research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-O-benzoyl-2,3-O-iso­propyl­­idene-D-ribono-1,4-lactone

aDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 – Florianópolis, Santa Catarina, Brazil, and bDepartamento de Química Orgânica - Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970 – Porto Alegre, Rio Grande do Sul, Brazil
*Correspondence e-mail: adailton.bortoluzzi@ufsc.br

Edited by G. Smith, Queensland University of Technology, Australia (Received 7 December 2016; accepted 8 February 2017; online 17 February 2017)

In the title compound, C15H16O6, obtained from the acyl­ation reaction between 2,3-O-iso­propyl­idene-D-ribono-1,4-lactone and benzoyl chloride, the known absolute configuration for the lactone moiety of the ester substituent has been confirmed. The five-membered rings of the bicyclic lactone–dioxolane moiety both show envelope conformations and form a dihedral angle of 19.82 (7)° between the lactone ring and the benzene ring. In the crystal, mol­ecules of the acyl­ated sugar are linked by very weak inter­molecular C—H⋯O inter­actions, forming a three-dimensional network.

1. Chemical context

Aldonolactones are modified sugars with the anomeric center in its higher oxidation state. They have been widely employed as versatile chiral pools for the synthesis of biologically important mol­ecules due to their abundance from sustainable resources as well as their low cost (Corma et al., 2007[Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411-2502.]; Han et al., 1993[Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron, 49, 349-362.]; Silveira et al., 2015[Silveira, G. P., Cardozo, H. M., Rossa, T. A. & Sá, M. M. (2015). Curr. Org. Synth. 12, 584-602.]). However, the chemical complexity associated with most carbohydrates, which is mainly due to the subtle differences in the reactivity of similar hydroxyl groups and the simultaneous existence of tautomeric species in equilibrium, may lead to unexpected transformations such as rearrangements and functional group migrations (Baggett et al., 1985[Baggett, N., Buchanan, J. G., Fatah, M. V., Lachut, C. H., McCullough, K. J. & Webber, J. M. (1985). J. Chem. Soc. Chem. Commun. pp. 1826-1827.]; Sá et al., 2008[Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18-23.]). Therefore, the synthesis of new carbohydrate-based mol­ecules often relies on single crystal X-ray analysis for correct structural and conformational assignments (Booth et al., 2009[Booth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o2199.]; Czugler & Pintér, 2011[Czugler, M. & Pintér, I. (2011). Carbohydr. Res. 346, 1610-1616.]; Sales & Silveira, 2015[Sales, E. S. & Silveira, G. P. (2015). J. Chem. Educ. 92, 1932-1937.]). In a continuation of our research on the chemistry of carbohydrates (Bortoluzzi et al., 2011[Bortoluzzi, A. J., Sebrão, D., Sá, M. M. & Nascimento, M. G. (2011). Acta Cryst. E67, o2778.]; Cardoso et al., 2015[Cardoso, H. M., Ribeiro, T. F., Sá, M. M., Sebrão, D., Nascimento, M. G. & Silveira, G. P. (2015). J. Braz. Chem. Soc. 26, 755-764.]; Sá et al., 2002[Sá, M. M., Silveira, G. P., Castilho, M. S., Pavão, F. & Oliva, G. (2002). Arkivoc, 8, 112-124.], 2008[Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18-23.]; Sebrão et al., 2011[Sebrão, D., Sá, M. M. & Nascimento, M. da G. (2011). Process Biochem. 46, 551-556.]), we describe herein the crystal structure of 5-O-benzoyl-2,3-O-iso­propyl­idene-D-ribono-1,4-lactone, C15H16O6, (I)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] (Fig. 1[link]) has three chiral centers with the absolute configuration determined as C2(R),C3(S),C4(R) [Flack factor 0.05 (3) for 1078 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])], which is consistent with the known configuration for the lactone ring (Sá et al., 2008[Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18-23.]; Sales & Silveira, 2015[Sales, E. S. & Silveira, G. P. (2015). J. Chem. Educ. 92, 1932-1937.]). Both five-membered rings of the bicyclic lactone-dioxolane moiety show envelope conformations. However, the dioxolane ring adopts a more regular envelope conformation, comparing the puckering parameters for O3 [Q(2) = 0.3141 (15) Å, φ(2) = 284.5 (3)°] with those for C3 [Q(2) = 0.2261 (17) Å, φ(2) = 121.9 (4)°], but this ring is slightly twisted about the C1—C2 bond. This is indicated by the comparative torsion angles C13—O2—C2—C3 for the dioxolane ring and C4—O4—C1—C2 of the lactone ring of 1.55 (18) and 6.87 (16)°, respectively. The dihedral angle between the mean plane of the benzene ring and that of the ester group (O6/C6/O5/C5) is 16.59 (9)°. All bond lengths and angles observed for (I)[link] are within the expected range for organic compounds (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level.

3. Supra­molecular features

The mol­ecules of (I)[link] are stacked along the crystallographic a axis. Several weak C—H⋯O inter­actions (Table 1[link], Fig. 2[link]) are observed in the crystal, forming an intricate three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 1.00 2.52 3.2381 (19) 128
C8—H8⋯O3ii 0.95 2.65 3.4951 (19) 148
C12—H12⋯O4iii 0.95 2.66 3.4682 (19) 143
C15—H15A⋯O6iv 0.98 2.59 3.551 (2) 166
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Weak C—H⋯O contacts around the independent mol­ecule.

4. Database survey

A search in the current version of the Cambridge Structural Database (Version 5.37, November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing a bicyclic lactone-dioxolane moiety revealed only seven entries (refcodes: JOBJOZ, OCAVOE, VAXCAA, VENBAS, YISHAJ, YISHAK01 and YISHOX), which are related to articles published from 1991 to 2012.

5. Synthesis and crystallization

5-O-Benzoyl-2,3-O-iso­propyl­idene-D-ribono-1,4-lactone (I)[link] was prepared in qu­anti­tative yield through the acyl­ation of 2,3-O-iso­propyl­idene-D-ribono-1,4-lactone (II) with benzoyl chloride in pyridine followed by aqueous work-up and purif­ication according to the reported method (Sá et al., 2002[Sá, M. M., Silveira, G. P., Castilho, M. S., Pavão, F. & Oliva, G. (2002). Arkivoc, 8, 112-124.]). The two-step preparation of (I)[link] is shown in the reaction scheme (Fig. 3[link]). Slow crystallization from ethanol solution furnished single crystals (m.p. 371–372 K), allowing structural elucidation by X-ray crystallographic techniques. The absolute configuration for (I)[link] was established by refinement of the Flack parameter and is in complete agreement with previous assignments made on the basis of hydrogen- and carbon-NMR shifts for the starting D-ribono-1,4-lactones (II) and (III), and on the homogeneity of the reaction product.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of compound (I)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in idealized positions and allowed to ride with C—H distances of 0.95 Å (CHAr), 1.00 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C15H16O6
Mr 292.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 5.7574 (1), 12.5703 (3), 20.1888 (4)
V3) 1461.11 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.20 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.682, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 12424, 2655, 2635
Rint 0.024
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.02
No. of reflections 2655
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.10
Absolute structure Flack x determined using 1078 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

5-O-Benzoyl-2,3-O-isopropylidene-D-ribono-1,4-lactone top
Crystal data top
C15H16O6Dx = 1.329 Mg m3
Mr = 292.28Melting point = 371–372 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 5.7574 (1) ÅCell parameters from 9982 reflections
b = 12.5703 (3) Åθ = 4.1–68.1°
c = 20.1888 (4) ŵ = 0.87 mm1
V = 1461.11 (5) Å3T = 200 K
Z = 4Irregular block, colourless
F(000) = 6160.20 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2635 reflections with I > 2σ(I)
Radiation source: Cu IµS microfocus X-ray sourceRint = 0.024
φ and ω scansθmax = 68.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 56
Tmin = 0.682, Tmax = 0.753k = 1414
12424 measured reflectionsl = 2424
2655 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.044P)2 + 0.1285P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max < 0.001
wR(F2) = 0.068Δρmax = 0.13 e Å3
S = 1.02Δρmin = 0.10 e Å3
2655 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
193 parametersExtinction coefficient: 0.0059 (7)
0 restraintsAbsolute structure: Flack x determined using 1078 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.67330 (19)0.01217 (8)0.65402 (5)0.0398 (3)
O30.72276 (19)0.09129 (8)0.85566 (5)0.0350 (3)
O41.0094 (2)0.11588 (10)0.73280 (5)0.0461 (3)
O10.9394 (4)0.28572 (11)0.70948 (7)0.0756 (5)
O20.5870 (3)0.24630 (9)0.81330 (6)0.0514 (3)
O60.8024 (2)0.07705 (9)0.56539 (6)0.0476 (3)
C100.1551 (3)0.15260 (14)0.47990 (11)0.0540 (4)
H100.03930.18870.45500.065*
C90.3372 (4)0.10297 (15)0.44780 (9)0.0537 (5)
H90.34660.10570.40090.064*
C80.5059 (3)0.04941 (12)0.48336 (8)0.0433 (4)
H80.62980.01460.46110.052*
C70.4921 (3)0.04704 (11)0.55213 (7)0.0344 (3)
C60.6721 (3)0.01296 (11)0.58914 (7)0.0338 (3)
C50.8325 (3)0.04652 (12)0.69549 (8)0.0408 (4)
H5A0.97790.06200.67120.049*
H5B0.76200.11470.70960.049*
C40.8814 (3)0.02301 (12)0.75469 (7)0.0359 (3)
H40.97690.01750.78750.043*
C30.6671 (3)0.06717 (11)0.78883 (7)0.0325 (3)
H30.52740.02050.78420.039*
C130.5968 (3)0.18470 (12)0.87332 (7)0.0321 (3)
C140.3543 (3)0.15824 (18)0.89603 (12)0.0622 (6)
H14A0.27190.12060.86060.093*
H14C0.27130.22410.90680.093*
H14B0.36210.11290.93550.093*
C10.8711 (4)0.20229 (13)0.73049 (7)0.0451 (4)
C20.6335 (3)0.17742 (12)0.75949 (7)0.0384 (4)
H20.50790.17910.72530.046*
C110.1417 (3)0.14971 (15)0.54823 (10)0.0509 (4)
H110.01620.18370.57030.061*
C120.3101 (3)0.09759 (13)0.58439 (8)0.0405 (3)
H120.30160.09630.63140.049*
C150.7316 (3)0.24526 (13)0.92440 (8)0.0419 (4)
H15A0.75270.20080.96380.063*
H15B0.64640.30990.93650.063*
H15C0.88370.26470.90630.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0462 (6)0.0393 (5)0.0339 (5)0.0110 (5)0.0058 (4)0.0088 (4)
O30.0450 (5)0.0325 (5)0.0275 (5)0.0074 (4)0.0000 (4)0.0018 (4)
O40.0451 (6)0.0534 (7)0.0399 (6)0.0117 (5)0.0069 (5)0.0091 (5)
O10.1282 (15)0.0489 (7)0.0498 (7)0.0368 (9)0.0041 (9)0.0046 (6)
O20.0832 (9)0.0372 (6)0.0340 (5)0.0233 (6)0.0032 (6)0.0011 (5)
O60.0554 (7)0.0464 (6)0.0410 (6)0.0153 (5)0.0015 (5)0.0115 (5)
C100.0549 (10)0.0435 (9)0.0636 (11)0.0005 (8)0.0154 (9)0.0109 (8)
C90.0779 (13)0.0430 (9)0.0402 (8)0.0036 (9)0.0121 (9)0.0041 (7)
C80.0576 (10)0.0350 (8)0.0374 (8)0.0003 (7)0.0002 (7)0.0051 (6)
C70.0386 (8)0.0280 (7)0.0365 (7)0.0043 (6)0.0002 (6)0.0029 (5)
C60.0385 (7)0.0286 (7)0.0343 (7)0.0032 (6)0.0010 (6)0.0061 (5)
C50.0468 (9)0.0370 (7)0.0386 (8)0.0107 (7)0.0064 (7)0.0072 (6)
C40.0393 (7)0.0345 (7)0.0338 (7)0.0038 (6)0.0019 (6)0.0011 (6)
C30.0359 (7)0.0308 (7)0.0307 (7)0.0005 (6)0.0015 (5)0.0001 (5)
C130.0336 (7)0.0314 (7)0.0312 (6)0.0042 (6)0.0006 (6)0.0006 (5)
C140.0376 (9)0.0652 (12)0.0839 (14)0.0097 (9)0.0146 (9)0.0254 (11)
C10.0713 (11)0.0384 (8)0.0257 (7)0.0142 (8)0.0022 (7)0.0031 (6)
C20.0534 (9)0.0326 (7)0.0291 (6)0.0077 (7)0.0082 (7)0.0027 (6)
C110.0408 (9)0.0483 (9)0.0636 (11)0.0046 (8)0.0013 (8)0.0053 (8)
C120.0375 (7)0.0409 (8)0.0430 (8)0.0017 (7)0.0034 (7)0.0017 (6)
C150.0400 (8)0.0411 (8)0.0445 (8)0.0018 (7)0.0064 (7)0.0053 (7)
Geometric parameters (Å, º) top
O5—C61.3475 (17)C5—H5A0.9900
O5—C51.4440 (18)C5—H5B0.9900
O3—C31.4196 (17)C4—C31.518 (2)
O3—C131.4253 (17)C4—H41.0000
O4—C11.348 (2)C3—C21.520 (2)
O4—C41.4496 (19)C3—H31.0000
O1—C11.198 (2)C13—C151.498 (2)
O2—C21.4148 (18)C13—C141.507 (2)
O2—C131.4391 (17)C14—H14A0.9800
O6—C61.2008 (18)C14—H14C0.9800
C10—C91.381 (3)C14—H14B0.9800
C10—C111.382 (3)C1—C21.520 (3)
C10—H100.9500C2—H21.0000
C9—C81.383 (3)C11—C121.379 (2)
C9—H90.9500C11—H110.9500
C8—C71.391 (2)C12—H120.9500
C8—H80.9500C15—H15A0.9800
C7—C121.388 (2)C15—H15B0.9800
C7—C61.484 (2)C15—H15C0.9800
C5—C41.507 (2)
C6—O5—C5116.56 (11)C4—C3—H3113.4
C3—O3—C13107.39 (10)C2—C3—H3113.4
C1—O4—C4111.05 (12)O3—C13—O2104.63 (11)
C2—O2—C13108.05 (11)O3—C13—C15109.11 (12)
C9—C10—C11119.93 (17)O2—C13—C15109.05 (13)
C9—C10—H10120.0O3—C13—C14111.45 (14)
C11—C10—H10120.0O2—C13—C14109.80 (15)
C8—C9—C10120.63 (17)C15—C13—C14112.49 (14)
C8—C9—H9119.7C13—C14—H14A109.5
C10—C9—H9119.7C13—C14—H14C109.5
C9—C8—C7119.23 (17)H14A—C14—H14C109.5
C9—C8—H8120.4C13—C14—H14B109.5
C7—C8—H8120.4H14A—C14—H14B109.5
C12—C7—C8120.13 (15)H14C—C14—H14B109.5
C12—C7—C6121.59 (13)O1—C1—O4121.6 (2)
C8—C7—C6118.26 (14)O1—C1—C2127.7 (2)
O6—C6—O5122.84 (13)O4—C1—C2110.64 (12)
O6—C6—C7125.20 (13)O2—C2—C3106.43 (11)
O5—C6—C7111.96 (12)O2—C2—C1109.89 (14)
O5—C5—C4106.38 (12)C3—C2—C1102.91 (13)
O5—C5—H5A110.5O2—C2—H2112.4
C4—C5—H5A110.5C3—C2—H2112.4
O5—C5—H5B110.5C1—C2—H2112.4
C4—C5—H5B110.5C12—C11—C10120.07 (18)
H5A—C5—H5B108.6C12—C11—H11120.0
O4—C4—C5108.68 (12)C10—C11—H11120.0
O4—C4—C3104.91 (11)C11—C12—C7120.00 (16)
C5—C4—C3114.84 (13)C11—C12—H12120.0
O4—C4—H4109.4C7—C12—H12120.0
C5—C4—H4109.4C13—C15—H15A109.5
C3—C4—H4109.4C13—C15—H15B109.5
O3—C3—C4109.02 (12)H15A—C15—H15B109.5
O3—C3—C2101.79 (11)C13—C15—H15C109.5
C4—C3—C2105.05 (12)H15A—C15—H15C109.5
O3—C3—H3113.4H15B—C15—H15C109.5
C11—C10—C9—C80.5 (3)C3—O3—C13—C15150.12 (12)
C10—C9—C8—C70.8 (3)C3—O3—C13—C1485.06 (16)
C9—C8—C7—C120.3 (2)C2—O2—C13—O318.81 (16)
C9—C8—C7—C6178.64 (14)C2—O2—C13—C15135.43 (14)
C5—O5—C6—O63.3 (2)C2—O2—C13—C14100.90 (16)
C5—O5—C6—C7176.29 (12)C4—O4—C1—O1175.01 (14)
C12—C7—C6—O6162.66 (16)C4—O4—C1—C26.87 (16)
C8—C7—C6—O615.7 (2)C13—O2—C2—C31.55 (18)
C12—C7—C6—O516.96 (19)C13—O2—C2—C1109.21 (14)
C8—C7—C6—O5164.70 (13)O3—C3—C2—O221.16 (17)
C6—O5—C5—C4155.62 (13)C4—C3—C2—O2134.80 (13)
C1—O4—C4—C5104.04 (14)O3—C3—C2—C194.39 (12)
C1—O4—C4—C319.24 (15)C4—C3—C2—C119.24 (14)
O5—C5—C4—O466.95 (15)O1—C1—C2—O256.6 (2)
O5—C5—C4—C350.16 (17)O4—C1—C2—O2121.41 (13)
C13—O3—C3—C4144.09 (12)O1—C1—C2—C3169.62 (16)
C13—O3—C3—C233.44 (14)O4—C1—C2—C38.36 (15)
O4—C4—C3—O384.91 (13)C9—C10—C11—C120.2 (3)
C5—C4—C3—O3155.85 (12)C10—C11—C12—C70.7 (3)
O4—C4—C3—C223.54 (14)C8—C7—C12—C110.4 (2)
C5—C4—C3—C295.70 (15)C6—C7—C12—C11177.87 (15)
C3—O3—C13—O233.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i1.002.523.2381 (19)128
C5—H5B···O1i0.992.683.139 (2)108
C8—H8···O3ii0.952.653.4951 (19)148
C12—H12···O4iii0.952.663.4682 (19)143
C15—H15A···O6iv0.982.593.551 (2)166
C15—H15C···O6v0.982.753.497 (2)134
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y, z1/2; (iii) x1, y, z; (iv) x+3/2, y, z+1/2; (v) x+2, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Financiadora de Estudos e ProjetosCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorConselho Nacional de Desenvolvimento Científico e Tecnológico

References

First citationBaggett, N., Buchanan, J. G., Fatah, M. V., Lachut, C. H., McCullough, K. J. & Webber, J. M. (1985). J. Chem. Soc. Chem. Commun. pp. 1826–1827.  CrossRef Web of Science Google Scholar
First citationBooth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2009). Acta Cryst. E65, o2199.  CSD CrossRef IUCr Journals Google Scholar
First citationBortoluzzi, A. J., Sebrão, D., Sá, M. M. & Nascimento, M. G. (2011). Acta Cryst. E67, o2778.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCardoso, H. M., Ribeiro, T. F., Sá, M. M., Sebrão, D., Nascimento, M. G. & Silveira, G. P. (2015). J. Braz. Chem. Soc. 26, 755–764.  Google Scholar
First citationCorma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCzugler, M. & Pintér, I. (2011). Carbohydr. Res. 346, 1610–1616.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron, 49, 349–362.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23.  Google Scholar
First citationSá, M. M., Silveira, G. P., Castilho, M. S., Pavão, F. & Oliva, G. (2002). Arkivoc, 8, 112–124.  Google Scholar
First citationSales, E. S. & Silveira, G. P. (2015). J. Chem. Educ. 92, 1932–1937.  CrossRef CAS Google Scholar
First citationSebrão, D., Sá, M. M. & Nascimento, M. da G. (2011). Process Biochem. 46, 551–556.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., Cardozo, H. M., Rossa, T. A. & Sá, M. M. (2015). Curr. Org. Synth. 12, 584–602.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds