 (12)0.0151 (7)
C80.7857 (4)0.3714 (3)0.49883 (14)0.0196 (7)
C61.0096 (4)0.0750 (2)0.43391 (14)0.0198 (7)
H60.9595420.0536800.4637500.024*
C140.3326 (4)0.4980 (2)0.29766 (12)0.0169 (7)
C41.2453 (4)0.0791 (3)0.38479 (15)0.0228 (8)
H41.3568690.0606910.3813070.027*
C20.9934 (4)0.1604 (2)0.35111 (14)0.0166 (7)
C200.4900 (4)0.3876 (2)0.20422 (12)0.0128 (6)
C210.6240 (4)0.3802 (2)0.16921 (12)0.0130 (6)
N40.6001 (5)0.5792 (3)0.33590 (15)0.0423 (10)
C230.9132 (4)0.3909 (3)0.15395 (13)0.0192 (7)
H231.0280070.4049910.1664300.023*
C31.1560 (4)0.1341 (2)0.34542 (15)0.0200 (7)
H31.2052610.1535780.3150190.024*
C10.9180 (4)0.1309 (2)0.39488 (13)0.0152 (7)
C260.5760 (4)0.3523 (2)0.11605 (14)0.0175 (7)
H260.4605200.3406670.1030730.021*
C51.1745 (4)0.0505 (3)0.42912 (15)0.0250 (8)
H51.2383450.0141040.4563390.030*
C250.6958 (4)0.3415 (2)0.08176 (14)0.0192 (7)
H250.6639810.3208500.0456350.023*
C110.7929 (5)0.5504 (3)0.53672 (15)0.0244 (8)
O100.6496 (7)0.6324 (3)0.37231 (18)0.0834 (15)
C240.8631 (4)0.3613 (2)0.10135 (13)0.0167 (7)
C220.7935 (4)0.3995 (3)0.18771 (13)0.0184 (7)
H220.8263680.4186840.2240580.022*
C190.1607 (5)0.5033 (3)0.27804 (14)0.0306 (9)
H190.1008780.4493610.2652100.037*
C150.4186 (5)0.5781 (3)0.31678 (14)0.0276 (8)
C180.0767 (6)0.5865 (4)0.27715 (19)0.0471 (13)
H180.0391470.5901130.2623140.057*
C160.3325 (9)0.6615 (3)0.31749 (19)0.0496 (14)
H160.3891900.7159320.3311710.059*
C170.1592 (8)0.6624 (4)0.2973 (2)0.0573 (16)
H170.0985130.7184180.2978890.069*
C13A0.6630 (9)0.4334 (5)0.4788 (3)0.024 (2)0.525 (9)
H13A0.5754490.4142180.4512200.029*0.525 (9)
C12A0.6632 (10)0.5234 (5)0.4975 (3)0.027 (2)0.525 (9)
H12A0.5762350.5651440.4837320.032*0.525 (9)
C13B0.7728 (9)0.4457 (5)0.4604 (3)0.0176 (19)0.475 (9)
H13B0.7614560.4335110.4227430.021*0.475 (9)
C12B0.7772 (10)0.5349 (6)0.4794 (3)0.024 (2)0.475 (9)
H12B0.7700060.5853060.4549560.028*0.475 (9)
C9A0.9060 (13)0.3985 (6)0.5443 (3)0.0228 (18)0.525 (9)
H9A0.9838790.3547120.5616450.027*0.525 (9)
C10A0.9092 (13)0.4875 (6)0.5630 (3)0.0252 (18)0.525 (9)
H10A0.9886880.5058820.5930630.030*0.525 (9)
C9B0.8136 (15)0.3881 (6)0.5514 (3)0.021 (2)0.475 (9)
H9B0.8299920.3383960.5762810.025*0.475 (9)
C10B0.8190 (15)0.4782 (6)0.5704 (3)0.023 (2)0.475 (9)
H10B0.8418760.4888560.6082510.028*0.475 (9)
HN10.657 (5)0.295 (3)0.4102 (17)0.015 (10)*
HN30.644 (7)0.368 (3)0.269 (2)0.033 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BR20.0266 (3)0.0357 (3)0.0287 (3)0.00689 (15)0.01712 (18)0.00913 (16)
BR10.0396 (3)0.0287 (3)0.0335 (3)0.01070 (17)0.0147 (2)0.01360 (17)
S10.0117 (4)0.0179 (5)0.0157 (4)0.0002 (3)0.0030 (3)0.0000 (3)
S20.0154 (4)0.0140 (4)0.0103 (4)0.0014 (3)0.0038 (3)0.0012 (3)
O30.0218 (12)0.0248 (14)0.0140 (11)0.0039 (10)0.0020 (9)0.0044 (10)
O10.0147 (11)0.0253 (14)0.0167 (12)0.0002 (9)0.0004 (9)0.0034 (9)
O40.0236 (12)0.0209 (13)0.0208 (12)0.0031 (10)0.0056 (9)0.0024 (10)
O60.0236 (12)0.0283 (14)0.0114 (11)0.0079 (10)0.0035 (9)0.0024 (10)
O80.0143 (12)0.0288 (14)0.0145 (11)0.0032 (10)0.0016 (9)0.0018 (10)
O20.0173 (11)0.0202 (13)0.0271 (12)0.0020 (10)0.0071 (9)0.0032 (10)
O70.0247 (13)0.0206 (13)0.0205 (12)0.0071 (10)0.0102 (10)0.0026 (10)
N10.0153 (13)0.0183 (16)0.0127 (12)0.0049 (11)0.0006 (10)0.0028 (12)
N20.0232 (14)0.0242 (17)0.0150 (14)0.0038 (12)0.0075 (11)0.0001 (12)
O50.068 (2)0.052 (2)0.0121 (13)0.0184 (17)0.0063 (13)0.0014 (13)
N30.0121 (14)0.0244 (16)0.0131 (13)0.0035 (11)0.0040 (11)0.0011 (11)
O90.0339 (16)0.057 (2)0.0490 (18)0.0216 (15)0.0066 (14)0.0042 (17)
C70.0127 (14)0.0231 (19)0.0107 (14)0.0001 (13)0.0059 (12)0.0010 (13)
C80.0151 (16)0.026 (2)0.0182 (17)0.0020 (14)0.0048 (13)0.0019 (14)
C60.0222 (17)0.0181 (18)0.0196 (16)0.0022 (14)0.0044 (13)0.0023 (13)
C140.0260 (17)0.0148 (17)0.0114 (14)0.0053 (14)0.0076 (12)0.0016 (12)
C40.0116 (15)0.0192 (18)0.038 (2)0.0015 (13)0.0051 (14)0.0056 (15)
C20.0201 (17)0.0133 (17)0.0165 (16)0.0004 (12)0.0031 (13)0.0016 (12)
C200.0161 (16)0.0102 (16)0.0121 (14)0.0022 (12)0.0020 (12)0.0001 (12)
C210.0123 (15)0.0134 (16)0.0134 (15)0.0012 (12)0.0023 (12)0.0023 (12)
N40.057 (2)0.037 (2)0.0328 (19)0.029 (2)0.0070 (17)0.0033 (17)
C230.0127 (15)0.027 (2)0.0179 (16)0.0034 (13)0.0009 (12)0.0004 (14)
C30.0186 (17)0.0149 (17)0.0284 (18)0.0035 (13)0.0095 (14)0.0037 (14)
C10.0138 (15)0.0138 (16)0.0177 (16)0.0016 (12)0.0019 (12)0.0041 (13)
C260.0150 (16)0.0211 (18)0.0167 (16)0.0027 (13)0.0031 (13)0.0005 (13)
C50.0194 (17)0.023 (2)0.0307 (19)0.0047 (14)0.0025 (14)0.0016 (15)
C250.0204 (17)0.0231 (19)0.0141 (16)0.0011 (13)0.0026 (13)0.0043 (13)
C110.0251 (18)0.026 (2)0.0238 (18)0.0066 (15)0.0079 (14)0.0058 (15)
O100.109 (4)0.070 (3)0.066 (3)0.047 (3)0.003 (3)0.036 (2)
C240.0186 (16)0.0166 (17)0.0171 (16)0.0005 (13)0.0104 (13)0.0008 (13)
C220.0168 (16)0.0242 (19)0.0137 (15)0.0028 (13)0.0010 (12)0.0014 (13)
C190.0278 (19)0.045 (3)0.0198 (17)0.0165 (18)0.0051 (14)0.0047 (17)
C150.051 (2)0.0180 (19)0.0166 (16)0.0036 (17)0.0132 (16)0.0021 (14)
C180.050 (3)0.051 (3)0.043 (2)0.035 (3)0.016 (2)0.015 (2)
C160.108 (4)0.014 (2)0.034 (2)0.004 (2)0.034 (3)0.0019 (17)
C170.085 (4)0.041 (3)0.054 (3)0.042 (3)0.035 (3)0.023 (2)
C13A0.027 (4)0.025 (4)0.018 (3)0.002 (3)0.003 (3)0.009 (3)
C12A0.038 (5)0.025 (4)0.016 (3)0.005 (3)0.004 (3)0.004 (3)
C13B0.020 (4)0.021 (4)0.013 (3)0.000 (3)0.005 (3)0.001 (3)
C12B0.023 (4)0.023 (4)0.024 (4)0.005 (3)0.001 (3)0.001 (3)
C9A0.018 (4)0.035 (5)0.016 (3)0.005 (3)0.002 (3)0.001 (3)
C10A0.018 (4)0.040 (5)0.018 (4)0.009 (4)0.003 (3)0.004 (3)
C9B0.032 (6)0.021 (4)0.011 (4)0.001 (4)0.007 (4)0.005 (3)
C10B0.033 (6)0.025 (5)0.013 (4)0.004 (4)0.009 (4)0.008 (3)
Geometric parameters (Å, º) top
BR2—C241.890 (3)C4—C31.383 (5)
BR1—C111.892 (4)C4—H40.9500
S1—O21.422 (3)C2—C31.386 (5)
S1—O11.434 (2)C2—C11.394 (5)
S1—N11.649 (3)C20—C211.487 (4)
S1—C11.771 (3)C21—C261.388 (5)
S2—O71.420 (3)C21—C221.398 (5)
S2—O61.433 (2)N4—O101.215 (5)
S2—N31.643 (3)N4—C151.464 (6)
S2—C141.764 (3)C23—C221.374 (5)
O3—C71.210 (4)C23—C241.386 (5)
O4—N21.221 (4)C23—H230.9500
O8—C201.213 (4)C3—H30.9500
N1—C71.392 (4)C26—C251.388 (5)
N1—HN10.81 (5)C26—H260.9500
N2—O51.223 (4)C5—H50.9500
N2—C21.473 (4)C25—C241.389 (5)
N3—C201.389 (4)C25—H250.9500
N3—HN30.82 (5)C11—C10B1.343 (10)
O9—N41.214 (6)C11—C12A1.376 (8)
C7—C81.489 (5)C11—C10A1.398 (9)
C8—C9B1.322 (8)C11—C12B1.438 (8)
C8—C13A1.373 (8)C22—H220.9500
C8—C9A1.433 (8)C19—C181.383 (6)
C8—C13B1.438 (8)C19—H190.9500
C6—C51.392 (5)C15—C161.397 (6)
C6—C11.393 (5)C18—C171.345 (9)
C6—H60.9500C18—H180.9500
C14—C191.396 (5)C16—C171.407 (9)
C14—C151.400 (5)C16—H160.9500
C4—C51.382 (6)C17—H170.9500
O2—S1—O1120.04 (15)O9—N4—O10124.4 (5)
O2—S1—N1109.66 (15)O9—N4—C15118.8 (3)
O1—S1—N1105.10 (14)O10—N4—C15116.7 (5)
O2—S1—C1107.44 (15)C22—C23—C24118.7 (3)
O1—S1—C1108.61 (15)C22—C23—H23120.7
N1—S1—C1105.04 (15)C24—C23—H23120.7
O7—S2—O6119.98 (15)C4—C3—C2118.9 (3)
O7—S2—N3109.22 (15)C4—C3—H3120.6
O6—S2—N3105.01 (14)C2—C3—H3120.6
O7—S2—C14107.45 (16)C6—C1—C2119.0 (3)
O6—S2—C14107.49 (15)C6—C1—S1117.2 (3)
N3—S2—C14107.05 (15)C2—C1—S1123.6 (3)
C7—N1—S1122.6 (2)C21—C26—C25120.3 (3)
C7—N1—HN1122 (3)C21—C26—H26119.8
S1—N1—HN1115 (3)C25—C26—H26119.8
O4—N2—O5124.1 (3)C4—C5—C6120.0 (3)
O4—N2—C2118.3 (3)C4—C5—H5120.0
O5—N2—C2117.5 (3)C6—C5—H5120.0
C20—N3—S2122.7 (2)C26—C25—C24118.7 (3)
C20—N3—HN3117 (3)C26—C25—H25120.7
S2—N3—HN3119 (3)C24—C25—H25120.7
O3—C7—N1120.9 (3)C23—C24—C25121.9 (3)
O3—C7—C8123.2 (3)C23—C24—BR2119.1 (3)
N1—C7—C8115.9 (3)C25—C24—BR2119.0 (3)
C5—C6—C1119.9 (3)C23—C22—C21120.8 (3)
C5—C6—H6120.0C23—C22—H22119.6
C1—C6—H6120.0C21—C22—H22119.6
C19—C14—C15119.1 (4)C18—C19—C14120.5 (5)
C19—C14—S2115.1 (3)C18—C19—H19119.8
C15—C14—S2125.2 (3)C14—C19—H19119.8
C5—C4—C3120.9 (3)C16—C15—C14120.4 (4)
C5—C4—H4119.6C16—C15—N4117.1 (4)
C3—C4—H4119.6C14—C15—N4122.4 (4)
C3—C2—C1121.3 (3)C17—C18—C19120.0 (5)
C3—C2—N2117.1 (3)C17—C18—H18120.0
C1—C2—N2121.5 (3)C19—C18—H18120.0
O8—C20—N3120.4 (3)C15—C16—C17117.8 (5)
O8—C20—C21124.0 (3)C15—C16—H16121.1
N3—C20—C21115.5 (3)C17—C16—H16121.1
C26—C21—C22119.6 (3)C18—C17—C16122.2 (4)
C26—C21—C20117.5 (3)C18—C17—H17118.9
C22—C21—C20122.9 (3)C16—C17—H17118.9
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the bromobenzene ring of molecule A and nitrobenzene ring of molecule B, respectively.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O60.81 (4)2.03 (4)2.837 (4)172 (5)
N3—HN3···O40.82 (6)2.29 (5)3.021 (4)148 (4)
C13A—H13A···O60.952.413.210 (8)141
C23—H23···O8i0.952.503.425 (4)165
C25—H25···O3ii0.952.513.117 (4)122
C26—H26···O3ii0.952.513.123 (4)122
C12A—H12A···Cg1iii0.952.993.635 (9)126
C10B—H10B···Cg2iii0.952.763.532 (8)139
Symmetry codes: (i) x+1, y, z; (ii) x3/2, y1/2, z3/2; (iii) x+1, y+1, z+1.
(II) 4-Bromo-N-[(4-nitrophenyl)sulfonyl]benzamide top
Crystal data top
C13H9BrN2O5SPrism
Mr = 385.19Dx = 1.860 Mg m3
Orthorhombic, PbcaMelting point: 498 K
Hall symbol: -P 2ac 2abCu Kα radiation, λ = 1.54178 Å
a = 9.6085 (4) ÅCell parameters from 195 reflections
b = 10.3246 (5) Åθ = 3.2–64.4°
c = 27.7296 (13) ŵ = 5.76 mm1
V = 2750.9 (2) Å3T = 173 K
Z = 8Prism, colourless
F(000) = 15360.22 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
2221 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.055
Graphite monochromatorθmax = 64.4°, θmin = 3.2°
phi and φ scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 911
Tmin = 0.491, Tmax = 0.631l = 3032
12896 measured reflections1 standard reflections every 1 reflections
2256 independent reflections intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.095P)2 + 3.3998P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
2256 reflectionsΔρmax = 1.10 e Å3
203 parametersΔρmin = 1.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
BR10.84255 (4)0.07764 (3)0.93310 (2)0.0173 (2)
S10.64837 (8)0.55824 (8)0.68971 (3)0.0106 (3)
O30.9065 (2)0.41915 (19)0.72287 (8)0.0121 (5)
O10.7620 (2)0.6467 (2)0.68874 (7)0.0150 (5)
O20.5095 (2)0.6044 (2)0.69698 (8)0.0142 (5)
O40.5406 (3)0.2713 (3)0.47917 (8)0.0329 (7)
O50.7105 (3)0.1538 (3)0.50614 (9)0.0336 (7)
N10.6740 (3)0.4527 (3)0.73423 (10)0.0109 (6)
N20.6290 (3)0.2439 (3)0.50936 (10)0.0226 (7)
C80.8049 (3)0.3267 (3)0.79323 (11)0.0118 (6)
C90.9167 (3)0.2414 (3)0.79975 (11)0.0123 (6)
H90.9856870.2336630.7753890.015*
C130.7045 (3)0.3383 (3)0.82959 (11)0.0120 (6)
H130.6283400.3958970.8254340.014*
C100.9273 (3)0.1686 (3)0.84136 (11)0.0145 (6)
H101.0029210.1105020.8456510.017*
C120.7156 (3)0.2662 (3)0.87166 (11)0.0138 (7)
H120.6483750.2747960.8965770.017*
C50.5224 (4)0.4010 (4)0.56487 (11)0.0175 (8)
H50.4429580.4047060.5445370.021*
C40.6369 (3)0.3257 (3)0.55290 (12)0.0161 (7)
C70.8014 (3)0.4021 (3)0.74789 (12)0.0123 (7)
C60.5281 (3)0.4704 (3)0.60744 (11)0.0156 (7)
H60.4504940.5205420.6175440.019*
C110.8268 (3)0.1812 (3)0.87667 (11)0.0133 (7)
C30.7578 (3)0.3213 (3)0.58033 (13)0.0190 (7)
H30.8343250.2690780.5707360.023*
C20.7638 (4)0.3946 (3)0.62190 (11)0.0172 (7)
H20.8457960.3959710.6410240.021*
C10.6477 (3)0.4665 (3)0.63527 (11)0.0117 (7)
HN10.593 (4)0.430 (3)0.7485 (14)0.015 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BR10.0194 (3)0.0203 (3)0.0123 (3)0.00086 (11)0.00126 (11)0.00536 (11)
S10.0107 (5)0.0135 (5)0.0076 (5)0.0010 (3)0.0005 (2)0.0001 (3)
O30.0074 (12)0.0210 (12)0.0079 (11)0.0002 (8)0.0015 (9)0.0005 (7)
O10.0172 (12)0.0143 (11)0.0135 (11)0.0032 (9)0.0000 (8)0.0010 (8)
O20.0115 (12)0.0186 (11)0.0125 (10)0.0044 (9)0.0009 (9)0.0006 (9)
O40.0218 (13)0.0647 (19)0.0121 (12)0.0082 (13)0.0032 (10)0.0123 (12)
O50.0352 (16)0.0397 (16)0.0258 (14)0.0004 (13)0.0069 (12)0.0200 (12)
N10.0080 (13)0.0162 (13)0.0085 (13)0.0009 (10)0.0008 (10)0.0037 (11)
N20.0187 (14)0.0352 (17)0.0139 (15)0.0089 (14)0.0035 (12)0.0089 (13)
C80.0087 (15)0.0155 (16)0.0112 (15)0.0021 (12)0.0004 (12)0.0020 (12)
C90.0103 (14)0.0161 (15)0.0105 (14)0.0016 (12)0.0014 (12)0.0030 (11)
C130.0086 (15)0.0159 (16)0.0115 (15)0.0004 (12)0.0005 (12)0.0010 (12)
C100.0120 (15)0.0148 (15)0.0168 (15)0.0001 (12)0.0025 (12)0.0002 (12)
C120.0126 (16)0.0181 (16)0.0107 (15)0.0023 (12)0.0012 (12)0.0019 (12)
C50.0145 (18)0.0268 (19)0.0112 (17)0.0059 (14)0.0010 (12)0.0017 (12)
C40.0188 (16)0.0234 (17)0.0062 (14)0.0050 (13)0.0020 (12)0.0016 (14)
C70.0097 (15)0.0151 (16)0.0121 (15)0.0019 (12)0.0016 (13)0.0043 (12)
C60.0134 (15)0.0188 (16)0.0146 (15)0.0002 (12)0.0002 (12)0.0007 (13)
C110.0153 (15)0.0144 (16)0.0102 (16)0.0033 (12)0.0029 (11)0.0010 (12)
C30.0162 (17)0.029 (2)0.0118 (16)0.0021 (15)0.0044 (12)0.0038 (13)
C20.0152 (16)0.0235 (17)0.0130 (15)0.0003 (13)0.0006 (13)0.0012 (13)
C10.0141 (16)0.0147 (16)0.0065 (15)0.0022 (11)0.0010 (11)0.0010 (13)
Geometric parameters (Å, º) top
BR1—C111.901 (3)C13—C121.388 (4)
S1—O11.424 (2)C13—H130.9500
S1—O21.431 (2)C10—C111.381 (4)
S1—N11.665 (3)C10—H100.9500
S1—C11.782 (3)C12—C111.390 (4)
O3—C71.238 (4)C12—H120.9500
O4—N21.226 (4)C5—C61.382 (5)
O5—N21.219 (4)C5—C41.387 (5)
N1—C71.384 (4)C5—H50.9500
N1—HN10.90 (4)C4—C31.389 (5)
N2—C41.475 (4)C6—C11.384 (4)
C8—C131.400 (4)C6—H60.9500
C8—C91.400 (5)C3—C21.380 (5)
C8—C71.479 (4)C3—H30.9500
C9—C101.381 (4)C2—C11.390 (5)
C9—H90.9500C2—H20.9500
O1—S1—O2120.29 (14)C11—C12—H12120.6
O1—S1—N1108.68 (14)C6—C5—C4117.6 (3)
O2—S1—N1104.55 (14)C6—C5—H5121.2
O1—S1—C1109.13 (14)C4—C5—H5121.2
O2—S1—C1107.02 (14)C5—C4—C3123.4 (3)
N1—S1—C1106.33 (16)C5—C4—N2118.4 (3)
C7—N1—S1125.5 (2)C3—C4—N2118.2 (3)
C7—N1—HN1123 (2)O3—C7—N1121.0 (3)
S1—N1—HN1112 (2)O3—C7—C8122.2 (3)
O5—N2—O4124.8 (3)N1—C7—C8116.8 (3)
O5—N2—C4117.6 (3)C5—C6—C1119.6 (3)
O4—N2—C4117.5 (3)C5—C6—H6120.2
C13—C8—C9119.3 (3)C1—C6—H6120.2
C13—C8—C7123.4 (3)C10—C11—C12121.7 (3)
C9—C8—C7117.3 (3)C10—C11—BR1118.4 (2)
C10—C9—C8120.4 (3)C12—C11—BR1119.9 (2)
C10—C9—H9119.8C2—C3—C4118.3 (3)
C8—C9—H9119.8C2—C3—H3120.8
C12—C13—C8120.4 (3)C4—C3—H3120.8
C12—C13—H13119.8C3—C2—C1118.8 (3)
C8—C13—H13119.8C3—C2—H2120.6
C11—C10—C9119.3 (3)C1—C2—H2120.6
C11—C10—H10120.3C6—C1—C2122.2 (3)
C9—C10—H10120.3C6—C1—S1117.4 (2)
C13—C12—C11118.8 (3)C2—C1—S1120.4 (2)
C13—C12—H12120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O3i0.901.972.8530168
C2—H2···O30.952.363.1280138
C3—H3···O4ii0.952.453.3199152
C9—H9···O2iii0.952.553.2599132
C10—H10···O1iv0.952.483.1081124
C12—H12···O4v0.952.563.4445155
C13—H13···O3i0.952.533.3182141
Symmetry codes: (i) x3/2, y, z1/2; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z1/2; (iv) x+3/2, y+1/2, z; (v) x1/2, y1/2, z1.
 

Acknowledgements

The authors thank the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

First citationBanwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464–4478.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012a). Acta Cryst. E68, o572.  CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012b). Acta Cryst. E68, o888.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds