research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Supra­molecular hydrogen-bonding patterns in a 1:1 co-crystal of the N(7)—H tautomeric form of N6-benzoyl­adenine with 4-hy­dr­oxy­benzoic acid

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 7 February 2017; accepted 9 February 2017; online 17 February 2017)

The asymmetric unit of the title co-crystal, C12H9N5O·C7H6O3, contains one mol­ecule of N6-benzoyl­adenine (BA) and one mol­ecule of 4-hy­droxy­benzoic acid (HBA). The N6-benzoyl­adenine (BA) has an N(7)—H tautomeric form with nonprotonated N-1 and N-3 atoms. This tautomeric form is stabilized by a typical intra­molecular N—H⋯O hydrogen bond between the carbonyl (C=O) group and the N(7)—H hydrogen on the Hoogsteen face of the purine ring, forming a graph-set S(7) ring motif. The primary robust R22(8) ring motif is formed in the Watson–Crick face via N—H⋯O and O—H⋯N hydrogen bonds (involving N1, N6—H and the carboxyl group of HBA). Weak inter­actions, such as, C—H⋯π and ππ are also observed in this crystal structure.

1. Chemical context

Adenine is one of the major nucleobases and some of its N6-derivatives have plant hormone (kinetin) (Tr). They also offer a variety of hydrogen-bonding donor and acceptor sites (McHugh & Erxleben, 2011[McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096-5104.]; Imaz et al., 2011[Imaz, I., Rubio-Martínez, M., An, J., Solé-Font, I., Rosi, N. L. & Maspoch, D. (2011). Chem. Commun. 47, 7287-7302.]). 4-Hy­droxy­benzoic acid is also a promising hydrogen-bond donor with the ability to form co-crystals with other organic mol­ecules (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164-168.]). It is used as an anti­microbial paraben (Barker & Frost, 2001[Barker, J. L. & Frost, J. W. (2001). Biotechnol. Bioeng. 76, 376-390.]). The present study investigates co-crystal formation between N6- benzoyl­adenine and 4-hy­droxy­benzoic acid.

[Scheme 1]

2. Structural commentary

In the title co-crystal (I)[link], the asymmetric unit contains one N6-benzoyl­adenine (BA) mol­ecule and one 4-hy­droxy­benzoic acid (HBA) mol­ecule (Fig. 1[link]). The bond angle at N7 [C8—N7—C5 = 106.93 (17)°] is wider than at N9 [C8—N9—C4 = 104.19 (16)°]. In addition, the C8—N7 bond [1.343 (2)Å] is longer than C8—N9 [1.319 (3) Å]. These values agree with those reported earlier for the crystal structure of N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). In the title co-crystal, the N6-benzoyl­adenine also exists in the N(7)—H tautomeric form with non-protonated N1, N3 and N9 atoms. In the crystal structures of N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]), N6-benzoyl­adenine-3-hy­droxy­pyridinium-2-carboxyl­ate (1:1) and N6-benzoyl adenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]), N6-benzoyl­adeninium nitrate (1:1) (Karthikeyan et al., 2016[Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140-143.]), N6-benzoyl adenine–adipic acid (1:0.5) (Swinton Darious et al., 2016[Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805-808.]) and the title compound (I)[link], the N6-substituent is distal to the N1 and syn to the adenine nitro­gen atom N7. This may be due to the participation of the N7 atom in N7—H7⋯O1A intra­molecular hydrogen bond (Table 1[link]) with an S(7) ring motif in the Hoogsteen face. In contrast, it may be noted that in the crystal structure of N6-benzyl­adenine, (where no intra­molecular hydrogen bond is present) the N6-substituent is syn to N1 and distal to N7 and the adenine moiety exists in the N(9)—H tautomeric form (Raghunathan et al., 1983[Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545-1547.]). The dihedral angle between the benzene ring and the carboxyl group of HBA is 1.5 (3)°, indicating that the benzene ring and the carboxyl group are nearly coplanar. A comparison of dihedral angles and the C6—N6—C10—C11 torsion angle reported for various N6-benzoyl­adenine-containing crystal structures is given in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.92 2.737 (2) 172
O4—H4⋯N9i 0.82 1.98 2.784 (2) 168
N6—H6⋯O3 0.86 1.94 2.778 (2) 166
N7—H7⋯O1 0.86 2.14 2.726 (2) 126
N7—H7⋯O1ii 0.86 2.36 3.164 (2) 155
C8—H8⋯Cg3ii 0.93 2.77 3.646 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1.

Table 2
Comparison of dihedral angles and torsion angles (°) for various N6-benzoyl­adenine-containing crystal structures

Pyrimidine ring: N1/C2/N3/C4–C6; imidazole ring of adenine: C4/C5/N7/C8/N9; purine ring system: N1/C2/N3/C4–C6/N7/C8/N9; benzene ring: C11–C16; amide: N6/H6/C10/O1.

Compound pyrimidine/imidazole purine/benzene purine/amide benzene/amide C6—N6—C10—C11
N6-benzoyl­adenine–DL-tartaric acida 2.26 (10) 9.77 (8) 2.93 (18) 11.35 (9) −179.08 (17)
N6-benzoyl­adenine–3-hy­droxy­pridinium-2-carboxyl­atea 3.00 (9) 0.94 (8) 21.20 (17) 21.45 (18) −176.24 (16)
N6-benzoyl­adeninium nitrateb 1.34 (14) 52.25 (12) 23.7 (2) 29.2 (2) −168.8 (2)
N6-benzoyl­adenine–adipic acidc 0.33 (8) 26.71 (7) 10.8 (7) 23.0 (7) 173.08 (14)
N6-benzoyl­adenine–4-hy­droxy­benzoic acidd 0.24 (12) 70.80 (11) 11.71 (19) 59.4 (2) −177.91 (18)
References: (a) Karthikeyan et al. (2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]); (b) Karthikeyan et al. (2016[Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140-143.]); (c) Swinton Darious et al. (2016[Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805-808.]); (d) this study.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds.

3. Supra­molecular features

The robust [R_{2}^{2}](8) ring motif is formed in the Watson–Crick face (N1 and N6 atoms) via N—H⋯O and O—H⋯N hydrogen bonds involving the carboxyl group of HBA. The N7 atom is a bifurcated donor and the carbonyl oxygen atom acts as a double acceptor for the N—H⋯O hydrogen bonds. Inversion-related BA mol­ecules form dimers through an array of hydrogen bonds, generating ring motifs, and these dimers are doubly bridged by inversion-related HBA mol­ecules (Fig. 2[link]). A large R66(32) supra­molecular ring is formed along the c-axis direction. A weak C8—H8⋯π inter­action is also present. Further consolidation of the structure is provided by homo and hetero ππ stacking inter­actions [Cg1⋯Cg5([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) = 3.5580 (13) Å, Cg2⋯Cg5([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) = 3.6508 (12) Å; Cg1, Cg2 and Cg5 are the centroids of the imidazole ring, the pyrimidine ring and the benzene ring of HBA, respectively] (Fig. 3[link]).

[Figure 2]
Figure 2
The formation of a supra­molecular three-dimensional large ring structure in the title compound.
[Figure 3]
Figure 3
A view of the homo/hetero-stacking inter­actions in the title compound.

4. Database survey

The neutral mol­ecule N6-benzoyl­adenine was first reported by Raghunathan & Pattabhi (1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). Various salts and co-crystals of N6-benzoyl­adenine have also been reported: N6-benzoyl­adenine–3-hy­droxy­pyridinium-2-carboxyl­ate (1:1) and N6-benzoyl­adenine–DL-tartaric acid (1:1) (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]), N6-benzoyl­adeninium nitrate (1:1) (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]), N6-benzoyl­adenine–adipic acid (1:0.5) (Swinton Darious et al., 2016[Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805-808.]). Similarly, various co-crystals of HBA have been reported: 2-amino-4,6-di­methyl­pyrimidine–4-hy­droxy­benzoic acid (Balasubramani et al., 2006[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907-o2909.]), 4-hy­droxy­benzoic acid–1H-imidazole (Wang et al., 2009[Wang, W., Liu, B.-W., Liu, J. & Ren, R. (2009). Acta Cryst. E65, o1205.]), 2-amino-5-bromo­pyridine–4-hy­droxy­benzoic acid (Quah et al., 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935-o1936.]) and 4,6-dimeth­oxy-2-(methyl­sulfan­yl)-pyrimidine–4-hy­droxy­benzoic acid (Thanigaimani et al., 2012[Thanigaimani, K., Farhadikoutenaei, A., Arshad, S., Razak, I. A. & Balasubramani, K. (2012). Acta Cryst. E68, o3415-o3416.]).

5. Synthesis and crystallization

The title co-crystal was prepared by mixing a hot ethanol solution of N6-benzoyl­adenine (30 mg) and 4-hy­droxy­benzoic acid (35 mg) in an equimolar ratio in a total volume of 30 mL. The mixture was warmed over a water bath for 30 min, filtered, and left aside for a few days. Colourless plate-shaped crystals were collected from the mother solution following slow cooling at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were readily located in difference-Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C12H9N5O·C7H6O3
Mr 377.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.7579 (5), 6.7930 (3), 17.2873 (5)
β (°) 91.287 (3)
V3) 1732.62 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.20 × 0.15 × 0.03
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.597, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6790, 3284, 2457
Rint 0.028
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.02
No. of reflections 3284
No. of parameters 256
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.30
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

N6-Benzoyladenine–4-hydroxybenzoic acid (1/1) top
Crystal data top
C12H9N5O·C7H6O3F(000) = 784
Mr = 377.36Dx = 1.447 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 14.7579 (5) ÅCell parameters from 2120 reflections
b = 6.7930 (3) Åθ = 3.9–74.6°
c = 17.2873 (5) ŵ = 0.88 mm1
β = 91.287 (3)°T = 293 K
V = 1732.62 (11) Å3Plate, colorless
Z = 40.20 × 0.15 × 0.03 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3284 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2457 reflections with I > 2σ(I)
Detector resolution: 10.4933 pixels mm-1Rint = 0.028
ω scansθmax = 70.1°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 1217
Tmin = 0.597, Tmax = 1.000k = 87
6790 measured reflectionsl = 1921
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0934P)2 + 0.2078P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.44 e Å3
3284 reflectionsΔρmin = 0.30 e Å3
256 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0007 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42682 (11)1.0650 (3)0.54392 (9)0.0705 (6)
N10.39444 (11)0.9505 (3)0.78054 (9)0.0441 (4)
N30.54449 (12)0.9582 (3)0.83693 (10)0.0507 (5)
N60.35504 (10)0.9706 (2)0.65248 (9)0.0398 (4)
H60.30240.93810.66860.048*
N70.57481 (11)0.9980 (3)0.63742 (10)0.0428 (4)
H70.55981.00530.58920.051*
N90.66312 (11)0.9887 (3)0.74394 (11)0.0466 (4)
C20.45586 (14)0.9466 (4)0.84004 (12)0.0522 (6)
H20.43220.93400.88920.063*
C40.57400 (13)0.9747 (3)0.76459 (12)0.0402 (4)
C60.42445 (13)0.9683 (3)0.70853 (11)0.0362 (4)
C50.51711 (12)0.9806 (3)0.69794 (11)0.0357 (4)
C80.65938 (13)1.0017 (3)0.66780 (13)0.0473 (5)
H80.71071.01250.63780.057*
C100.35828 (13)1.0163 (3)0.57653 (12)0.0430 (5)
C110.26848 (13)1.0088 (3)0.53510 (11)0.0448 (5)
C120.21996 (19)0.8373 (5)0.53086 (16)0.0774 (8)
H120.24150.72520.55610.093*
C130.1393 (2)0.8303 (7)0.4892 (2)0.1083 (14)
H130.10750.71240.48470.130*
C140.1062 (2)0.9956 (7)0.45466 (18)0.0950 (13)
H140.05100.99080.42770.114*
C150.15326 (18)1.1700 (6)0.45909 (15)0.0828 (10)
H150.12971.28280.43560.099*
C160.23613 (16)1.1771 (4)0.49876 (14)0.0621 (6)
H160.26941.29330.50090.075*
O20.22103 (10)0.9691 (3)0.83296 (9)0.0563 (4)
H2A0.27180.95300.81570.084*
O30.18126 (10)0.9349 (4)0.70936 (9)0.0734 (6)
O40.20332 (10)1.0061 (3)0.86009 (10)0.0608 (5)
H40.23730.99260.82230.091*
C170.15996 (13)0.9583 (3)0.77584 (11)0.0409 (4)
C180.06559 (12)0.9737 (3)0.79947 (11)0.0366 (4)
C190.04097 (14)1.0009 (3)0.87579 (11)0.0435 (5)
H190.08571.01120.91430.052*
C200.04879 (14)1.0128 (4)0.89506 (12)0.0499 (5)
H200.06431.03140.94640.060*
C210.11692 (13)0.9970 (3)0.83780 (12)0.0425 (5)
C220.09232 (13)0.9722 (3)0.76111 (12)0.0437 (5)
H220.13680.96370.72230.052*
C230.00281 (13)0.9602 (3)0.74278 (12)0.0433 (5)
H230.01270.94270.69140.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (9)0.1294 (16)0.0446 (8)0.0059 (9)0.0021 (6)0.0179 (9)
N10.0314 (8)0.0663 (11)0.0343 (8)0.0027 (7)0.0060 (6)0.0018 (7)
N30.0361 (9)0.0755 (12)0.0400 (9)0.0026 (8)0.0107 (7)0.0030 (8)
N60.0240 (8)0.0597 (10)0.0353 (8)0.0021 (6)0.0076 (6)0.0019 (7)
N70.0287 (8)0.0592 (10)0.0403 (9)0.0002 (7)0.0034 (6)0.0011 (7)
N90.0264 (8)0.0624 (11)0.0503 (10)0.0015 (7)0.0087 (7)0.0032 (8)
C20.0379 (11)0.0841 (16)0.0344 (9)0.0035 (10)0.0064 (8)0.0016 (10)
C40.0302 (10)0.0476 (10)0.0424 (10)0.0019 (7)0.0097 (7)0.0034 (8)
C60.0296 (9)0.0430 (10)0.0355 (9)0.0010 (7)0.0078 (7)0.0021 (7)
C50.0302 (9)0.0401 (9)0.0365 (9)0.0011 (7)0.0061 (7)0.0012 (7)
C80.0259 (10)0.0649 (13)0.0511 (12)0.0005 (8)0.0012 (8)0.0007 (10)
C100.0301 (10)0.0615 (12)0.0372 (10)0.0017 (8)0.0048 (7)0.0011 (9)
C110.0311 (10)0.0710 (13)0.0320 (9)0.0012 (9)0.0061 (7)0.0023 (9)
C120.0706 (17)0.0902 (19)0.0699 (16)0.0204 (15)0.0324 (13)0.0151 (15)
C130.086 (2)0.150 (3)0.086 (2)0.053 (2)0.0499 (18)0.030 (2)
C140.0481 (15)0.182 (4)0.0536 (15)0.0141 (19)0.0213 (12)0.0164 (19)
C150.0563 (15)0.135 (3)0.0564 (14)0.0353 (18)0.0098 (11)0.0172 (17)
C160.0517 (13)0.0784 (16)0.0558 (12)0.0135 (12)0.0075 (10)0.0073 (12)
O20.0294 (7)0.0975 (12)0.0416 (8)0.0001 (7)0.0052 (6)0.0040 (8)
O30.0339 (8)0.1439 (18)0.0425 (8)0.0016 (9)0.0009 (6)0.0160 (10)
O40.0290 (8)0.1037 (14)0.0497 (9)0.0011 (7)0.0003 (6)0.0057 (9)
C170.0317 (10)0.0510 (11)0.0398 (10)0.0015 (8)0.0052 (7)0.0014 (8)
C180.0308 (10)0.0403 (9)0.0383 (9)0.0009 (7)0.0051 (7)0.0018 (7)
C190.0332 (10)0.0621 (12)0.0350 (9)0.0004 (8)0.0078 (7)0.0008 (8)
C200.0349 (10)0.0822 (15)0.0324 (9)0.0006 (10)0.0023 (8)0.0000 (10)
C210.0294 (10)0.0540 (11)0.0439 (10)0.0002 (8)0.0034 (8)0.0009 (9)
C220.0330 (10)0.0578 (12)0.0397 (10)0.0009 (8)0.0092 (7)0.0036 (9)
C230.0346 (10)0.0602 (12)0.0349 (9)0.0014 (8)0.0060 (7)0.0029 (9)
Geometric parameters (Å, º) top
O1—C101.215 (3)C13—H130.9300
N1—C61.336 (3)C14—C151.375 (5)
N1—C21.356 (2)C14—H140.9300
N3—C21.313 (3)C15—C161.389 (3)
N3—C41.338 (3)C15—H150.9300
N6—C101.351 (3)C16—H160.9300
N6—C61.394 (2)O2—C171.324 (2)
N6—H60.8600O2—H2A0.8200
N7—C81.343 (2)O3—C171.209 (3)
N7—C51.369 (3)O4—C211.342 (3)
N7—H70.8600O4—H40.8200
N9—C81.319 (3)C17—C181.464 (3)
N9—C41.374 (3)C18—C191.389 (3)
C2—H20.9300C18—C231.394 (2)
C4—C51.411 (2)C19—C201.376 (3)
C6—C51.386 (3)C19—H190.9300
C8—H80.9300C20—C211.399 (3)
C10—C111.493 (3)C20—H200.9300
C11—C121.369 (4)C21—C221.393 (3)
C11—C161.384 (3)C22—C231.368 (3)
C12—C131.379 (3)C22—H220.9300
C12—H120.9300C23—H230.9300
C13—C141.357 (5)
C6—N1—C2118.60 (18)C14—C13—H13120.0
C2—N3—C4112.88 (17)C12—C13—H13120.0
C10—N6—C6129.53 (17)C13—C14—C15120.8 (3)
C10—N6—H6115.2C13—C14—H14119.6
C6—N6—H6115.2C15—C14—H14119.6
C8—N7—C5106.93 (17)C14—C15—C16119.7 (3)
C8—N7—H7126.5C14—C15—H15120.2
C5—N7—H7126.5C16—C15—H15120.2
C8—N9—C4104.19 (16)C11—C16—C15119.1 (3)
N3—C2—N1128.1 (2)C11—C16—H16120.4
N3—C2—H2115.9C15—C16—H16120.4
N1—C2—H2115.9C17—O2—H2A109.5
N3—C4—N9125.60 (17)C21—O4—H4109.5
N3—C4—C5124.43 (18)O3—C17—O2121.96 (18)
N9—C4—C5109.97 (18)O3—C17—C18122.96 (17)
N1—C6—C5118.50 (16)O2—C17—C18115.08 (18)
N1—C6—N6113.25 (17)C19—C18—C23118.42 (18)
C5—C6—N6128.25 (18)C19—C18—C17123.06 (17)
N7—C5—C6137.61 (17)C23—C18—C17118.53 (18)
N7—C5—C4104.93 (16)C20—C19—C18120.79 (18)
C6—C5—C4117.46 (18)C20—C19—H19119.6
N9—C8—N7113.98 (18)C18—C19—H19119.6
N9—C8—H8123.0C19—C20—C21120.3 (2)
N7—C8—H8123.0C19—C20—H20119.8
O1—C10—N6124.15 (18)C21—C20—H20119.8
O1—C10—C11121.74 (18)O4—C21—C22123.28 (18)
N6—C10—C11114.07 (17)O4—C21—C20117.8 (2)
C12—C11—C16120.3 (2)C22—C21—C20118.97 (19)
C12—C11—C10120.8 (2)C23—C22—C21120.10 (17)
C16—C11—C10118.9 (2)C23—C22—H22119.9
C11—C12—C13120.1 (3)C21—C22—H22119.9
C11—C12—H12119.9C22—C23—C18121.40 (19)
C13—C12—H12119.9C22—C23—H23119.3
C14—C13—C12119.9 (3)C18—C23—H23119.3
C4—N3—C2—N10.4 (4)N6—C10—C11—C1260.8 (3)
C6—N1—C2—N30.0 (4)O1—C10—C11—C1656.9 (3)
C2—N3—C4—N9179.7 (2)N6—C10—C11—C16121.2 (2)
C2—N3—C4—C50.4 (3)C16—C11—C12—C131.1 (5)
C8—N9—C4—N3179.9 (2)C10—C11—C12—C13176.8 (3)
C8—N9—C4—C50.2 (2)C11—C12—C13—C142.4 (6)
C2—N1—C6—C50.4 (3)C12—C13—C14—C151.6 (6)
C2—N1—C6—N6179.98 (19)C13—C14—C15—C160.6 (5)
C10—N6—C6—N1168.6 (2)C12—C11—C16—C151.0 (4)
C10—N6—C6—C511.9 (3)C10—C11—C16—C15179.0 (2)
C8—N7—C5—C6179.9 (2)C14—C15—C16—C111.9 (4)
C8—N7—C5—C40.0 (2)O3—C17—C18—C19179.9 (2)
N1—C6—C5—N7179.6 (2)O2—C17—C18—C191.0 (3)
N6—C6—C5—N70.0 (4)O3—C17—C18—C230.2 (3)
N1—C6—C5—C40.4 (3)O2—C17—C18—C23178.92 (19)
N6—C6—C5—C4179.93 (18)C23—C18—C19—C200.5 (3)
N3—C4—C5—N7179.99 (19)C17—C18—C19—C20179.43 (19)
N9—C4—C5—N70.1 (2)C18—C19—C20—C210.2 (3)
N3—C4—C5—C60.0 (3)C19—C20—C21—O4178.8 (2)
N9—C4—C5—C6179.93 (16)C19—C20—C21—C221.0 (3)
C4—N9—C8—N70.2 (2)O4—C21—C22—C23178.7 (2)
C5—N7—C8—N90.2 (2)C20—C21—C22—C231.1 (3)
C6—N6—C10—O10.1 (4)C21—C22—C23—C180.4 (3)
C6—N6—C10—C11177.92 (19)C19—C18—C23—C220.3 (3)
O1—C10—C11—C12121.1 (3)C17—C18—C23—C22179.55 (19)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.922.737 (2)172
O4—H4···N9i0.821.982.784 (2)168
N6—H6···O30.861.942.778 (2)166
N7—H7···O10.862.142.726 (2)126
N7—H7···O1ii0.862.363.164 (2)155
C8—H8···Cg3ii0.932.773.646 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
Comparison of dihedral angles and torsion angles (°) for various N6-benzoyladenine-containing crystal structures top
Pyrimidine ring: N1/C2/N3/C4–C6; imidazole ring of adenine: C4/C5/N7/C8/N9; purine ring system: N1/C2/N3/C4–C6/N7/C8/N9; benzene ring: C11–C16; amide: N6/H6/C10/O1.
Compoundpyrimidine/imidazolepurine/benzenepurine/amidebenzene/amideC6—N6—C10—C11
N6-benzoyladenine–DL-tartaric acida2.26 (10)9.77 (8)2.93 (18)11.35 (9)-179.08 (17)
N6-benzoyladenine–3-hydroxypridinium-2-carboxylatea3.00 (9)0.94 (8)21.20 (17)21.45 (18)-176.24 (16)
N6-benzoyladeninium nitrateb1.34 (14)52.25 (12)23.7 (2)29.2 (2)-168.8 (2)
N6-benzoyladenine–adipic acidc0.33 (8)26.71 (7)10.8 (7)23.0 (7)173.08 (14)
N6-benzoyladenine–4-hydroxybenzoic acidd0.24 (12)70.80 (11)11.71 (19)59.4 (2)-177.91 (18)
References: (a) Karthikeyan et al. (2015); (b) Karthikeyan et al. (2016); (c) Swinton Darious et al. (2016); (d) this study.
 

Acknowledgements

RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarker, J. L. & Frost, J. W. (2001). Biotechnol. Bioeng. 76, 376–390.  CrossRef PubMed CAS Google Scholar
First citationImaz, I., Rubio-Martínez, M., An, J., Solé-Font, I., Rosi, N. L. & Maspoch, D. (2011). Chem. Commun. 47, 7287–7302.  Web of Science CrossRef CAS Google Scholar
First citationKarthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935–o1936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 805–808.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Arshad, S., Razak, I. A. & Balasubramani, K. (2012). Acta Cryst. E68, o3415–o3416.  CSD CrossRef IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, W., Liu, B.-W., Liu, J. & Ren, R. (2009). Acta Cryst. E65, o1205.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds