research communications
Supramolecular hydrogen-bonding patterns in a 1:1 N6-benzoyladenine with 4-hydroxybenzoic acid
of the N(7)—H tautomeric form ofaSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in
The 12H9N5O·C7H6O3, contains one molecule of N6-benzoyladenine (BA) and one molecule of 4-hydroxybenzoic acid (HBA). The N6-benzoyladenine (BA) has an N(7)—H tautomeric form with nonprotonated N-1 and N-3 atoms. This tautomeric form is stabilized by a typical intramolecular N—H⋯O hydrogen bond between the carbonyl (C=O) group and the N(7)—H hydrogen on the Hoogsteen face of the purine ring, forming a graph-set S(7) ring motif. The primary robust R22(8) ring motif is formed in the Watson–Crick face via N—H⋯O and O—H⋯N hydrogen bonds (involving N1, N6—H and the carboxyl group of HBA). Weak interactions, such as, C—H⋯π and π–π are also observed in this crystal structure.
of the title CCCDC reference: 1531929
1. Chemical context
Adenine is one of the major nucleobases and some of its N6-derivatives have plant hormone (kinetin) (Tr). They also offer a variety of hydrogen-bonding donor and acceptor sites (McHugh & Erxleben, 2011; Imaz et al., 2011). 4-Hydroxybenzoic acid is also a promising hydrogen-bond donor with the ability to form co-crystals with other organic molecules (Vishweshwar et al., 2003). It is used as an antimicrobial paraben (Barker & Frost, 2001). The present study investigates formation between N6- benzoyladenine and 4-hydroxybenzoic acid.
2. Structural commentary
In the title , the contains one N6-benzoyladenine (BA) molecule and one 4-hydroxybenzoic acid (HBA) molecule (Fig. 1). The bond angle at N7 [C8—N7—C5 = 106.93 (17)°] is wider than at N9 [C8—N9—C4 = 104.19 (16)°]. In addition, the C8—N7 bond [1.343 (2)Å] is longer than C8—N9 [1.319 (3) Å]. These values agree with those reported earlier for the of N6-benzoyladenine (Raghunathan & Pattabhi, 1981). In the title the N6-benzoyladenine also exists in the N(7)—H tautomeric form with non-protonated N1, N3 and N9 atoms. In the crystal structures of N6-benzoyladenine (Raghunathan & Pattabhi, 1981), N6-benzoyladenine-3-hydroxypyridinium-2-carboxylate (1:1) and N6-benzoyl adenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015), N6-benzoyladeninium nitrate (1:1) (Karthikeyan et al., 2016), N6-benzoyl adenine–adipic acid (1:0.5) (Swinton Darious et al., 2016) and the title compound (I), the N6-substituent is distal to the N1 and syn to the adenine nitrogen atom N7. This may be due to the participation of the N7 atom in N7—H7⋯O1A intramolecular hydrogen bond (Table 1) with an S(7) ring motif in the Hoogsteen face. In contrast, it may be noted that in the of N6-benzyladenine, (where no intramolecular hydrogen bond is present) the N6-substituent is syn to N1 and distal to N7 and the adenine moiety exists in the N(9)—H tautomeric form (Raghunathan et al., 1983). The dihedral angle between the benzene ring and the carboxyl group of HBA is 1.5 (3)°, indicating that the benzene ring and the carboxyl group are nearly coplanar. A comparison of dihedral angles and the C6—N6—C10—C11 torsion angle reported for various N6-benzoyladenine-containing crystal structures is given in Table 2.
(I)
|
3. Supramolecular features
The robust (8) ring motif is formed in the Watson–Crick face (N1 and N6 atoms) via N—H⋯O and O—H⋯N hydrogen bonds involving the carboxyl group of HBA. The N7 atom is a bifurcated donor and the carbonyl oxygen atom acts as a double acceptor for the N—H⋯O hydrogen bonds. Inversion-related BA molecules form dimers through an array of hydrogen bonds, generating ring motifs, and these dimers are doubly bridged by inversion-related HBA molecules (Fig. 2). A large R66(32) supramolecular ring is formed along the c-axis direction. A weak C8—H8⋯π interaction is also present. Further consolidation of the structure is provided by homo and hetero π–π stacking interactions [Cg1⋯Cg5( − x, + y, − z) = 3.5580 (13) Å, Cg2⋯Cg5( − x, − + y, − z) = 3.6508 (12) Å; Cg1, Cg2 and Cg5 are the centroids of the imidazole ring, the pyrimidine ring and the benzene ring of HBA, respectively] (Fig. 3).
4. Database survey
The neutral molecule N6-benzoyladenine was first reported by Raghunathan & Pattabhi (1981). Various salts and co-crystals of N6-benzoyladenine have also been reported: N6-benzoyladenine–3-hydroxypyridinium-2-carboxylate (1:1) and N6-benzoyladenine–DL-tartaric acid (1:1) (Karthikeyan et al., 2015), N6-benzoyladeninium nitrate (1:1) (Karthikeyan et al., 2015), N6-benzoyladenine–adipic acid (1:0.5) (Swinton Darious et al., 2016). Similarly, various co-crystals of HBA have been reported: 2-amino-4,6-dimethylpyrimidine–4-hydroxybenzoic acid (Balasubramani et al., 2006), 4-hydroxybenzoic acid–1H-imidazole (Wang et al., 2009), 2-amino-5-bromopyridine–4-hydroxybenzoic acid (Quah et al., 2010) and 4,6-dimethoxy-2-(methylsulfanyl)-pyrimidine–4-hydroxybenzoic acid (Thanigaimani et al., 2012).
5. Synthesis and crystallization
The title N6-benzoyladenine (30 mg) and 4-hydroxybenzoic acid (35 mg) in an equimolar ratio in a total volume of 30 mL. The mixture was warmed over a water bath for 30 min, filtered, and left aside for a few days. Colourless plate-shaped crystals were collected from the mother solution following slow cooling at room temperature.
was prepared by mixing a hot ethanol solution of6. details
Crystal data, data collection and structure . Hydrogen atoms were readily located in difference-Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hydroxy and 1.2 for all other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1531929
https://doi.org/10.1107/S2056989017002171/hg5481sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017002171/hg5481Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017002171/hg5481Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C12H9N5O·C7H6O3 | F(000) = 784 |
Mr = 377.36 | Dx = 1.447 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 14.7579 (5) Å | Cell parameters from 2120 reflections |
b = 6.7930 (3) Å | θ = 3.9–74.6° |
c = 17.2873 (5) Å | µ = 0.88 mm−1 |
β = 91.287 (3)° | T = 293 K |
V = 1732.62 (11) Å3 | Plate, colorless |
Z = 4 | 0.20 × 0.15 × 0.03 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 3284 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2457 reflections with I > 2σ(I) |
Detector resolution: 10.4933 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 70.1°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −12→17 |
Tmin = 0.597, Tmax = 1.000 | k = −8→7 |
6790 measured reflections | l = −19→21 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0934P)2 + 0.2078P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.161 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.44 e Å−3 |
3284 reflections | Δρmin = −0.30 e Å−3 |
256 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0007 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42682 (11) | 1.0650 (3) | 0.54392 (9) | 0.0705 (6) | |
N1 | 0.39444 (11) | 0.9505 (3) | 0.78054 (9) | 0.0441 (4) | |
N3 | 0.54449 (12) | 0.9582 (3) | 0.83693 (10) | 0.0507 (5) | |
N6 | 0.35504 (10) | 0.9706 (2) | 0.65248 (9) | 0.0398 (4) | |
H6 | 0.3024 | 0.9381 | 0.6686 | 0.048* | |
N7 | 0.57481 (11) | 0.9980 (3) | 0.63742 (10) | 0.0428 (4) | |
H7 | 0.5598 | 1.0053 | 0.5892 | 0.051* | |
N9 | 0.66312 (11) | 0.9887 (3) | 0.74394 (11) | 0.0466 (4) | |
C2 | 0.45586 (14) | 0.9466 (4) | 0.84004 (12) | 0.0522 (6) | |
H2 | 0.4322 | 0.9340 | 0.8892 | 0.063* | |
C4 | 0.57400 (13) | 0.9747 (3) | 0.76459 (12) | 0.0402 (4) | |
C6 | 0.42445 (13) | 0.9683 (3) | 0.70853 (11) | 0.0362 (4) | |
C5 | 0.51711 (12) | 0.9806 (3) | 0.69794 (11) | 0.0357 (4) | |
C8 | 0.65938 (13) | 1.0017 (3) | 0.66780 (13) | 0.0473 (5) | |
H8 | 0.7107 | 1.0125 | 0.6378 | 0.057* | |
C10 | 0.35828 (13) | 1.0163 (3) | 0.57653 (12) | 0.0430 (5) | |
C11 | 0.26848 (13) | 1.0088 (3) | 0.53510 (11) | 0.0448 (5) | |
C12 | 0.21996 (19) | 0.8373 (5) | 0.53086 (16) | 0.0774 (8) | |
H12 | 0.2415 | 0.7252 | 0.5561 | 0.093* | |
C13 | 0.1393 (2) | 0.8303 (7) | 0.4892 (2) | 0.1083 (14) | |
H13 | 0.1075 | 0.7124 | 0.4847 | 0.130* | |
C14 | 0.1062 (2) | 0.9956 (7) | 0.45466 (18) | 0.0950 (13) | |
H14 | 0.0510 | 0.9908 | 0.4277 | 0.114* | |
C15 | 0.15326 (18) | 1.1700 (6) | 0.45909 (15) | 0.0828 (10) | |
H15 | 0.1297 | 1.2828 | 0.4356 | 0.099* | |
C16 | 0.23613 (16) | 1.1771 (4) | 0.49876 (14) | 0.0621 (6) | |
H16 | 0.2694 | 1.2933 | 0.5009 | 0.075* | |
O2 | 0.22103 (10) | 0.9691 (3) | 0.83296 (9) | 0.0563 (4) | |
H2A | 0.2718 | 0.9530 | 0.8157 | 0.084* | |
O3 | 0.18126 (10) | 0.9349 (4) | 0.70936 (9) | 0.0734 (6) | |
O4 | −0.20332 (10) | 1.0061 (3) | 0.86009 (10) | 0.0608 (5) | |
H4 | −0.2373 | 0.9926 | 0.8223 | 0.091* | |
C17 | 0.15996 (13) | 0.9583 (3) | 0.77584 (11) | 0.0409 (4) | |
C18 | 0.06559 (12) | 0.9737 (3) | 0.79947 (11) | 0.0366 (4) | |
C19 | 0.04097 (14) | 1.0009 (3) | 0.87579 (11) | 0.0435 (5) | |
H19 | 0.0857 | 1.0112 | 0.9143 | 0.052* | |
C20 | −0.04879 (14) | 1.0128 (4) | 0.89506 (12) | 0.0499 (5) | |
H20 | −0.0643 | 1.0314 | 0.9464 | 0.060* | |
C21 | −0.11692 (13) | 0.9970 (3) | 0.83780 (12) | 0.0425 (5) | |
C22 | −0.09232 (13) | 0.9722 (3) | 0.76111 (12) | 0.0437 (5) | |
H22 | −0.1368 | 0.9637 | 0.7223 | 0.052* | |
C23 | −0.00281 (13) | 0.9602 (3) | 0.74278 (12) | 0.0433 (5) | |
H23 | 0.0127 | 0.9427 | 0.6914 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0375 (9) | 0.1294 (16) | 0.0446 (8) | −0.0059 (9) | −0.0021 (6) | 0.0179 (9) |
N1 | 0.0314 (8) | 0.0663 (11) | 0.0343 (8) | 0.0027 (7) | −0.0060 (6) | −0.0018 (7) |
N3 | 0.0361 (9) | 0.0755 (12) | 0.0400 (9) | 0.0026 (8) | −0.0107 (7) | −0.0030 (8) |
N6 | 0.0240 (8) | 0.0597 (10) | 0.0353 (8) | −0.0021 (6) | −0.0076 (6) | 0.0019 (7) |
N7 | 0.0287 (8) | 0.0592 (10) | 0.0403 (9) | −0.0002 (7) | −0.0034 (6) | 0.0011 (7) |
N9 | 0.0264 (8) | 0.0624 (11) | 0.0503 (10) | 0.0015 (7) | −0.0087 (7) | −0.0032 (8) |
C2 | 0.0379 (11) | 0.0841 (16) | 0.0344 (9) | 0.0035 (10) | −0.0064 (8) | −0.0016 (10) |
C4 | 0.0302 (10) | 0.0476 (10) | 0.0424 (10) | 0.0019 (7) | −0.0097 (7) | −0.0034 (8) |
C6 | 0.0296 (9) | 0.0430 (10) | 0.0355 (9) | 0.0010 (7) | −0.0078 (7) | −0.0021 (7) |
C5 | 0.0302 (9) | 0.0401 (9) | 0.0365 (9) | 0.0011 (7) | −0.0061 (7) | −0.0012 (7) |
C8 | 0.0259 (10) | 0.0649 (13) | 0.0511 (12) | 0.0005 (8) | −0.0012 (8) | 0.0007 (10) |
C10 | 0.0301 (10) | 0.0615 (12) | 0.0372 (10) | 0.0017 (8) | −0.0048 (7) | 0.0011 (9) |
C11 | 0.0311 (10) | 0.0710 (13) | 0.0320 (9) | 0.0012 (9) | −0.0061 (7) | 0.0023 (9) |
C12 | 0.0706 (17) | 0.0902 (19) | 0.0699 (16) | −0.0204 (15) | −0.0324 (13) | 0.0151 (15) |
C13 | 0.086 (2) | 0.150 (3) | 0.086 (2) | −0.053 (2) | −0.0499 (18) | 0.030 (2) |
C14 | 0.0481 (15) | 0.182 (4) | 0.0536 (15) | −0.0141 (19) | −0.0213 (12) | 0.0164 (19) |
C15 | 0.0563 (15) | 0.135 (3) | 0.0564 (14) | 0.0353 (18) | −0.0098 (11) | 0.0172 (17) |
C16 | 0.0517 (13) | 0.0784 (16) | 0.0558 (12) | 0.0135 (12) | −0.0075 (10) | 0.0073 (12) |
O2 | 0.0294 (7) | 0.0975 (12) | 0.0416 (8) | −0.0001 (7) | −0.0052 (6) | −0.0040 (8) |
O3 | 0.0339 (8) | 0.1439 (18) | 0.0425 (8) | −0.0016 (9) | −0.0009 (6) | −0.0160 (10) |
O4 | 0.0290 (8) | 0.1037 (14) | 0.0497 (9) | 0.0011 (7) | −0.0003 (6) | −0.0057 (9) |
C17 | 0.0317 (10) | 0.0510 (11) | 0.0398 (10) | −0.0015 (8) | −0.0052 (7) | −0.0014 (8) |
C18 | 0.0308 (10) | 0.0403 (9) | 0.0383 (9) | −0.0009 (7) | −0.0051 (7) | 0.0018 (7) |
C19 | 0.0332 (10) | 0.0621 (12) | 0.0350 (9) | −0.0004 (8) | −0.0078 (7) | 0.0008 (8) |
C20 | 0.0349 (10) | 0.0822 (15) | 0.0324 (9) | 0.0006 (10) | −0.0023 (8) | 0.0000 (10) |
C21 | 0.0294 (10) | 0.0540 (11) | 0.0439 (10) | −0.0002 (8) | −0.0034 (8) | 0.0009 (9) |
C22 | 0.0330 (10) | 0.0578 (12) | 0.0397 (10) | 0.0009 (8) | −0.0092 (7) | −0.0036 (9) |
C23 | 0.0346 (10) | 0.0602 (12) | 0.0349 (9) | 0.0014 (8) | −0.0060 (7) | −0.0029 (9) |
O1—C10 | 1.215 (3) | C13—H13 | 0.9300 |
N1—C6 | 1.336 (3) | C14—C15 | 1.375 (5) |
N1—C2 | 1.356 (2) | C14—H14 | 0.9300 |
N3—C2 | 1.313 (3) | C15—C16 | 1.389 (3) |
N3—C4 | 1.338 (3) | C15—H15 | 0.9300 |
N6—C10 | 1.351 (3) | C16—H16 | 0.9300 |
N6—C6 | 1.394 (2) | O2—C17 | 1.324 (2) |
N6—H6 | 0.8600 | O2—H2A | 0.8200 |
N7—C8 | 1.343 (2) | O3—C17 | 1.209 (3) |
N7—C5 | 1.369 (3) | O4—C21 | 1.342 (3) |
N7—H7 | 0.8600 | O4—H4 | 0.8200 |
N9—C8 | 1.319 (3) | C17—C18 | 1.464 (3) |
N9—C4 | 1.374 (3) | C18—C19 | 1.389 (3) |
C2—H2 | 0.9300 | C18—C23 | 1.394 (2) |
C4—C5 | 1.411 (2) | C19—C20 | 1.376 (3) |
C6—C5 | 1.386 (3) | C19—H19 | 0.9300 |
C8—H8 | 0.9300 | C20—C21 | 1.399 (3) |
C10—C11 | 1.493 (3) | C20—H20 | 0.9300 |
C11—C12 | 1.369 (4) | C21—C22 | 1.393 (3) |
C11—C16 | 1.384 (3) | C22—C23 | 1.368 (3) |
C12—C13 | 1.379 (3) | C22—H22 | 0.9300 |
C12—H12 | 0.9300 | C23—H23 | 0.9300 |
C13—C14 | 1.357 (5) | ||
C6—N1—C2 | 118.60 (18) | C14—C13—H13 | 120.0 |
C2—N3—C4 | 112.88 (17) | C12—C13—H13 | 120.0 |
C10—N6—C6 | 129.53 (17) | C13—C14—C15 | 120.8 (3) |
C10—N6—H6 | 115.2 | C13—C14—H14 | 119.6 |
C6—N6—H6 | 115.2 | C15—C14—H14 | 119.6 |
C8—N7—C5 | 106.93 (17) | C14—C15—C16 | 119.7 (3) |
C8—N7—H7 | 126.5 | C14—C15—H15 | 120.2 |
C5—N7—H7 | 126.5 | C16—C15—H15 | 120.2 |
C8—N9—C4 | 104.19 (16) | C11—C16—C15 | 119.1 (3) |
N3—C2—N1 | 128.1 (2) | C11—C16—H16 | 120.4 |
N3—C2—H2 | 115.9 | C15—C16—H16 | 120.4 |
N1—C2—H2 | 115.9 | C17—O2—H2A | 109.5 |
N3—C4—N9 | 125.60 (17) | C21—O4—H4 | 109.5 |
N3—C4—C5 | 124.43 (18) | O3—C17—O2 | 121.96 (18) |
N9—C4—C5 | 109.97 (18) | O3—C17—C18 | 122.96 (17) |
N1—C6—C5 | 118.50 (16) | O2—C17—C18 | 115.08 (18) |
N1—C6—N6 | 113.25 (17) | C19—C18—C23 | 118.42 (18) |
C5—C6—N6 | 128.25 (18) | C19—C18—C17 | 123.06 (17) |
N7—C5—C6 | 137.61 (17) | C23—C18—C17 | 118.53 (18) |
N7—C5—C4 | 104.93 (16) | C20—C19—C18 | 120.79 (18) |
C6—C5—C4 | 117.46 (18) | C20—C19—H19 | 119.6 |
N9—C8—N7 | 113.98 (18) | C18—C19—H19 | 119.6 |
N9—C8—H8 | 123.0 | C19—C20—C21 | 120.3 (2) |
N7—C8—H8 | 123.0 | C19—C20—H20 | 119.8 |
O1—C10—N6 | 124.15 (18) | C21—C20—H20 | 119.8 |
O1—C10—C11 | 121.74 (18) | O4—C21—C22 | 123.28 (18) |
N6—C10—C11 | 114.07 (17) | O4—C21—C20 | 117.8 (2) |
C12—C11—C16 | 120.3 (2) | C22—C21—C20 | 118.97 (19) |
C12—C11—C10 | 120.8 (2) | C23—C22—C21 | 120.10 (17) |
C16—C11—C10 | 118.9 (2) | C23—C22—H22 | 119.9 |
C11—C12—C13 | 120.1 (3) | C21—C22—H22 | 119.9 |
C11—C12—H12 | 119.9 | C22—C23—C18 | 121.40 (19) |
C13—C12—H12 | 119.9 | C22—C23—H23 | 119.3 |
C14—C13—C12 | 119.9 (3) | C18—C23—H23 | 119.3 |
C4—N3—C2—N1 | −0.4 (4) | N6—C10—C11—C12 | −60.8 (3) |
C6—N1—C2—N3 | 0.0 (4) | O1—C10—C11—C16 | −56.9 (3) |
C2—N3—C4—N9 | −179.7 (2) | N6—C10—C11—C16 | 121.2 (2) |
C2—N3—C4—C5 | 0.4 (3) | C16—C11—C12—C13 | 1.1 (5) |
C8—N9—C4—N3 | 179.9 (2) | C10—C11—C12—C13 | −176.8 (3) |
C8—N9—C4—C5 | −0.2 (2) | C11—C12—C13—C14 | −2.4 (6) |
C2—N1—C6—C5 | 0.4 (3) | C12—C13—C14—C15 | 1.6 (6) |
C2—N1—C6—N6 | −179.98 (19) | C13—C14—C15—C16 | 0.6 (5) |
C10—N6—C6—N1 | 168.6 (2) | C12—C11—C16—C15 | 1.0 (4) |
C10—N6—C6—C5 | −11.9 (3) | C10—C11—C16—C15 | 179.0 (2) |
C8—N7—C5—C6 | −179.9 (2) | C14—C15—C16—C11 | −1.9 (4) |
C8—N7—C5—C4 | 0.0 (2) | O3—C17—C18—C19 | −179.9 (2) |
N1—C6—C5—N7 | 179.6 (2) | O2—C17—C18—C19 | 1.0 (3) |
N6—C6—C5—N7 | 0.0 (4) | O3—C17—C18—C23 | 0.2 (3) |
N1—C6—C5—C4 | −0.4 (3) | O2—C17—C18—C23 | −178.92 (19) |
N6—C6—C5—C4 | −179.93 (18) | C23—C18—C19—C20 | 0.5 (3) |
N3—C4—C5—N7 | 179.99 (19) | C17—C18—C19—C20 | −179.43 (19) |
N9—C4—C5—N7 | 0.1 (2) | C18—C19—C20—C21 | 0.2 (3) |
N3—C4—C5—C6 | 0.0 (3) | C19—C20—C21—O4 | 178.8 (2) |
N9—C4—C5—C6 | −179.93 (16) | C19—C20—C21—C22 | −1.0 (3) |
C4—N9—C8—N7 | 0.2 (2) | O4—C21—C22—C23 | −178.7 (2) |
C5—N7—C8—N9 | −0.2 (2) | C20—C21—C22—C23 | 1.1 (3) |
C6—N6—C10—O1 | 0.1 (4) | C21—C22—C23—C18 | −0.4 (3) |
C6—N6—C10—C11 | −177.92 (19) | C19—C18—C23—C22 | −0.3 (3) |
O1—C10—C11—C12 | 121.1 (3) | C17—C18—C23—C22 | 179.55 (19) |
Cg3 is the centroid of the C11–C16 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N1 | 0.82 | 1.92 | 2.737 (2) | 172 |
O4—H4···N9i | 0.82 | 1.98 | 2.784 (2) | 168 |
N6—H6···O3 | 0.86 | 1.94 | 2.778 (2) | 166 |
N7—H7···O1 | 0.86 | 2.14 | 2.726 (2) | 126 |
N7—H7···O1ii | 0.86 | 2.36 | 3.164 (2) | 155 |
C8—H8···Cg3ii | 0.93 | 2.77 | 3.646 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z+1. |
Pyrimidine ring: N1/C2/N3/C4–C6; imidazole ring of adenine: C4/C5/N7/C8/N9; purine ring system: N1/C2/N3/C4–C6/N7/C8/N9; benzene ring: C11–C16; amide: N6/H6/C10/O1. |
Compound | pyrimidine/imidazole | purine/benzene | purine/amide | benzene/amide | C6—N6—C10—C11 |
N6-benzoyladenine–DL-tartaric acida | 2.26 (10) | 9.77 (8) | 2.93 (18) | 11.35 (9) | -179.08 (17) |
N6-benzoyladenine–3-hydroxypridinium-2-carboxylatea | 3.00 (9) | 0.94 (8) | 21.20 (17) | 21.45 (18) | -176.24 (16) |
N6-benzoyladeninium nitrateb | 1.34 (14) | 52.25 (12) | 23.7 (2) | 29.2 (2) | -168.8 (2) |
N6-benzoyladenine–adipic acidc | 0.33 (8) | 26.71 (7) | 10.8 (7) | 23.0 (7) | 173.08 (14) |
N6-benzoyladenine–4-hydroxybenzoic acidd | 0.24 (12) | 70.80 (11) | 11.71 (19) | 59.4 (2) | -177.91 (18) |
References: (a) Karthikeyan et al. (2015); (b) Karthikeyan et al. (2016); (c) Swinton Darious et al. (2016); (d) this study. |
Acknowledgements
RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barker, J. L. & Frost, J. W. (2001). Biotechnol. Bioeng. 76, 376–390. CrossRef PubMed CAS Google Scholar
Imaz, I., Rubio-Martínez, M., An, J., Solé-Font, I., Rosi, N. L. & Maspoch, D. (2011). Chem. Commun. 47, 7287–7302. Web of Science CrossRef CAS Google Scholar
Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104. Web of Science CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935–o1936. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805–808. CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Farhadikoutenaei, A., Arshad, S., Razak, I. A. & Balasubramani, K. (2012). Acta Cryst. E68, o3415–o3416. CSD CrossRef IUCr Journals Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168. Web of Science CSD CrossRef CAS Google Scholar
Wang, W., Liu, B.-W., Liu, J. & Ren, R. (2009). Acta Cryst. E65, o1205. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.