research communications
O-benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone
of 5-aDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 – Florianópolis, Santa Catarina, Brazil, and bDepartamento de Química Orgânica - Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970 – Porto Alegre, Rio Grande do Sul, Brazil
*Correspondence e-mail: adailton.bortoluzzi@ufsc.br
In the title compound, C15H16O6, obtained from the acylation reaction between 2,3-O-isopropylidene-D-ribono-1,4-lactone and benzoyl chloride, the known for the lactone moiety of the ester substituent has been confirmed. The five-membered rings of the bicyclic lactone–dioxolane moiety both show envelope conformations and form a dihedral angle of 19.82 (7)° between the lactone ring and the benzene ring. In the crystal, molecules of the acylated sugar are linked by very weak intermolecular C—H⋯O interactions, forming a three-dimensional network.
Keywords: crystal structure; absolute configuration; D-ribono-1,4-lactone; fused five-membered ring system.
CCDC reference: 1531628
1. Chemical context
Aldonolactones are modified sugars with the anomeric center in its higher et al., 2007; Han et al., 1993; Silveira et al., 2015). However, the chemical complexity associated with most which is mainly due to the subtle differences in the reactivity of similar hydroxyl groups and the simultaneous existence of tautomeric species in equilibrium, may lead to unexpected transformations such as rearrangements and migrations (Baggett et al., 1985; Sá et al., 2008). Therefore, the synthesis of new carbohydrate-based molecules often relies on single crystal X-ray analysis for correct structural and conformational assignments (Booth et al., 2009; Czugler & Pintér, 2011; Sales & Silveira, 2015). In a continuation of our research on the chemistry of (Bortoluzzi et al., 2011; Cardoso et al., 2015; Sá et al., 2002, 2008; Sebrão et al., 2011), we describe herein the of 5-O-benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone, C15H16O6, (I).
They have been widely employed as versatile chiral pools for the synthesis of biologically important molecules due to their abundance from sustainable resources as well as their low cost (Corma2. Structural commentary
Compound (I) (Fig. 1) has three chiral centers with the determined as C2(R),C3(S),C4(R) [Flack factor 0.05 (3) for 1078 quotients (Parsons et al., 2013)], which is consistent with the known configuration for the lactone ring (Sá et al., 2008; Sales & Silveira, 2015). Both five-membered rings of the bicyclic lactone-dioxolane moiety show envelope conformations. However, the dioxolane ring adopts a more regular comparing the puckering parameters for O3 [Q(2) = 0.3141 (15) Å, φ(2) = 284.5 (3)°] with those for C3 [Q(2) = 0.2261 (17) Å, φ(2) = 121.9 (4)°], but this ring is slightly twisted about the C1—C2 bond. This is indicated by the comparative torsion angles C13—O2—C2—C3 for the dioxolane ring and C4—O4—C1—C2 of the lactone ring of 1.55 (18) and 6.87 (16)°, respectively. The dihedral angle between the mean plane of the benzene ring and that of the ester group (O6/C6/O5/C5) is 16.59 (9)°. All bond lengths and angles observed for (I) are within the expected range for organic compounds (Bruno et al., 2004).
3. Supramolecular features
The molecules of (I) are stacked along the crystallographic a axis. Several weak C—H⋯O interactions (Table 1, Fig. 2) are observed in the crystal, forming an intricate three-dimensional network.
4. Database survey
A search in the current version of the Cambridge Structural Database (Version 5.37, November 2016; Groom et al., 2016) for structures containing a bicyclic lactone-dioxolane moiety revealed only seven entries (refcodes: JOBJOZ, OCAVOE, VAXCAA, VENBAS, YISHAJ, YISHAK01 and YISHOX), which are related to articles published from 1991 to 2012.
5. Synthesis and crystallization
5-O-Benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone (I) was prepared in quantitative yield through the acylation of 2,3-O-isopropylidene-D-ribono-1,4-lactone (II) with benzoyl chloride in pyridine followed by aqueous work-up and purification according to the reported method (Sá et al., 2002). The two-step preparation of (I) is shown in the reaction scheme (Fig. 3). Slow crystallization from ethanol solution furnished single crystals (m.p. 371–372 K), allowing structural elucidation by X-ray crystallographic techniques. The for (I) was established by of the and is in complete agreement with previous assignments made on the basis of hydrogen- and carbon-NMR shifts for the starting D-ribono-1,4-lactones (II) and (III), and on the of the reaction product.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in idealized positions and allowed to ride with C—H distances of 0.95 Å (CHAr), 1.00 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
details are summarized in Table 2Supporting information
CCDC reference: 1531628
https://doi.org/10.1107/S2056989017002043/zs2372sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017002043/zs2372Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017002043/zs2372Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989017002043/zs2372Isup4.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C15H16O6 | Dx = 1.329 Mg m−3 |
Mr = 292.28 | Melting point = 371–372 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.7574 (1) Å | Cell parameters from 9982 reflections |
b = 12.5703 (3) Å | θ = 4.1–68.1° |
c = 20.1888 (4) Å | µ = 0.87 mm−1 |
V = 1461.11 (5) Å3 | T = 200 K |
Z = 4 | Irregular block, colourless |
F(000) = 616 | 0.20 × 0.18 × 0.16 mm |
Bruker APEXII CCD diffractometer | 2635 reflections with I > 2σ(I) |
Radiation source: Cu IµS microfocus X-ray source | Rint = 0.024 |
φ and ω scans | θmax = 68.1°, θmin = 4.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→6 |
Tmin = 0.682, Tmax = 0.753 | k = −14→14 |
12424 measured reflections | l = −24→24 |
2655 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.044P)2 + 0.1285P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.024 | (Δ/σ)max < 0.001 |
wR(F2) = 0.068 | Δρmax = 0.13 e Å−3 |
S = 1.02 | Δρmin = −0.10 e Å−3 |
2655 reflections | Extinction correction: SHELXL2012 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
193 parameters | Extinction coefficient: 0.0059 (7) |
0 restraints | Absolute structure: Flack x determined using 1078 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.05 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O5 | 0.67330 (19) | 0.01217 (8) | 0.65402 (5) | 0.0398 (3) | |
O3 | 0.72276 (19) | 0.09129 (8) | 0.85566 (5) | 0.0350 (3) | |
O4 | 1.0094 (2) | 0.11588 (10) | 0.73280 (5) | 0.0461 (3) | |
O1 | 0.9394 (4) | 0.28572 (11) | 0.70948 (7) | 0.0756 (5) | |
O2 | 0.5870 (3) | 0.24630 (9) | 0.81330 (6) | 0.0514 (3) | |
O6 | 0.8024 (2) | −0.07705 (9) | 0.56539 (6) | 0.0476 (3) | |
C10 | 0.1551 (3) | 0.15260 (14) | 0.47990 (11) | 0.0540 (4) | |
H10 | 0.0393 | 0.1887 | 0.4550 | 0.065* | |
C9 | 0.3372 (4) | 0.10297 (15) | 0.44780 (9) | 0.0537 (5) | |
H9 | 0.3466 | 0.1057 | 0.4009 | 0.064* | |
C8 | 0.5059 (3) | 0.04941 (12) | 0.48336 (8) | 0.0433 (4) | |
H8 | 0.6298 | 0.0146 | 0.4611 | 0.052* | |
C7 | 0.4921 (3) | 0.04704 (11) | 0.55213 (7) | 0.0344 (3) | |
C6 | 0.6721 (3) | −0.01296 (11) | 0.58914 (7) | 0.0338 (3) | |
C5 | 0.8325 (3) | −0.04652 (12) | 0.69549 (8) | 0.0408 (4) | |
H5A | 0.9779 | −0.0620 | 0.6712 | 0.049* | |
H5B | 0.7620 | −0.1147 | 0.7096 | 0.049* | |
C4 | 0.8814 (3) | 0.02301 (12) | 0.75469 (7) | 0.0359 (3) | |
H4 | 0.9769 | −0.0175 | 0.7875 | 0.043* | |
C3 | 0.6671 (3) | 0.06717 (11) | 0.78883 (7) | 0.0325 (3) | |
H3 | 0.5274 | 0.0205 | 0.7842 | 0.039* | |
C13 | 0.5968 (3) | 0.18470 (12) | 0.87332 (7) | 0.0321 (3) | |
C14 | 0.3543 (3) | 0.15824 (18) | 0.89603 (12) | 0.0622 (6) | |
H14A | 0.2719 | 0.1206 | 0.8606 | 0.093* | |
H14C | 0.2713 | 0.2241 | 0.9068 | 0.093* | |
H14B | 0.3621 | 0.1129 | 0.9355 | 0.093* | |
C1 | 0.8711 (4) | 0.20229 (13) | 0.73049 (7) | 0.0451 (4) | |
C2 | 0.6335 (3) | 0.17742 (12) | 0.75949 (7) | 0.0384 (4) | |
H2 | 0.5079 | 0.1791 | 0.7253 | 0.046* | |
C11 | 0.1417 (3) | 0.14971 (15) | 0.54823 (10) | 0.0509 (4) | |
H11 | 0.0162 | 0.1837 | 0.5703 | 0.061* | |
C12 | 0.3101 (3) | 0.09759 (13) | 0.58439 (8) | 0.0405 (3) | |
H12 | 0.3016 | 0.0963 | 0.6314 | 0.049* | |
C15 | 0.7316 (3) | 0.24526 (13) | 0.92440 (8) | 0.0419 (4) | |
H15A | 0.7527 | 0.2008 | 0.9638 | 0.063* | |
H15B | 0.6464 | 0.3099 | 0.9365 | 0.063* | |
H15C | 0.8837 | 0.2647 | 0.9063 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O5 | 0.0462 (6) | 0.0393 (5) | 0.0339 (5) | 0.0110 (5) | −0.0058 (4) | −0.0088 (4) |
O3 | 0.0450 (5) | 0.0325 (5) | 0.0275 (5) | 0.0074 (4) | 0.0000 (4) | 0.0018 (4) |
O4 | 0.0451 (6) | 0.0534 (7) | 0.0399 (6) | −0.0117 (5) | 0.0069 (5) | −0.0091 (5) |
O1 | 0.1282 (15) | 0.0489 (7) | 0.0498 (7) | −0.0368 (9) | 0.0041 (9) | 0.0046 (6) |
O2 | 0.0832 (9) | 0.0372 (6) | 0.0340 (5) | 0.0233 (6) | −0.0032 (6) | −0.0011 (5) |
O6 | 0.0554 (7) | 0.0464 (6) | 0.0410 (6) | 0.0153 (5) | −0.0015 (5) | −0.0115 (5) |
C10 | 0.0549 (10) | 0.0435 (9) | 0.0636 (11) | 0.0005 (8) | −0.0154 (9) | 0.0109 (8) |
C9 | 0.0779 (13) | 0.0430 (9) | 0.0402 (8) | −0.0036 (9) | −0.0121 (9) | 0.0041 (7) |
C8 | 0.0576 (10) | 0.0350 (8) | 0.0374 (8) | 0.0003 (7) | 0.0002 (7) | −0.0051 (6) |
C7 | 0.0386 (8) | 0.0280 (7) | 0.0365 (7) | −0.0043 (6) | −0.0002 (6) | −0.0029 (5) |
C6 | 0.0385 (7) | 0.0286 (7) | 0.0343 (7) | −0.0032 (6) | 0.0010 (6) | −0.0061 (5) |
C5 | 0.0468 (9) | 0.0370 (7) | 0.0386 (8) | 0.0107 (7) | −0.0064 (7) | −0.0072 (6) |
C4 | 0.0393 (7) | 0.0345 (7) | 0.0338 (7) | 0.0038 (6) | −0.0019 (6) | −0.0011 (6) |
C3 | 0.0359 (7) | 0.0308 (7) | 0.0307 (7) | 0.0005 (6) | −0.0015 (5) | 0.0001 (5) |
C13 | 0.0336 (7) | 0.0314 (7) | 0.0312 (6) | 0.0042 (6) | 0.0006 (6) | −0.0006 (5) |
C14 | 0.0376 (9) | 0.0652 (12) | 0.0839 (14) | −0.0097 (9) | 0.0146 (9) | −0.0254 (11) |
C1 | 0.0713 (11) | 0.0384 (8) | 0.0257 (7) | −0.0142 (8) | −0.0022 (7) | −0.0031 (6) |
C2 | 0.0534 (9) | 0.0326 (7) | 0.0291 (6) | 0.0077 (7) | −0.0082 (7) | −0.0027 (6) |
C11 | 0.0408 (9) | 0.0483 (9) | 0.0636 (11) | 0.0046 (8) | 0.0013 (8) | 0.0053 (8) |
C12 | 0.0375 (7) | 0.0409 (8) | 0.0430 (8) | −0.0017 (7) | 0.0034 (7) | 0.0017 (6) |
C15 | 0.0400 (8) | 0.0411 (8) | 0.0445 (8) | 0.0018 (7) | −0.0064 (7) | −0.0053 (7) |
O5—C6 | 1.3475 (17) | C5—H5A | 0.9900 |
O5—C5 | 1.4440 (18) | C5—H5B | 0.9900 |
O3—C3 | 1.4196 (17) | C4—C3 | 1.518 (2) |
O3—C13 | 1.4253 (17) | C4—H4 | 1.0000 |
O4—C1 | 1.348 (2) | C3—C2 | 1.520 (2) |
O4—C4 | 1.4496 (19) | C3—H3 | 1.0000 |
O1—C1 | 1.198 (2) | C13—C15 | 1.498 (2) |
O2—C2 | 1.4148 (18) | C13—C14 | 1.507 (2) |
O2—C13 | 1.4391 (17) | C14—H14A | 0.9800 |
O6—C6 | 1.2008 (18) | C14—H14C | 0.9800 |
C10—C9 | 1.381 (3) | C14—H14B | 0.9800 |
C10—C11 | 1.382 (3) | C1—C2 | 1.520 (3) |
C10—H10 | 0.9500 | C2—H2 | 1.0000 |
C9—C8 | 1.383 (3) | C11—C12 | 1.379 (2) |
C9—H9 | 0.9500 | C11—H11 | 0.9500 |
C8—C7 | 1.391 (2) | C12—H12 | 0.9500 |
C8—H8 | 0.9500 | C15—H15A | 0.9800 |
C7—C12 | 1.388 (2) | C15—H15B | 0.9800 |
C7—C6 | 1.484 (2) | C15—H15C | 0.9800 |
C5—C4 | 1.507 (2) | ||
C6—O5—C5 | 116.56 (11) | C4—C3—H3 | 113.4 |
C3—O3—C13 | 107.39 (10) | C2—C3—H3 | 113.4 |
C1—O4—C4 | 111.05 (12) | O3—C13—O2 | 104.63 (11) |
C2—O2—C13 | 108.05 (11) | O3—C13—C15 | 109.11 (12) |
C9—C10—C11 | 119.93 (17) | O2—C13—C15 | 109.05 (13) |
C9—C10—H10 | 120.0 | O3—C13—C14 | 111.45 (14) |
C11—C10—H10 | 120.0 | O2—C13—C14 | 109.80 (15) |
C8—C9—C10 | 120.63 (17) | C15—C13—C14 | 112.49 (14) |
C8—C9—H9 | 119.7 | C13—C14—H14A | 109.5 |
C10—C9—H9 | 119.7 | C13—C14—H14C | 109.5 |
C9—C8—C7 | 119.23 (17) | H14A—C14—H14C | 109.5 |
C9—C8—H8 | 120.4 | C13—C14—H14B | 109.5 |
C7—C8—H8 | 120.4 | H14A—C14—H14B | 109.5 |
C12—C7—C8 | 120.13 (15) | H14C—C14—H14B | 109.5 |
C12—C7—C6 | 121.59 (13) | O1—C1—O4 | 121.6 (2) |
C8—C7—C6 | 118.26 (14) | O1—C1—C2 | 127.7 (2) |
O6—C6—O5 | 122.84 (13) | O4—C1—C2 | 110.64 (12) |
O6—C6—C7 | 125.20 (13) | O2—C2—C3 | 106.43 (11) |
O5—C6—C7 | 111.96 (12) | O2—C2—C1 | 109.89 (14) |
O5—C5—C4 | 106.38 (12) | C3—C2—C1 | 102.91 (13) |
O5—C5—H5A | 110.5 | O2—C2—H2 | 112.4 |
C4—C5—H5A | 110.5 | C3—C2—H2 | 112.4 |
O5—C5—H5B | 110.5 | C1—C2—H2 | 112.4 |
C4—C5—H5B | 110.5 | C12—C11—C10 | 120.07 (18) |
H5A—C5—H5B | 108.6 | C12—C11—H11 | 120.0 |
O4—C4—C5 | 108.68 (12) | C10—C11—H11 | 120.0 |
O4—C4—C3 | 104.91 (11) | C11—C12—C7 | 120.00 (16) |
C5—C4—C3 | 114.84 (13) | C11—C12—H12 | 120.0 |
O4—C4—H4 | 109.4 | C7—C12—H12 | 120.0 |
C5—C4—H4 | 109.4 | C13—C15—H15A | 109.5 |
C3—C4—H4 | 109.4 | C13—C15—H15B | 109.5 |
O3—C3—C4 | 109.02 (12) | H15A—C15—H15B | 109.5 |
O3—C3—C2 | 101.79 (11) | C13—C15—H15C | 109.5 |
C4—C3—C2 | 105.05 (12) | H15A—C15—H15C | 109.5 |
O3—C3—H3 | 113.4 | H15B—C15—H15C | 109.5 |
C11—C10—C9—C8 | 0.5 (3) | C3—O3—C13—C15 | −150.12 (12) |
C10—C9—C8—C7 | −0.8 (3) | C3—O3—C13—C14 | 85.06 (16) |
C9—C8—C7—C12 | 0.3 (2) | C2—O2—C13—O3 | 18.81 (16) |
C9—C8—C7—C6 | 178.64 (14) | C2—O2—C13—C15 | 135.43 (14) |
C5—O5—C6—O6 | −3.3 (2) | C2—O2—C13—C14 | −100.90 (16) |
C5—O5—C6—C7 | 176.29 (12) | C4—O4—C1—O1 | −175.01 (14) |
C12—C7—C6—O6 | 162.66 (16) | C4—O4—C1—C2 | 6.87 (16) |
C8—C7—C6—O6 | −15.7 (2) | C13—O2—C2—C3 | 1.55 (18) |
C12—C7—C6—O5 | −16.96 (19) | C13—O2—C2—C1 | −109.21 (14) |
C8—C7—C6—O5 | 164.70 (13) | O3—C3—C2—O2 | −21.16 (17) |
C6—O5—C5—C4 | 155.62 (13) | C4—C3—C2—O2 | −134.80 (13) |
C1—O4—C4—C5 | 104.04 (14) | O3—C3—C2—C1 | 94.39 (12) |
C1—O4—C4—C3 | −19.24 (15) | C4—C3—C2—C1 | −19.24 (14) |
O5—C5—C4—O4 | −66.95 (15) | O1—C1—C2—O2 | −56.6 (2) |
O5—C5—C4—C3 | 50.16 (17) | O4—C1—C2—O2 | 121.41 (13) |
C13—O3—C3—C4 | 144.09 (12) | O1—C1—C2—C3 | −169.62 (16) |
C13—O3—C3—C2 | 33.44 (14) | O4—C1—C2—C3 | 8.36 (15) |
O4—C4—C3—O3 | −84.91 (13) | C9—C10—C11—C12 | 0.2 (3) |
C5—C4—C3—O3 | 155.85 (12) | C10—C11—C12—C7 | −0.7 (3) |
O4—C4—C3—C2 | 23.54 (14) | C8—C7—C12—C11 | 0.4 (2) |
C5—C4—C3—C2 | −95.70 (15) | C6—C7—C12—C11 | −177.87 (15) |
C3—O3—C13—O2 | −33.54 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 1.00 | 2.52 | 3.2381 (19) | 128 |
C5—H5B···O1i | 0.99 | 2.68 | 3.139 (2) | 108 |
C8—H8···O3ii | 0.95 | 2.65 | 3.4951 (19) | 148 |
C12—H12···O4iii | 0.95 | 2.66 | 3.4682 (19) | 143 |
C15—H15A···O6iv | 0.98 | 2.59 | 3.551 (2) | 166 |
C15—H15C···O6v | 0.98 | 2.75 | 3.497 (2) | 134 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+3/2, −y, z−1/2; (iii) x−1, y, z; (iv) −x+3/2, −y, z+1/2; (v) −x+2, y+1/2, −z+3/2. |
Funding information
Funding for this research was provided by: Financiadora de Estudos e Projetoshttps://doi.org/10.13039/501100004809Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorhttps://doi.org/10.13039/501100002322Conselho Nacional de Desenvolvimento Científico e Tecnológicohttps://doi.org/10.13039/501100003593
References
Baggett, N., Buchanan, J. G., Fatah, M. V., Lachut, C. H., McCullough, K. J. & Webber, J. M. (1985). J. Chem. Soc. Chem. Commun. pp. 1826–1827. CrossRef Web of Science Google Scholar
Booth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o2199. CSD CrossRef IUCr Journals Google Scholar
Bortoluzzi, A. J., Sebrão, D., Sá, M. M. & Nascimento, M. G. (2011). Acta Cryst. E67, o2778. CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cardoso, H. M., Ribeiro, T. F., Sá, M. M., Sebrão, D., Nascimento, M. G. & Silveira, G. P. (2015). J. Braz. Chem. Soc. 26, 755–764. Google Scholar
Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502. Web of Science CrossRef PubMed CAS Google Scholar
Czugler, M. & Pintér, I. (2011). Carbohydr. Res. 346, 1610–1616. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron, 49, 349–362. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23. Google Scholar
Sá, M. M., Silveira, G. P., Castilho, M. S., Pavão, F. & Oliva, G. (2002). Arkivoc, 8, 112–124. Google Scholar
Sales, E. S. & Silveira, G. P. (2015). J. Chem. Educ. 92, 1932–1937. CrossRef CAS Google Scholar
Sebrão, D., Sá, M. M. & Nascimento, M. da G. (2011). Process Biochem. 46, 551–556. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silveira, G. P., Cardozo, H. M., Rossa, T. A. & Sá, M. M. (2015). Curr. Org. Synth. 12, 584–602. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.