research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,7-dimeth­­oxy-1-(4-nitro­phen­yl)quinolin-4(1H)-one: a mol­ecular scaffold for potential tubulin polymerization inhibitors

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0371 Oslo, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 February 2017; accepted 21 February 2017; online 24 February 2017)

The protein tubulin is central for maintaining normal cellular processes, and mol­ecules inter­fering with the tubulin dynamics have potential in the treatment of cancerous diseases. The title compound, C17H14N2O5, was prepared as a lead compound in a project dedicated to the development of therapeutic agents binding to the colchicine binding site on tubulin, thereby inter­fering with the cell division in cancer cells. It holds many of the main structural characteristics for colchicine binding and has the potential for further modification and functionalization. In the title mol­ecule, the benzene ring is inclined to the quinoline ring by 76.10 (8)°. In the crystal, mol­ecules are linked by two pairs of C—H⋯O hydrogen bonds, forming tubular-like arrangements, propagating along the direction of the diagonals of the ab plane, and enclosing R22(26) and R22(16) ring motifs.

1. Chemical context

Due to the elevated rate of cell division in cancer cells, agents targeting proteins central to the mitotic process are attractive for cancer treatment (Hanahan & Weinberg, 2011[Hanahan, D. & Weinberg, R. A. (2011). Cell, 144, 646-674.]). The protein tubulin polymerizes during the mitotic phase into microtubules, and this process is vital for the correct cell division (Parker et al., 2014[Parker, A. L., Kavallaris, M. & McCarroll, J. A. (2014). Front. Oncol. 4, 1-19.]). Based on the structures of the natural products colchicine and comberastatin A-4, a great amount of research on the synthesis and biological evaluation has been carried out (Lu et al., 2012[Lu, Y., Chen, J., Xiao, M., Li, W. & Miller, D. D. (2012). Pharm. Res. 29, 2943-2971.]). All these analogs bind to the colchicine binding site, and the pharmacophore and binding site is well known (Nguyen et al., 2005[Nguyen, T. L., McGrath, C., Hermone, A. R., Burnett, J. C., Zaharevitz, D. W., Day, B. W., Wipf, P., Hamel, E. & Gussio, R. (2005). J. Med. Chem. 48, 6107-6116.]).

[Scheme 1]

Despite large research efforts, many colchicine-binding drug candidates suffer from resistance and toxicity problems (Lu et al., 2012[Lu, Y., Chen, J., Xiao, M., Li, W. & Miller, D. D. (2012). Pharm. Res. 29, 2943-2971.]). Therefore, further exploration and biological evaluation of possible structures is needed. From another medicinal chemistry project in our group, the title compound, (I)[link], appeared as a side product in significant amounts. The structure was rationalized from NMR studies and confirmed by X-ray crystallography. Based on the literature and knowledge of the characteristics of mol­ecules binding to the colchicine binding site on tubulin, it is reasonable that analogs of this structure might be potent cytotoxic agents. The reported structure can easily be further modified to improve binding affinities in correspondence with reported structure–activity studies (Lai et al., 2011[Lai, M.-J., Chang, J.-Y., Lee, H.-Y., Kuo, C.-C., Lin, M.-H., Hsieh, H.-P., Chang, C.-Y., Wu, J.-S., Wu, S.-Y., Shey, K.-S. & Liou, J.-P. (2011). Eur. J. Med. Chem. 46, 3623-3629.]; Wang et al., 2013[Wang, X.-F., Wang, S.-B., Ohkoshi, E., Wang, L.-T., Hamel, E., Qian, K., Morris-Natschke, S. L., Lee, K.-H. & Xie, L. (2013). Eur. J. Med. Chem. 67, 196-207.]; Patil et al., 2012[Patil, S. A., Patil, R. & Miller, D. D. (2012). Future Med. Chem. 4, 2085-2115.]). Herein, we present the synthesis and the crystal structure of the title compound, 6,7-dimeth­oxy-1-(4-nitro­phen­yl)quinolin-4(1H)-one (I)[link].

2. Database survey

The frequencies of mol­ecules in the Cambridge Structural Database (CSD, version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) incorporating various modifications of the quinolin-4(1H)-one fragment are shown in Fig. 1[link]b. It can be seen that only one previous compound, 4-[6-meth­oxy-4-oxoquinolin-1(4H)-yl]benzo­nitrile (CSD refcode PEBDIL; Hirano et al., 2008[Hirano, J., Hamase, K., Akita, T. & Zaitsu, K. (2008). Luminescence, 23, 350-355.]) share with (I)[link] the lack of substituents at C2 and C3 as well as having an aromatic N-substituent, while 1-ethyl-1,4-di­hydro-6,7-methyl­enedi­oxy-4-oxo-3-quinoline­carb­oxy­lic acid (CSD refcode DAHWEO; Cygler & Huber, 1985[Cygler, M. & Huber, C. P. (1985). Acta Cryst. C41, 1052-1055.]) is alone in incorporating C2—H, C3—H, C6—O and C7—O bonds (Fig. 1[link]a). Even though (I)[link] is a rather simple covalent structure, it thus represents a rather unique combination of functionalities.

[Figure 1]
Figure 1
(a) Schematic drawing of two analogues of (I)[link] in the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) identified by their six-letter reference codes. (b) Number of entries in the CSD retrieved by using various search fragments. The raw quinolin-4(1H)-one skeleton (with potential substituents on all C and N atoms) yields 759 hits (including a small number of duplicates). Three types of specifications and combinations thereof are then explored: introduction of bonds to O atoms (–OH, alk­oxy or phen­oxy) from C6 and C7, N1-substitution (blue, subset aromatic ring), and including only acyclic bonds from C2 and C3 atoms (red, X = any atom type, subset H only). Green and violet colours indicate the two mol­ecules in (a). (c) Final CSD search fragment used in the conformational analysis. Dashed bonds have bond type `any', Q is N or C, Z is `not hydrogen', while T3 means the atom has three bonded atoms. The indicated torsion angle runs between the encircled atoms through the two ring centroids.

3. Structural commentary

The mol­ecular structure of (I)[link] is depicted in Fig. 2[link]a, where the short, double-bond nature of the C2=C3 bond [1.342 (2) Å] is clearly visible. While the bicyclic ring systems of DAHWOE and PEBDIL (Fig. 1[link]a) are perfectly coplanar with the C6 and C7 substituents as well as the C1′-atom attached to N1, this is not the case for (I)[link]; the nitro­benzene ring is inclined to the quinoline ring system by 76.10 (8)°, and the torsion angle defined by atom C9, the two ring centroids and atom C1′ is ca 167.7°; see Fig. 2[link]a and 2b. The more extended search fragment in Fig. 1[link]c found 157 such torsion angles in 62 CSD entries, and in only nine compounds does this torsion angle deviate by more than ca 13.3° from planarity.

[Figure 2]
Figure 2
(a) The mol­ecular structure of (I)[link] with some selected bond lengths (Å; s.u.'s = 0.002 Å) at 295 K. Displacement ellipsoids are shown at the 50% probability level. Pink spheres are the centroids for the two six-membered rings, and the dashed green lines defines the torsion angle discussed in the text. (b) View along the centroid–centroid vector showing the torsion angle from (a) and two neighbouring mol­ecules A and B at (−x + 1, −y + 2, −z + 1) and (x − 1, y, z), respectively. (c) As in (b), but rotated ca 27° around the vertical axis to display two short inter­molecular inter­actions involving the nitro­phenyl substituent; H2′⋯O1(−x + 1, −y + 2, −z + 1) is 2.53 Å, while H3′⋯C4A(x − 1, y, z) is 2.72 Å.

4. Supra­molecular features

The reason for the unusual mol­ecular conformation of (I)[link] can be seen in Fig. 2[link]b and 2c, where close contacts to two neighbouring mol­ecules are apparent; these force the meth­oxy group and the nitro­phenyl group out of the quinolinone mean plane. In the crystal, mol­ecules are linked by two pairs of C—H⋯O hydrogen bonds, forming tubular-like arrangements propagating along the direction of the diagonals of the ab plane, and enclosing R22(26) and R22(16) ring motifs (Table 1[link] and Fig. 3[link]). Within the tubular-like arrangements, mol­ecules are also linked by offset ππ inter­actions; the shortest inter­action involves inversion-related pyridine rings with an inter-centroid distance Cg1⋯Cg1(−x + 1, −y + 2, −z + 1) = 3.659 (1) Å [Cg1 is the centroid of the N1/C2–C4/C4A/C8A ring; inter­planar distance = 3.580 (1) Å, slippage = 0.754 Å]. The crystal density is comparatively high at 1.415 g cm−3, and no voids were calculated by Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) using the default settings (probe radius 1.2 Å, grid spacing 0.7 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2′—H2′⋯O1i 0.93 2.53 3.320 (2) 143
C10—H103⋯O1′ii 0.96 2.60 3.512 (3) 160
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
A viewed along the normal to (110) of the crystal packing of compound (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only H atoms, H2′ and H103, have been included.

5. Synthesis and crystallization

Cs2CO3 (0.212 g, 0.65 mmol) and 6,7-di­meth­oxy­quinolin-4-ol (67 mg, 0.326 mmol) were weighed out in a round-bottom flask, to which was added 3 ml DMF and 1 ml MeCN. The mixture was then stirred for 15 min. 1-Fluoro-4-nitro­benzene (101 mg, 0.716 mmol) in 2 ml 1:1 DMF:MeCN was then added, and the reaction mixture was stirred for 20 h at 328 K. The crude product was washed with water (4 × 10 ml) and brine (10 ml), and then purified by column chromatography [Hep:EtOAc (4:1) → Hep:EtOAc:MeOH (10:10:1)]. The title compound (I)[link] was obtained as a yellow solid (40 mg, 38%). 1H NMR (CDCl3, 400 MHz): δ 8.48 (d, 2H, J = 8.8 Hz), 7.79 (s, 1H), 7.67 (d, 2H, J = 8.8 Hz), 7.48 (d, 1H, J = 7.8 Hz), 6.35 (d, 1H, J = 7.7 Hz), 6.32 (s, 1H), 3.98 (s, 3H), 3.72 (s, 3H). 13C NMR (CDCl3, 101 MHz): δ 176.98, 153.56, 147.96, 147.71, 146.91, 140.54, 136.08, 128.64, 125.92, 120.99, 110.68, 106.17, 98.10, 56.46, 56.21. HRMS (ESI+) m/z calculated for C17H15N2O5 [M+H]+: 327.0975, found 327.0976. Yellow crystals of compound (I)[link] were grown from a hepta­ne:EtOAc:MeOH (10:10:1) solution by slow evaporation of the solvent.

6. 1 Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H14N2O5
Mr 326.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 8.3736 (4), 11.7694 (5), 15.5623 (8)
β (°) 93.251 (1)
V3) 1531.23 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.66 × 0.27 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture diffractometer with a Photon 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.930, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20516, 3142, 2298
Rint 0.032
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.03
No. of reflections 3142
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: APEX3 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

6,7-Dimethoxy-1-(4-nitrophenyl)quinolin-4(1H)-one top
Crystal data top
C17H14N2O5F(000) = 680
Mr = 326.30Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3736 (4) ÅCell parameters from 8925 reflections
b = 11.7694 (5) Åθ = 2.6–26.4°
c = 15.5623 (8) ŵ = 0.11 mm1
β = 93.251 (1)°T = 295 K
V = 1531.23 (13) Å3Flat lens, yellow
Z = 40.66 × 0.27 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer with a Photon 100 CMOS detector
3142 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3 pixels mm-1θmax = 26.4°, θmin = 2.2°
Sets of exposures each taken over 0.5° ω rotation scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.930, Tmax = 1.000l = 1919
20516 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.4805P]
where P = (Fo2 + 2Fc2)/3
3142 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82921 (15)0.99910 (12)0.42505 (8)0.0623 (4)
O20.86545 (15)0.77881 (14)0.70970 (8)0.0684 (4)
O30.59678 (16)0.67943 (13)0.71853 (8)0.0679 (4)
N10.41894 (16)0.81504 (12)0.43553 (9)0.0477 (4)
C20.4438 (2)0.88507 (16)0.36804 (11)0.0528 (4)
H20.36600.88870.32300.063*
C30.5757 (2)0.94908 (16)0.36357 (12)0.0538 (5)
H30.58500.99690.31650.065*
C40.7020 (2)0.94582 (15)0.42906 (11)0.0466 (4)
C50.7864 (2)0.86419 (15)0.57179 (11)0.0461 (4)
H50.88130.90510.57040.055*
C60.7612 (2)0.79688 (16)0.64091 (11)0.0501 (4)
C70.6135 (2)0.73853 (16)0.64500 (11)0.0508 (4)
C80.5013 (2)0.74416 (16)0.57787 (11)0.0491 (4)
H80.40560.70450.58030.059*
C91.0221 (2)0.8218 (2)0.70451 (15)0.0789 (7)
H911.06570.79570.65230.118*
H921.08790.79550.75300.118*
H931.01910.90330.70470.118*
C100.4431 (3)0.6342 (2)0.73209 (14)0.0791 (7)
H1010.36520.69410.72810.119*
H1020.44370.60020.78820.119*
H1030.41640.57770.68920.119*
C4A0.67157 (18)0.87302 (14)0.50243 (10)0.0422 (4)
C8A0.53089 (18)0.81007 (14)0.50514 (10)0.0430 (4)
O1'0.2498 (2)0.57251 (18)0.39917 (15)0.1105 (7)
O2'0.0978 (2)0.42948 (16)0.37958 (14)0.1038 (6)
N1'0.1179 (2)0.52979 (17)0.39326 (12)0.0718 (5)
C1'0.2824 (2)0.74056 (15)0.42899 (11)0.0460 (4)
C2'0.1327 (2)0.78390 (16)0.43907 (12)0.0547 (5)
H2'0.11980.85970.45400.066*
C3'0.0017 (2)0.71397 (17)0.42679 (13)0.0588 (5)
H3'0.10090.74210.43270.071*
C4'0.0242 (2)0.60273 (16)0.40578 (12)0.0532 (5)
C5'0.1729 (2)0.55765 (18)0.39643 (14)0.0663 (6)
H5'0.18520.48150.38230.080*
C6'0.3036 (2)0.62773 (17)0.40849 (14)0.0635 (5)
H6'0.40600.59920.40280.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0581 (8)0.0703 (9)0.0589 (8)0.0198 (7)0.0065 (6)0.0060 (7)
O20.0502 (7)0.0978 (11)0.0556 (8)0.0166 (7)0.0109 (6)0.0185 (7)
O30.0605 (8)0.0899 (10)0.0524 (8)0.0207 (7)0.0041 (6)0.0208 (7)
N10.0440 (8)0.0555 (9)0.0431 (8)0.0060 (7)0.0013 (6)0.0012 (7)
C20.0568 (10)0.0594 (11)0.0413 (10)0.0010 (9)0.0040 (8)0.0006 (9)
C30.0608 (11)0.0567 (11)0.0439 (10)0.0062 (9)0.0039 (8)0.0050 (8)
C40.0493 (10)0.0459 (9)0.0452 (10)0.0034 (8)0.0088 (7)0.0055 (8)
C50.0388 (8)0.0533 (10)0.0463 (10)0.0070 (7)0.0041 (7)0.0036 (8)
C60.0437 (9)0.0621 (11)0.0438 (10)0.0031 (8)0.0022 (7)0.0008 (8)
C70.0498 (10)0.0593 (11)0.0433 (10)0.0067 (8)0.0043 (8)0.0055 (8)
C80.0418 (9)0.0583 (10)0.0470 (10)0.0109 (8)0.0023 (7)0.0011 (8)
C90.0613 (13)0.0953 (17)0.0772 (15)0.0268 (12)0.0206 (11)0.0183 (13)
C100.0775 (14)0.1009 (18)0.0584 (13)0.0415 (13)0.0006 (10)0.0181 (12)
C4A0.0407 (8)0.0448 (9)0.0414 (9)0.0013 (7)0.0061 (7)0.0053 (7)
C8A0.0403 (9)0.0494 (10)0.0391 (9)0.0002 (7)0.0021 (7)0.0051 (7)
O1'0.0539 (10)0.1104 (14)0.165 (2)0.0167 (10)0.0103 (10)0.0218 (13)
O2'0.0966 (13)0.0717 (12)0.1419 (18)0.0284 (10)0.0051 (11)0.0223 (11)
N1'0.0650 (12)0.0740 (13)0.0750 (12)0.0178 (10)0.0073 (9)0.0091 (10)
C1'0.0446 (9)0.0528 (10)0.0402 (9)0.0043 (8)0.0018 (7)0.0047 (8)
C2'0.0497 (10)0.0523 (10)0.0616 (12)0.0017 (8)0.0004 (8)0.0110 (9)
C3'0.0430 (10)0.0652 (12)0.0681 (13)0.0017 (9)0.0013 (9)0.0098 (10)
C4'0.0504 (10)0.0596 (11)0.0489 (10)0.0094 (9)0.0037 (8)0.0077 (9)
C5'0.0638 (12)0.0512 (11)0.0842 (15)0.0031 (10)0.0050 (10)0.0163 (10)
C6'0.0481 (10)0.0614 (12)0.0813 (14)0.0039 (9)0.0061 (9)0.0145 (11)
Geometric parameters (Å, º) top
O1—C41.241 (2)C9—H910.9600
O2—C61.359 (2)C9—H920.9600
O2—C91.412 (2)C9—H930.9600
O3—C71.353 (2)C10—H1010.9600
O3—C101.419 (2)C10—H1020.9600
N1—C21.360 (2)C10—H1030.9600
N1—C8A1.393 (2)C4A—C8A1.394 (2)
N1—C1'1.440 (2)O1'—N1'1.222 (2)
C2—C31.342 (2)O2'—N1'1.213 (2)
C2—H20.9300N1'—C4'1.471 (2)
C3—C41.427 (3)C1'—C2'1.370 (2)
C3—H30.9300C1'—C6'1.380 (3)
C4—C4A1.461 (2)C2'—C3'1.376 (3)
C5—C61.362 (2)C2'—H2'0.9300
C5—C4A1.408 (2)C3'—C4'1.365 (3)
C5—H50.9300C3'—H3'0.9300
C6—C71.419 (2)C4'—C5'1.369 (3)
C7—C81.366 (2)C5'—C6'1.375 (3)
C8—C8A1.406 (2)C5'—H5'0.9300
C8—H80.9300C6'—H6'0.9300
C6—O2—C9117.12 (15)O3—C10—H102109.5
C7—O3—C10117.17 (15)H101—C10—H102109.5
C2—N1—C8A120.01 (14)O3—C10—H103109.5
C2—N1—C1'118.03 (14)H101—C10—H103109.5
C8A—N1—C1'121.74 (14)H102—C10—H103109.5
C3—C2—N1122.86 (16)C8A—C4A—C5118.63 (15)
C3—C2—H2118.6C8A—C4A—C4121.33 (15)
N1—C2—H2118.6C5—C4A—C4120.03 (15)
C2—C3—C4121.77 (17)N1—C8A—C4A119.12 (15)
C2—C3—H3119.1N1—C8A—C8120.52 (15)
C4—C3—H3119.1C4A—C8A—C8120.35 (15)
O1—C4—C3123.65 (16)O2'—N1'—O1'123.3 (2)
O1—C4—C4A121.58 (16)O2'—N1'—C4'118.15 (19)
C3—C4—C4A114.77 (15)O1'—N1'—C4'118.53 (19)
C6—C5—C4A121.24 (15)C2'—C1'—C6'121.02 (17)
C6—C5—H5119.4C2'—C1'—N1119.55 (16)
C4A—C5—H5119.4C6'—C1'—N1119.35 (16)
O2—C6—C5126.29 (16)C1'—C2'—C3'119.25 (17)
O2—C6—C7114.29 (15)C1'—C2'—H2'120.4
C5—C6—C7119.43 (16)C3'—C2'—H2'120.4
O3—C7—C8124.88 (16)C4'—C3'—C2'119.14 (17)
O3—C7—C6114.76 (15)C4'—C3'—H3'120.4
C8—C7—C6120.36 (16)C2'—C3'—H3'120.4
C7—C8—C8A119.83 (16)C3'—C4'—C5'122.41 (17)
C7—C8—H8120.1C3'—C4'—N1'118.02 (17)
C8A—C8—H8120.1C5'—C4'—N1'119.57 (18)
O2—C9—H91109.5C4'—C5'—C6'118.35 (18)
O2—C9—H92109.5C4'—C5'—H5'120.8
H91—C9—H92109.5C6'—C5'—H5'120.8
O2—C9—H93109.5C5'—C6'—C1'119.82 (18)
H91—C9—H93109.5C5'—C6'—H6'120.1
H92—C9—H93109.5C1'—C6'—H6'120.1
O3—C10—H101109.5
C8A—N1—C2—C31.9 (3)C1'—N1—C8A—C89.9 (2)
C1'—N1—C2—C3172.90 (17)C5—C4A—C8A—N1177.76 (15)
N1—C2—C3—C41.6 (3)C4—C4A—C8A—N11.4 (2)
C2—C3—C4—O1176.06 (18)C5—C4A—C8A—C83.4 (2)
C2—C3—C4—C4A3.3 (3)C4—C4A—C8A—C8177.44 (15)
C9—O2—C6—C58.6 (3)C7—C8—C8A—N1178.84 (16)
C9—O2—C6—C7171.73 (18)C7—C8—C8A—C4A2.3 (3)
C4A—C5—C6—O2177.51 (17)C2—N1—C1'—C2'75.8 (2)
C4A—C5—C6—C72.9 (3)C8A—N1—C1'—C2'109.47 (19)
C10—O3—C7—C89.8 (3)C2—N1—C1'—C6'101.0 (2)
C10—O3—C7—C6170.42 (18)C8A—N1—C1'—C6'73.7 (2)
O2—C6—C7—O33.4 (2)C6'—C1'—C2'—C3'1.3 (3)
C5—C6—C7—O3176.25 (17)N1—C1'—C2'—C3'175.48 (17)
O2—C6—C7—C8176.36 (18)C1'—C2'—C3'—C4'0.7 (3)
C5—C6—C7—C84.0 (3)C2'—C3'—C4'—C5'0.1 (3)
O3—C7—C8—C8A178.89 (17)C2'—C3'—C4'—N1'179.83 (18)
C6—C7—C8—C8A1.4 (3)O2'—N1'—C4'—C3'175.7 (2)
C6—C5—C4A—C8A0.8 (2)O1'—N1'—C4'—C3'2.5 (3)
C6—C5—C4A—C4179.93 (16)O2'—N1'—C4'—C5'4.1 (3)
O1—C4—C4A—C8A177.59 (16)O1'—N1'—C4'—C5'177.7 (2)
C3—C4—C4A—C8A1.8 (2)C3'—C4'—C5'—C6'0.2 (3)
O1—C4—C4A—C51.6 (2)N1'—C4'—C5'—C6'179.99 (19)
C3—C4—C4A—C5179.05 (16)C4'—C5'—C6'—C1'0.4 (3)
C2—N1—C8A—C4A3.3 (2)C2'—C1'—C6'—C5'1.1 (3)
C1'—N1—C8A—C4A171.27 (15)N1—C1'—C6'—C5'175.66 (18)
C2—N1—C8A—C8175.52 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.320 (2)143
C10—H103···O1ii0.962.603.512 (3)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.
 

References

First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCygler, M. & Huber, C. P. (1985). Acta Cryst. C41, 1052–1055.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanahan, D. & Weinberg, R. A. (2011). Cell, 144, 646–674.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHirano, J., Hamase, K., Akita, T. & Zaitsu, K. (2008). Luminescence, 23, 350–355.  CrossRef PubMed CAS Google Scholar
First citationLai, M.-J., Chang, J.-Y., Lee, H.-Y., Kuo, C.-C., Lin, M.-H., Hsieh, H.-P., Chang, C.-Y., Wu, J.-S., Wu, S.-Y., Shey, K.-S. & Liou, J.-P. (2011). Eur. J. Med. Chem. 46, 3623–3629.  CrossRef CAS PubMed Google Scholar
First citationLu, Y., Chen, J., Xiao, M., Li, W. & Miller, D. D. (2012). Pharm. Res. 29, 2943–2971.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, T. L., McGrath, C., Hermone, A. R., Burnett, J. C., Zaharevitz, D. W., Day, B. W., Wipf, P., Hamel, E. & Gussio, R. (2005). J. Med. Chem. 48, 6107–6116.  CrossRef PubMed CAS Google Scholar
First citationParker, A. L., Kavallaris, M. & McCarroll, J. A. (2014). Front. Oncol. 4, 1–19.  CrossRef PubMed Google Scholar
First citationPatil, S. A., Patil, R. & Miller, D. D. (2012). Future Med. Chem. 4, 2085–2115.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X.-F., Wang, S.-B., Ohkoshi, E., Wang, L.-T., Hamel, E., Qian, K., Morris-Natschke, S. L., Lee, K.-H. & Xie, L. (2013). Eur. J. Med. Chem. 67, 196–207.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds