research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a CoII coordination polymer: catena-poly[[μ-aqua-bis­­(μ-2-methyl­propano­ato)-κ2O:O′;κ2O:O-cobalt(II)] monohydrate]

CROSSMARK_Color_square_no_text.svg

aSt Petersburg State Institute of Technology, Moskovsky pr. 26, 190013, St Petersburg, Russian Federation, and bInstitute of Earth Sciences, St Petersburg State University, University Emb. 7/9, 199034, St Petersburg, Russian Federation
*Correspondence e-mail: andreasfischer@mail.ru, vladgeo17@mail.ru

Edited by G. Smith, Queensland University of Technology, Australia (Received 6 December 2016; accepted 26 January 2017; online 3 February 2017)

In the title cobalt(II) coordination polymer with isobutyrate ligands, {[Co{CH(CH3)2CO2}2(H2O)]·H2O}n, the Co2+ ion is hexa­coordinated in a slightly distorted octa­hedral coordination environment defined by two O atoms from two bridging water mol­ecules and four O atoms from four bridging carboxyl­ate ligands. The carboxyl­ates adopt two different coordination modes, μ-(κ2O:O′) and μ-(κ2O:O), forming a one-dimensional polymeric chain extending along [010]. The intra-chain cobalt⋯cobalt separation is 3.2029 (2) Å. The polymeric chains are linked by hydrogen bonds involving the water mol­ecules of solvation, giving a two-dimensional network structure lying parallel to (100).

1. Chemical context

Carboxyl­ate anions still remain a popular choice as bridging ligands because of their ability to form diverse oligo- and polynuclear structures. Oligo- and polynuclear cobalt carboxyl­ates in turn have attracted great attention because of their utilization in homogeneous oxidation catalysis (Gates, 1992[Gates, B. C. (1992). In Catalytic Chemistry, New York: Wiley Interscience.]; Parshall & Ittel, 1992[Parshall, G. W. & Ittel, S. D. (1992). In Homogenous Catalysis. New York: Wiley Interscience.]; Partenheimer, 1995[Partenheimer, W. (1995). Catal. Today, 23, 69-158.]; Ward et al., 2013a[Ward, A. J., Masters, A. F. & Maschmeyer, T. (2013a). Comprehensive Inorganic Chemistry II, ch. 6.23, pp. 665-684. Amsterdam: Elsevier.]), and their inter­esting magnetic properties (Ward et al., 2013b[Ward, A. J., Masters, A. F. & Maschmeyer, T. (2013b). Comprehensive Inorganic Chemistry II, ch. 8.05, pp. 191-228. Amsterdam: Elsevier.]; Eremenko et al., 2009[Eremenko, I. L., Sidorov, A. A. & Kiskin, M. A. (2009). Magnetic Nanoparticles, edited by S. P. Gubin, pp. 349-391. Weinheim: Wiley-VCH.]). Recently, we have reported on the crystal structures of the hydrated polymeric cobalt(II) propionate (Fischer et al., 2010[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.]) and butyrate (Fischer et al., 2011[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807-m808.]), which were prepared by the reaction of cobalt(II) carbonate hydrate with the corresponding aqueous carb­oxy­lic acid. The aim of these studies was to investigate the influence of the steric features of the carboxyl­ate anion on the structure of the resulting compounds. Cobalt(II) carboxyl­ates are of inter­est for our group as starting materials for the synthesis of mixed-valence cobalt carboxyl­ates (Fischer, Kuznetsov & Belyaev, 2012[Fischer, A. I., Kuznetsov, V. A. & Belyaev, A. N. (2012). Russ. J. Gen. Chem. 82, 508-509.]; Fischer, Kuznetsov, Shchukarev & Belyaev, 2012[Fischer, A. I., Kuznetsov, V. A., Shchukarev, A. V. & Belyaev, A. N. (2012). Russ. Chem. Bull. 61, 821-827.]). In addition, we intend to examine the catalytic activity of the cobalt(II) carboxyl­ates obtained, which will be used for introduction into the sodalite cages of synthetic NaY zeolites, modified by deca­tionation and dealuminizing methods.

As a part of our ongoing studies on these compounds, we describe here synthesis and crystal structure of the title compound, {[Co{CH(CH3)2CO2}2(H2O)]·H2O}n, (I)[link].

2. Structural commentary

The structure of (I)[link] contains one independent Co2+ cation coordinated by four O atoms from four bridging isobutyrate ligands and two O atoms from two bridging water mol­ecules (O1W) in a distorted octa­hedral coordination. A water mol­ecule of solvation (O2W) is also present (Fig. 1[link]). The Co—O bond lengths are in the range 2.0142 (6)–2.1777 (6) Å (Table 1[link]) and the cis-angles about the Co2+ atom vary in the range 78.99 (3)–110.31 (2)°. This data correlates with the angles and the distances in cobalt(II) acetate dihydrate which has a similar structure (Jiao et al., 2000[Jiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173-174.]), as well as with the closely related cobalt(II) propionate dihydrate (Fischer et al., 2010[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.]) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807-m808.]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Co1—O1A 2.0449 (6) Co1—O1Bi 2.1198 (6)
Co1—O2Ai 2.0142 (6) Co1—O1W 2.1768 (6)
Co1—O1B 2.1100 (6) Co1—O1Wi 2.1777 (6)
       
O1A—Co1—O1B 88.13 (3) O2Ai—Co1—O1Wi 88.33 (3)
O1A—Co1—O1Bi 89.41 (3) O1B—Co1—O1Bi 170.29 (2)
O1A—Co1—O1W 92.18 (3) O1B—Co1—O1W 79.22 (2)
O1A—Co1—O1Wi 88.29 (3) O1Bi—Co1—O1W 91.49 (2)
O2Ai—Co1—O1A 175.30 (3) O1B—Co1—O1Wi 110.31 (2)
O2Ai—Co1—O1B 89.99 (3) O1Bi—Co1—O1Wi 78.99 (2)
O2Ai—Co1—O1Bi 93.14 (3) O1W—Co1—O1Wi 170.46 (2)
O2Ai—Co1—O1W 91.70 (3)    
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The coordination mode and atom-numbering scheme for (I)[link]. Displacement ellipsoids of the non H-atoms are drawn at the 50% probability level, with H atoms shown as spheres of arbitrary radius. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].

The structure of (I)[link] is based on infinite chains with [Co(H2O)((CH3)2CHCOO)2] composition, extending along [010] (Fig. 2[link]). The Co⋯Co distance within the chain is 3.2029 (2) Å. The formation of polymeric chains may be a plausible reason for the crystal growth being predominantly along the b axis. The bridging carboxyl­ate groups adopt two coordination modes, μ-(κ2O:O′) and μ-(κ2O:O). The C—O bond lengths of the first group (involving O1A and O2A) have close values [1.2755 (10) and 1.2533 (10) Å], whereas those of the second group (involving O1B and O2B) have a more striking difference [1.2878 (9) and 1.2510 (11) Å]. The carboxyl­ate O2B atom of the second group forms an inter-unit hydrogen bond with the bridging water mol­ecule [O1W—H⋯O2Bi = 2.6206 (9) Å] (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2W 0.79 (2) 1.91 (2) 2.6638 (10) 161 (2)
O1W—H1W2⋯O2Bi 0.88 (2) 1.79 (2) 2.6206 (9) 158 (2)
O2W—H2W1⋯O1Aii 0.86 (1) 2.01 (1) 2.7967 (9) 151 (1)
O2W—H2W2⋯O2Biii 0.88 (1) 1.95 (1) 2.8087 (9) 163 (1)
C2B—H2B⋯O2Ai 0.98 2.47 3.3094 (11) 144
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The one-dimensional polymeric structure of (I)[link] extending along [010], with the intra­molecular hydrogen bond shown as a dashed line. The carbon-bound H atoms and the water mol­ecule of solvation have been omitted.

3. Supra­molecular features

Metal–organic chain polymers are linked together through the water mol­ecule of solvation (O2W) by a system of hydrogen bonds, forming a sheet structure arranged parallel to (100) (Table 2[link], Fig. 3[link]). Only weak van der Waals inter­actions link neighboring sheets in the crystal structure.

[Figure 3]
Figure 3
The packing diagram of (I)[link], showing the inter­actions between the coordination polymer chains. Hydrogen bonds are shown as dashed lines. The carbon-bound H atoms are omitted for clarity.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals only the following related one-dimensional polymeric structures of cobalt(II) carboxyl­ates with composition [Co(RCOO)2(H2O)]: acetate (Jiao et al., 2000[Jiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173-174.]), propionate (Fischer et al., 2010[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.]) and butyrate (Fischer et al., 2011[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807-m808.]).

5. Synthesis and crystallization

The title compound was synthesized using a similar procedure as for the synthesis of the analogous carboxyl­ates cobalt(II) propionate dihydrate (Fischer et al., 2010[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.]) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011[Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807-m808.]). To a mixture of isobutyric acid (8.8 g, 100 mmol) and water (100 ml), an excess of fresh cobalt(II) carbonate hexa­hydrate, CoCO3·6H2O, (13.6 g, 60 mmol) was added. The reaction mixture was period­ically stirred in an ultrasonic bath at room temperature until the liberation of carbon dioxide ceased. The unreacted CoCO3·6H2O was removed by filtration, and the filtrate was allowed to stand at room temperature for slow evaporation. Red single crystals of (I)[link] suitable for X-ray diffraction were obtained after several days. The yield was 81%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the water mol­ecules were located from differenc maps and refined in an isotropic approximation with Uiso(H) set to 1.5Ueq(O). Other hydrogen atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.98 Å, Uiso(H) = 1.2Ueq(C) for the tertiary carbon atoms and d(C—H) = 0.96 Å, Uiso(H) = 1.5Ueq(C) for the methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C4H7O2)2(H2O)]·H2O
Mr 269.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.9999 (4), 6.3815 (2), 16.1374 (6)
β (°) 109.540 (2)
V3) 1164.59 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.48
Crystal size (mm) 0.35 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker, (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.304, 0.417
No. of measured, independent and observed [I > 2σ(I)] reflections 25308, 5082, 4459
Rint 0.070
(sin θ/λ)max−1) 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.03
No. of reflections 5082
No. of parameters 152
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.25, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker, (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[µ-aqua-bis(µ-2-methylpropanoato)-κ2O:O';κ2O:O-cobalt(II)] monohydrate] top
Crystal data top
[Co(C4H7O2)2(H2O)]·H2OF(000) = 564
Mr = 269.15Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9999 (4) ÅCell parameters from 9959 reflections
b = 6.3815 (2) Åθ = 3.5–49.6°
c = 16.1374 (6) ŵ = 1.48 mm1
β = 109.540 (2)°T = 100 K
V = 1164.59 (7) Å3Prism, red
Z = 40.35 × 0.15 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
5082 independent reflections
Radiation source: fine-focus sealed tube4459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 35.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1719
Tmin = 0.304, Tmax = 0.417k = 104
25308 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5082 reflectionsΔρmax = 1.25 e Å3
152 parametersΔρmin = 0.51 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.49462 (2)0.68360 (2)0.24090 (2)0.00839 (4)
O1A0.66165 (5)0.60756 (10)0.24434 (4)0.01230 (11)
O2A0.67317 (6)0.26293 (11)0.27311 (4)0.01275 (11)
O1B0.43294 (5)0.41595 (10)0.16212 (4)0.01065 (11)
O2B0.34759 (6)0.20179 (10)0.05000 (4)0.01437 (12)
O1W0.49903 (6)0.45171 (10)0.34088 (4)0.01116 (11)
H1W10.4417 (17)0.463 (3)0.3540 (16)0.017*
H1W20.5573 (18)0.505 (3)0.3843 (15)0.017*
O2W0.29615 (6)0.39794 (11)0.37156 (4)0.01612 (12)
H2W10.2869 (13)0.290 (2)0.3380 (10)0.024*
H2W20.3027 (13)0.344 (2)0.4235 (8)0.024*
C1A0.71817 (7)0.43527 (13)0.26448 (5)0.01045 (14)
C2A0.85034 (8)0.44468 (14)0.28101 (6)0.01530 (15)
H2A0.86210.51880.23140.018*
C3A0.90702 (9)0.2299 (2)0.28691 (9)0.0292 (2)
H3A10.90210.15760.33770.044*
H3A20.98850.24570.29170.044*
H3A30.86630.15080.23500.044*
C4A0.90875 (11)0.5731 (2)0.36327 (11)0.0409 (4)
H4A10.87380.71020.35630.061*
H4A20.99180.58550.37260.061*
H4A30.89760.50500.41300.061*
C1B0.36124 (7)0.38036 (14)0.08390 (5)0.01115 (14)
C2B0.29432 (9)0.56464 (14)0.03069 (6)0.01593 (16)
H2B0.29440.67870.07140.019*
C3B0.16552 (9)0.50628 (19)0.02026 (7)0.0238 (2)
H3B10.16370.39700.06160.036*
H3B20.12450.62710.05120.036*
H3B30.12780.45830.02010.036*
C4B0.35856 (10)0.64054 (17)0.03141 (6)0.02213 (19)
H4B10.43580.69070.00250.033*
H4B20.31420.75190.06760.033*
H4B30.36600.52650.06800.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00921 (6)0.00625 (7)0.00890 (5)0.00009 (3)0.00197 (4)0.00013 (3)
O1A0.0120 (3)0.0092 (3)0.0155 (3)0.0012 (2)0.0043 (2)0.0020 (2)
O2A0.0116 (3)0.0097 (3)0.0164 (3)0.0002 (2)0.0040 (2)0.0016 (2)
O1B0.0120 (3)0.0083 (3)0.0091 (2)0.00017 (19)0.00020 (19)0.00006 (17)
O2B0.0182 (3)0.0100 (3)0.0114 (3)0.0011 (2)0.0003 (2)0.00154 (19)
O1W0.0129 (3)0.0097 (3)0.0104 (2)0.0009 (2)0.0032 (2)0.00094 (18)
O2W0.0229 (3)0.0121 (3)0.0144 (3)0.0006 (2)0.0076 (2)0.0006 (2)
C1A0.0106 (3)0.0103 (4)0.0103 (3)0.0002 (2)0.0032 (2)0.0001 (2)
C2A0.0105 (3)0.0139 (4)0.0217 (4)0.0002 (3)0.0057 (3)0.0017 (3)
C3A0.0138 (4)0.0223 (6)0.0489 (7)0.0050 (4)0.0071 (4)0.0045 (5)
C4A0.0179 (5)0.0483 (9)0.0492 (8)0.0048 (5)0.0013 (5)0.0285 (6)
C1B0.0123 (3)0.0107 (4)0.0093 (3)0.0010 (3)0.0022 (2)0.0000 (2)
C2B0.0209 (4)0.0117 (4)0.0114 (3)0.0047 (3)0.0004 (3)0.0006 (3)
C3B0.0187 (4)0.0263 (6)0.0210 (4)0.0078 (4)0.0005 (3)0.0026 (3)
C4B0.0326 (5)0.0146 (4)0.0179 (4)0.0008 (4)0.0067 (4)0.0039 (3)
Geometric parameters (Å, º) top
Co1—O1A2.0449 (6)C2A—C4A1.5176 (16)
Co1—O2Ai2.0142 (6)C3A—H3A10.9600
Co1—O1B2.1100 (6)C3A—H3A20.9600
Co1—O1Bi2.1198 (6)C3A—H3A30.9600
Co1—O1W2.1768 (6)C4A—H4A10.9600
Co1—O1Wi2.1777 (6)C4A—H4A20.9600
O1A—C1A1.2755 (10)C4A—H4A30.9600
O2A—C1A1.2533 (10)C1B—C2B1.5179 (12)
O1B—C1B1.2878 (9)C2B—H2B0.9800
O2B—C1B1.2510 (11)C2B—C3B1.5340 (14)
O1W—H1W10.79 (2)C2B—C4B1.5329 (14)
O1W—H1W20.88 (2)C3B—H3B10.9600
O2W—H2W10.861 (12)C3B—H3B20.9600
O2W—H2W20.884 (11)C3B—H3B30.9600
C1A—C2A1.5191 (12)C4B—H4B10.9600
C2A—H2A0.9800C4B—H4B20.9600
C2A—C3A1.5187 (15)C4B—H4B30.9600
O1A—Co1—O1B88.13 (3)C4A—C2A—C3A111.50 (9)
O1A—Co1—O1Bi89.41 (3)C2A—C3A—H3A1109.5
O1A—Co1—O1W92.18 (3)C2A—C3A—H3A2109.5
O1A—Co1—O1Wi88.29 (3)C2A—C3A—H3A3109.5
O2Ai—Co1—O1A175.30 (3)H3A1—C3A—H3A2109.5
O2Ai—Co1—O1B89.99 (3)H3A1—C3A—H3A3109.5
O2Ai—Co1—O1Bi93.14 (3)H3A2—C3A—H3A3109.5
O2Ai—Co1—O1W91.70 (3)C2A—C4A—H4A1109.5
O2Ai—Co1—O1Wi88.33 (3)C2A—C4A—H4A2109.5
O1B—Co1—O1Bi170.29 (2)C2A—C4A—H4A3109.5
O1B—Co1—O1W79.22 (2)H4A1—C4A—H4A2109.5
O1Bi—Co1—O1W91.49 (2)H4A1—C4A—H4A3109.5
O1B—Co1—O1Wi110.31 (2)H4A2—C4A—H4A3109.5
O1Bi—Co1—O1Wi78.99 (2)O1B—C1B—C2B118.13 (8)
O1W—Co1—O1Wi170.46 (2)O2B—C1B—O1B122.42 (8)
C1A—O1A—Co1130.11 (6)O2B—C1B—C2B119.42 (7)
C1A—O2A—Co1ii131.28 (6)C1B—C2B—H2B108.3
Co1—O1B—Co1ii98.44 (2)C1B—C2B—C3B111.27 (8)
C1B—O1B—Co1135.89 (6)C1B—C2B—C4B109.15 (8)
C1B—O1B—Co1ii125.09 (6)C3B—C2B—H2B108.3
Co1—O1W—Co1ii94.70 (2)C4B—C2B—H2B108.3
Co1—O1W—H1W1109.1 (16)C4B—C2B—C3B111.30 (8)
Co1ii—O1W—H1W1116.6 (14)C2B—C3B—H3B1109.5
Co1—O1W—H1W298.2 (15)C2B—C3B—H3B2109.5
Co1ii—O1W—H1W2127.6 (14)C2B—C3B—H3B3109.5
H1W1—O1W—H1W2106 (2)H3B1—C3B—H3B2109.5
H2W1—O2W—H2W2103.8 (14)H3B1—C3B—H3B3109.5
O2A—C1A—O1A124.94 (8)H3B2—C3B—H3B3109.5
O2A—C1A—C2A118.59 (7)C2B—C4B—H4B1109.5
O1A—C1A—C2A116.46 (7)C2B—C4B—H4B2109.5
C1A—C2A—H2A107.6C2B—C4B—H4B3109.5
C3A—C2A—C1A113.25 (8)H4B1—C4B—H4B2109.5
C3A—C2A—H2A107.6H4B1—C4B—H4B3109.5
C4A—C2A—C1A108.94 (8)H4B2—C4B—H4B3109.5
C4A—C2A—H2A107.6
Co1—O1A—C1A—C2A166.13 (6)Co1ii—O1B—C1B—O2B16.84 (12)
Co1—O1A—C1A—O2A12.38 (12)Co1—O1B—C1B—C2B4.15 (12)
O1A—C1A—C2A—C3A168.74 (8)Co1ii—O1B—C1B—C2B165.09 (6)
O1A—C1A—C2A—C4A66.57 (12)O1B—C1B—C2B—C3B138.98 (8)
O2A—C1A—C2A—C3A12.65 (12)O1B—C1B—C2B—C4B97.80 (9)
O2A—C1A—C2A—C4A112.03 (11)O2B—C1B—C2B—C3B42.89 (11)
Co1—O1B—C1B—O2B173.93 (6)O2B—C1B—C2B—C4B80.33 (10)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W0.79 (2)1.91 (2)2.6638 (10)161 (2)
O1W—H1W2···O2Bi0.88 (2)1.79 (2)2.6206 (9)158 (2)
O2W—H2W1···O1Aii0.86 (1)2.01 (1)2.7967 (9)151 (1)
O2W—H2W2···O2Biii0.88 (1)1.95 (1)2.8087 (9)163 (1)
C2B—H2B···O2Ai0.982.473.3094 (11)144
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Research Center of X-ray Diffraction Studies at St Petersburg State University for the data collection. The work was supported financially within the state contract No. 14.Z50.31.0013 of March 19, 2014.

References

First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker, (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEremenko, I. L., Sidorov, A. A. & Kiskin, M. A. (2009). Magnetic Nanoparticles, edited by S. P. Gubin, pp. 349–391. Weinheim: Wiley-VCH.  Google Scholar
First citationFischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807–m808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A. I., Kuznetsov, V. A. & Belyaev, A. N. (2012). Russ. J. Gen. Chem. 82, 508–509.  Web of Science CrossRef CAS Google Scholar
First citationFischer, A. I., Kuznetsov, V. A., Shchukarev, A. V. & Belyaev, A. N. (2012). Russ. Chem. Bull. 61, 821–827.  Web of Science CrossRef CAS Google Scholar
First citationGates, B. C. (1992). In Catalytic Chemistry, New York: Wiley Interscience.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173–174.  CAS Google Scholar
First citationParshall, G. W. & Ittel, S. D. (1992). In Homogenous Catalysis. New York: Wiley Interscience.  Google Scholar
First citationPartenheimer, W. (1995). Catal. Today, 23, 69–158.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWard, A. J., Masters, A. F. & Maschmeyer, T. (2013a). Comprehensive Inorganic Chemistry II, ch. 6.23, pp. 665–684. Amsterdam: Elsevier.  Google Scholar
First citationWard, A. J., Masters, A. F. & Maschmeyer, T. (2013b). Comprehensive Inorganic Chemistry II, ch. 8.05, pp. 191–228. Amsterdam: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds