research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tricaesium citrate monohydrate, Cs3C6H5O7·H2O: crystal structure and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, bDepartment of Chemistry, Northwestern University, Evanston, IL, USA, and cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago, IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 31 January 2017; accepted 7 March 2017; online 14 March 2017)

The crystal structure of tricaesium citrate monohydrate, 3Cs+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. This compound is isostructural to the K+ and Rb+ compounds with the same formula. The three independent Cs cations are eight-, eight-, and seven-coordinate, with bond-valence sums of 0.91, 1.22, and 1.12 valence units. The coordination polyhedra link into a three-dimensional framework. The hy­droxy group forms the usual S(5) hydrogen bond with the central carboxyl­ate group, and the water mol­ecule acts as a donor in two strong hydrogen bonds.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]). Twelve of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7·H2O, Rb3C6H5O7, Na5H(C6H5O7)2, CsH2C6H5O7, and Cs2HC6H5O7 – have been published recently (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.], 2017b[Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92-95.],c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.],d[Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250-253.],e[Rammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286-290.],f[Rammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133-136.]; Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.], 2017[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2017). Acta Cryst. E73, 231-234.]), and three additional structures – KH2C6H5O7 KH2C6H5O7·H2O2, and Cs3C6H5O7 – have been communicated to the CSD (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). Private communication (deposition Nos. 1446457-1446458). CCDC, Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). Private communication (deposition Nos. 1446460-1446461). CCDC, Cambridge, England.]; Rammohan & Kaduk, 2017g[Rammohan, A. & Kaduk, J. A. (2017g). Private communication (deposition No. 1525884). CCDC, Cambridge, England.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the experimental and DFT-optimized structures is 0.123 Å (Fig. 2[link]). The largest difference is 0.200 Å, at O1W. This good agreement provides strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). Almost all of the bond lengths, bond angles, and torsion angles in the experimentally determined structure fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the O8—C1—C2 angle of 118.0° is flagged as unusual [average = 119.8 (4)°, Z-score = 4.2). The Z-score is the result of the exceptionally low uncertainty on the average of this bond angle. In the DFT-optimized structure, the O7—C1—C2 angle of 115.9° is flagged as unusual [average = 120.3 (12)°, Z-score = 3.6]. The citrate anion occurs in the trans,trans conformation, which is one of the two low-energy conformations of an isolated citrate. The three Cs+ cations are eight-, eight-, and seven-coordinate, with bond-valence sums of 0.91, 1.22, and 1.12 valence units. There is extensive chelation of the citrate anion to Cs+ cations: O12(end)/O13(OH) to Cs1, O8(end)/O10(central) to Cs2, O11(end)/O10(central) to Cs2, C11(end)/O9(central) to Cs2, O7(end)/O13(OH) to Cs2, O8(end)/O9(central) to Cs3, and O11(end)/O11(central) to Cs3. The carboxyl­ate group O11/O12 also acts as a bidentate ligand to Cs1. The Mulliken overlap populations and atomic charges indicate that the metal–oxygen bonding is ionic.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the atom numbering. The atoms are represented by 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of tricaesium citrate monohydrate. The refined structure is in red and the DFT-optimized structure is in blue.

The BFDH (Bravais–Friedel–Donnay–Harker) morph­ology (Bravais, 1866[Bravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Amer. Miner. 22, 446-467.]) is blocky, with {011} as major faces. The powder pattern exhibited strong preferred orientation consistent with {101} as the major faces of plates. These faces are also significant in the BFDH morphology.

3. Supra­molecular features

The coordination polyhedra link into a three-dimensional framework (Fig. 3[link]). The hydro­phobic methyl­ene groups occupy pockets in the framework. The hy­droxy group forms the usual S(5) hydrogen bond with the central carboxyl­ate group, and the water mol­ecule acts as a donor in two strong hydrogen bonds (2.686 and 2.662 Å). By the correlation between the square root of the Mulliken overlap population and hydrogen-bond energy derived in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]), these hydrogen bonds contribute 14.4, 14.1, and 14.1 kcal mol−1, respectively, to the crystal energy. Numerical details of the hydrogen bonds in the experimentally determined and DFT-optimized structures are given in Tables 1[link] and 2[link], respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O10 0.75 (5) 2.06 (5) 2.579 (2) 127 (4)
O1W—H1WA⋯O7i 0.88 (5) 1.81 (5) 2.684 (3) 174 (5)
O1W—H1WB⋯O9ii 0.76 (5) 1.95 (5) 2.695 (3) 167 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for the DFT-optimized structure[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H18⋯O10 0.984 1.811 2.538 127.9
O1W—H1W⋯O7i 0.984 1.719 2.686 166.8
O1W—H3W⋯O9ii 0.981 1.697 2.662 167.0
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of Cs3C6H5O7·H2O, viewed down the b axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a[Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B.]). A reduced-cell search of the cell of tricaesium citrate monohydrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 258 hits, but combining the cell search with the elements C, H, Cs, and O only yielded no hits. Increasing the tolerance to 5% with C, H, O, and Rb only yielded trirubidium citrate monohydrate (Love & Patterson, 1960[Love, W. E. & Patterson, A. L. (1960). Acta Cryst. 13, 426-428.]; CSD refcode ZZZHZC), but no coordinates were reported for this phase. The structure has since been reported by Rammohan & Kaduk (2017c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.]). Increasing the tolerance on the cell to 7% with C, H, K, and O only yielded K3C6H5O7·H2O (Burns & Iball, 1954[Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137-138.], CSD refcode ZZZHVI; Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.], CSD refcodes ZZZHVI01 and ZZZHVI02). This compound is isostructural to the K+ (Carrell et al., 1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]) and Rb+ (Rammohan & Kaduk, 2017c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.]) compounds with the same formula, but the previously-reported structure of K3C6H5O7·H2O has to be transformed from setting P21/a to P21/n to make the similarities clear (Table 3[link]).

Table 3
Lattice parameters (Å, °, Å3, K; space group P21/n) of M3C6H5O7·H2O

  Ka Rbb Csc
a 7.092 (2) 7.4477 (1) 7.88551 (4)
b 11.772 (1) 11.8755 (2) 12.2109 (8)
c 12.865 (1) 13.4167 (2) 14.0367 (8)
β 98.031 (2) 97.8820 (9) 97.280 (4)
V 1063.50 1175.44 (3) 1340.63 (14)
V/non-H 16.6 17.3 19.7
T 300 300 100
References: (a) Carrell et al. (1987[Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067-8071.]); (b) Rammohan & Kaduk (2017c[Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227-230.]); (c) this work.

5. Synthesis and crystallization

H3C6H5O7·H2O (2.0774 g, 10.0 mmol, Sigma–Aldrich) was dissolved in 8 ml deionized water. Cs2CO3 (4.9324 g, 15.1 mmole, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colorless solution was evaporated to dryness in a oven at 333 K. Single crystals were isolated from the white product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were freely refined with isotropic ADPs. The lattice parameters at 300 K (derived from a Le Bail fit of the powder pattern) are a = 7.8851 (4), b = 12.2109 (8), c = 14.0367 (8) Å, β = 97.280 (4)°, and V = 1340.63 (14) Å3.

Table 4
Experimental details

  X-ray data
Crystal data
Chemical formula 3Cs+·C6H5O73−·H2O
Mr 605.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.7529 (3), 12.0281 (4), 13.8043 (5)
β (°) 97.000 (2)
V3) 1277.69 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.54
Crystal size (mm) 0.37 × 0.28 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.485, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 33171, 6191, 5701
Rint 0.040
(sin θ/λ)max−1) 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.047, 1.16
No. of reflections 6191
No. of parameters 183
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.41, −1.19
The same symmetry and lattice parameters were used for the DFT calculations. Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XM (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell at 100 K) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Cs was that of Prencipe (1990[Prencipe, M. (1990). Laurea Thesis, pp. 91-92; www. crystal. unito. it/Basis_Sets/caesium. html.]). The calculation used 8 k-points and the B3LYP functional, and took about 85 h on a 2.4 GHz PC. The Ueq values from the refinement were assigned to the optimized fractional coordinates.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008) for (I). Cell refinement: SAINT (Bruker, 2008) for (I). Data reduction: SAINT (Bruker, 2008) for (I). Program(s) used to solve structure: XM (Sheldrick, 2008) for (I); DFT calculation for I_DFT. Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for (I).

(I) Tricaesium citrate monohydrate top
Crystal data top
3Cs+·C6H5O73·H2OF(000) = 1088
Mr = 605.85Dx = 3.150 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7529 (3) ÅCell parameters from 9882 reflections
b = 12.0281 (4) Åθ = 2.3–36.3°
c = 13.8043 (5) ŵ = 8.54 mm1
β = 97.000 (2)°T = 100 K
V = 1277.69 (8) Å3Block, colourless
Z = 40.37 × 0.28 × 0.20 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
6191 independent reflections
Radiation source: sealed tube5701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8 pixels mm-1θmax = 36.4°, θmin = 2.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2020
Tmin = 0.485, Tmax = 0.747l = 2222
33171 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0103P)2 + 1.2602P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.002
S = 1.16Δρmax = 1.41 e Å3
6191 reflectionsΔρmin = 1.19 e Å3
183 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00244 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.51414 (2)0.83481 (2)0.61851 (2)0.00997 (3)
Cs20.84130 (2)0.56550 (2)0.61084 (2)0.00900 (3)
Cs30.38447 (2)0.43247 (2)0.11056 (2)0.01111 (3)
O1W0.1171 (3)0.78232 (16)0.55701 (16)0.0189 (4)
H1WA0.165 (6)0.716 (4)0.565 (4)0.041 (12)*
O70.7546 (2)0.42499 (14)0.42718 (13)0.0149 (3)
O80.5102 (2)0.42227 (13)0.32357 (13)0.0121 (3)
O90.4043 (2)0.68462 (13)0.19483 (12)0.0112 (3)
O100.2781 (2)0.66791 (14)0.33147 (13)0.0127 (3)
O110.4663 (2)0.91616 (13)0.32807 (14)0.0135 (3)
O120.7007 (2)0.94370 (14)0.43602 (14)0.0162 (3)
O130.5640 (2)0.66687 (13)0.44855 (12)0.0101 (3)
H130.470 (6)0.652 (4)0.448 (3)0.034 (12)*
C10.6500 (3)0.46607 (17)0.35969 (16)0.0086 (3)
C20.6996 (3)0.57813 (16)0.31910 (17)0.0091 (3)
H2A0.820 (4)0.592 (3)0.346 (2)0.011 (7)*
H2B0.689 (5)0.577 (3)0.252 (3)0.011 (8)*
C30.5887 (3)0.67637 (16)0.34819 (15)0.0075 (3)
C40.6931 (3)0.78262 (17)0.33527 (17)0.0101 (3)
H4A0.718 (4)0.790 (3)0.268 (3)0.012 (8)*
H4B0.808 (4)0.773 (3)0.380 (2)0.008 (7)*
C50.6133 (3)0.88902 (16)0.36962 (15)0.0084 (3)
C60.4075 (3)0.67732 (16)0.28626 (16)0.0083 (3)
H1WB0.070 (6)0.790 (3)0.602 (3)0.027 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.00914 (6)0.00735 (5)0.01319 (6)0.00069 (4)0.00047 (4)0.00094 (4)
Cs20.00823 (5)0.00929 (5)0.00945 (6)0.00067 (4)0.00095 (4)0.00012 (4)
Cs30.01091 (6)0.01313 (6)0.00897 (6)0.00360 (4)0.00008 (4)0.00176 (4)
O1W0.0224 (9)0.0138 (8)0.0229 (9)0.0050 (7)0.0124 (8)0.0086 (7)
O70.0170 (8)0.0115 (7)0.0147 (8)0.0051 (6)0.0045 (6)0.0001 (6)
O80.0123 (7)0.0108 (7)0.0128 (7)0.0024 (5)0.0004 (6)0.0005 (5)
O90.0113 (7)0.0140 (7)0.0083 (7)0.0017 (5)0.0009 (5)0.0010 (5)
O100.0079 (7)0.0160 (7)0.0147 (8)0.0001 (5)0.0031 (6)0.0026 (6)
O110.0103 (7)0.0108 (7)0.0185 (8)0.0014 (5)0.0013 (6)0.0029 (6)
O120.0175 (8)0.0117 (7)0.0174 (8)0.0005 (6)0.0060 (7)0.0053 (6)
O130.0097 (7)0.0122 (7)0.0085 (7)0.0008 (5)0.0014 (5)0.0007 (5)
C10.0102 (8)0.0064 (7)0.0094 (8)0.0023 (6)0.0016 (7)0.0014 (6)
C20.0081 (8)0.0065 (7)0.0131 (9)0.0005 (6)0.0037 (7)0.0002 (6)
C30.0082 (8)0.0062 (7)0.0080 (8)0.0001 (6)0.0000 (6)0.0005 (6)
C40.0084 (8)0.0074 (8)0.0147 (9)0.0007 (6)0.0020 (7)0.0014 (7)
C50.0112 (8)0.0065 (7)0.0077 (8)0.0015 (6)0.0019 (7)0.0002 (6)
C60.0088 (8)0.0054 (7)0.0105 (8)0.0005 (6)0.0005 (7)0.0002 (6)
Geometric parameters (Å, º) top
Cs1—O1W3.156 (2)O7—C11.259 (3)
Cs1—O7i3.7660 (18)O8—Cs1i3.2051 (16)
Cs1—O8i3.2052 (16)O8—Cs2i2.9783 (18)
Cs1—O9ii3.0886 (17)O8—C11.252 (3)
Cs1—O10ii3.3711 (18)O9—Cs1vii3.0886 (17)
Cs1—O11iii3.0842 (16)O9—Cs2vii3.2371 (16)
Cs1—O12iii3.1834 (18)O9—C61.262 (3)
Cs1—O123.323 (2)O10—Cs1vii3.3711 (18)
Cs1—O133.1552 (16)O10—Cs2i3.0906 (17)
Cs2—O1Wiv3.5088 (19)O10—Cs3x3.5497 (17)
Cs2—O73.0529 (18)O10—C61.250 (3)
Cs2—O7v3.241 (2)O11—Cs1iii3.0842 (16)
Cs2—O8i2.9782 (18)O11—Cs2vii3.0449 (18)
Cs2—O9ii3.2371 (16)O11—Cs3x2.9519 (18)
Cs2—O10i3.0906 (17)O11—C51.255 (3)
Cs2—O11ii3.0450 (18)O12—Cs1iii3.1834 (17)
Cs2—O133.1551 (17)O12—Cs3xi3.358 (2)
Cs3—O1Wvi2.9336 (19)O12—Cs3ii3.0358 (17)
Cs3—O82.9855 (17)O12—C51.257 (3)
Cs3—O93.2452 (16)O13—H130.75 (5)
Cs3—O10vi3.5497 (17)O13—C31.426 (3)
Cs3—O11vi2.9519 (18)C1—C21.527 (3)
Cs3—O12vii3.0358 (17)C2—H2A0.98 (3)
Cs3—O12viii3.358 (2)C2—H2B0.91 (3)
O1W—Cs2ix3.5088 (19)C2—C31.543 (3)
O1W—Cs3x2.9336 (19)C3—C41.535 (3)
O1W—H1WA0.88 (5)C3—C61.553 (3)
O1W—H1WB0.76 (5)C4—H4A0.98 (4)
O7—Cs1i3.7660 (18)C4—H4B1.03 (3)
O7—Cs2v3.2412 (19)C4—C51.522 (3)
O1W—Cs1—O7i44.55 (4)C1—O7—Cs2117.00 (13)
O1W—Cs1—O8i77.81 (5)Cs2i—O8—Cs1i83.57 (4)
O1W—Cs1—O10ii134.52 (5)Cs2i—O8—Cs395.53 (5)
O1W—Cs1—O12iii68.81 (5)Cs3—O8—Cs1i105.26 (5)
O1W—Cs1—O12112.05 (5)C1—O8—Cs1i112.39 (13)
O8i—Cs1—O7i36.20 (4)C1—O8—Cs2i129.60 (14)
O8i—Cs1—O10ii79.69 (4)C1—O8—Cs3122.53 (14)
O8i—Cs1—O12127.85 (4)Cs1vii—O9—Cs2vii81.33 (4)
O9ii—Cs1—O1W163.62 (5)Cs1vii—O9—Cs378.77 (4)
O9ii—Cs1—O7i119.55 (4)Cs2vii—O9—Cs3137.80 (5)
O9ii—Cs1—O8i85.81 (4)C6—O9—Cs1vii103.57 (13)
O9ii—Cs1—O10ii40.24 (4)C6—O9—Cs2vii113.98 (12)
O9ii—Cs1—O1277.85 (4)C6—O9—Cs3106.72 (12)
O9ii—Cs1—O12iii127.34 (4)Cs1vii—O10—Cs3x90.62 (4)
O9ii—Cs1—O1390.09 (4)Cs2i—O10—Cs1vii92.69 (4)
O10ii—Cs1—O7i113.74 (4)Cs2i—O10—Cs3x129.09 (5)
O11iii—Cs1—O1W106.05 (5)C6—O10—Cs1vii90.25 (13)
O11iii—Cs1—O7i148.87 (4)C6—O10—Cs2i119.66 (13)
O11iii—Cs1—O8i151.64 (5)C6—O10—Cs3x111.11 (13)
O11iii—Cs1—O9ii88.53 (4)Cs2vii—O11—Cs1iii99.53 (5)
O11iii—Cs1—O10ii78.11 (4)Cs3x—O11—Cs1iii83.51 (4)
O11iii—Cs1—O1277.60 (5)Cs3x—O11—Cs2vii94.82 (5)
O11iii—Cs1—O12iii41.65 (4)C5—O11—Cs1iii97.35 (12)
O11iii—Cs1—O13142.44 (5)C5—O11—Cs2vii129.15 (14)
O12—Cs1—O7i118.89 (4)C5—O11—Cs3x134.67 (15)
O12iii—Cs1—O7i113.07 (4)Cs1iii—O12—Cs1104.21 (6)
O12iii—Cs1—O8i145.22 (5)Cs1iii—O12—Cs3xi118.30 (6)
O12iii—Cs1—O10ii117.31 (4)Cs1—O12—Cs3xi130.15 (6)
O12—Cs1—O10ii113.01 (4)Cs3ii—O12—Cs178.30 (4)
O12iii—Cs1—O1275.79 (6)Cs3ii—O12—Cs1iii87.62 (4)
O13—Cs1—O1W82.86 (5)Cs3ii—O12—Cs3xi78.70 (4)
O13—Cs1—O7i57.29 (4)C5—O12—Cs1iii92.59 (13)
O13—Cs1—O8i65.43 (4)C5—O12—Cs195.77 (14)
O13—Cs1—O10ii121.73 (4)C5—O12—Cs3ii173.92 (16)
O13—Cs1—O12iii117.90 (4)C5—O12—Cs3xi106.46 (14)
O13—Cs1—O1265.45 (4)Cs1—O13—H1387 (4)
O7—Cs2—O1Wiv108.29 (5)Cs2—O13—Cs181.61 (4)
O7v—Cs2—O1Wiv46.65 (4)Cs2—O13—H13120 (3)
O7—Cs2—O7v90.26 (5)C3—O13—Cs1135.57 (12)
O7—Cs2—O9ii145.06 (4)C3—O13—Cs2124.07 (12)
O7—Cs2—O10i70.65 (5)C3—O13—H13105 (4)
O7—Cs2—O1364.04 (4)Cs1i—C1—Cs2i64.22 (3)
O8i—Cs2—O1Wiv129.16 (5)Cs2—C1—Cs1i108.67 (5)
O8i—Cs2—O7v170.36 (5)Cs2—C1—Cs2i102.33 (5)
O8i—Cs2—O799.37 (5)Cs2—C1—Cs3165.18 (6)
O8i—Cs2—O9ii87.08 (4)Cs3—C1—Cs1i79.86 (4)
O8i—Cs2—O10i69.68 (4)Cs3—C1—Cs2i69.91 (4)
O8i—Cs2—O11ii83.70 (5)O7—C1—Cs1i76.30 (12)
O8i—Cs2—O1368.11 (5)O7—C1—Cs2i115.73 (15)
O9ii—Cs2—O1Wiv46.88 (5)O7—C1—Cs245.80 (11)
O9ii—Cs2—O7v85.32 (4)O7—C1—Cs3148.76 (14)
O10i—Cs2—O1Wiv159.89 (5)O7—C1—C2116.69 (19)
O10i—Cs2—O7v113.55 (4)O8—C1—Cs1i50.15 (11)
O10i—Cs2—O9ii142.00 (4)O8—C1—Cs2i36.07 (11)
O10i—Cs2—O13109.54 (4)O8—C1—Cs2136.00 (15)
O11ii—Cs2—O1Wiv91.47 (5)O8—C1—Cs341.38 (11)
O11ii—Cs2—O7v87.65 (5)O8—C1—O7125.3 (2)
O11ii—Cs2—O7150.39 (4)O8—C1—C2118.03 (19)
O11ii—Cs2—O9ii64.15 (4)C1—C2—H2A106.6 (19)
O11ii—Cs2—O10i83.19 (4)C1—C2—H2B111 (2)
O11ii—Cs2—O13141.15 (4)C1—C2—C3114.00 (17)
O13—Cs2—O1Wiv86.70 (5)H2A—C2—H2B111 (3)
O13—Cs2—O7v117.38 (5)C3—C2—H2A107.6 (19)
O13—Cs2—O9ii87.46 (4)C3—C2—H2B107 (2)
O1Wvi—Cs3—O8136.12 (5)O13—C3—C2109.66 (16)
O1Wvi—Cs3—O9148.59 (5)O13—C3—C4108.35 (17)
O1Wvi—Cs3—O10vi70.03 (5)O13—C3—C6108.42 (17)
O1Wvi—Cs3—O11vi105.66 (5)C2—C3—C6110.97 (17)
O1Wvi—Cs3—O12viii77.63 (5)C4—C3—C2106.76 (17)
O1Wvi—Cs3—O12vii73.73 (6)C4—C3—C6112.62 (16)
O8—Cs3—O971.93 (4)C3—C4—H4A111 (2)
O8—Cs3—O10vi79.83 (4)C3—C4—H4B105.7 (18)
O8—Cs3—O12viii89.13 (5)H4A—C4—H4B109 (3)
O8—Cs3—O12vii150.13 (5)C5—C4—C3115.05 (18)
O9—Cs3—O10vi139.43 (4)C5—C4—H4A111 (2)
O9—Cs3—O12viii91.51 (4)C5—C4—H4B105.0 (18)
O11vi—Cs3—O885.20 (5)O11—C5—Cs1iii61.67 (11)
O11vi—Cs3—O987.96 (4)O11—C5—Cs1101.08 (14)
O11vi—Cs3—O10vi60.72 (4)O11—C5—Cs3xi147.07 (14)
O11vi—Cs3—O12viii174.19 (5)O11—C5—O12125.2 (2)
O11vi—Cs3—O12vii84.31 (5)O11—C5—C4117.22 (18)
O12vii—Cs3—O979.81 (4)O12—C5—Cs164.30 (13)
O12vii—Cs3—O10vi118.27 (4)O12—C5—Cs1iii66.22 (12)
O12viii—Cs3—O10vi116.99 (4)O12—C5—Cs3xi55.55 (13)
O12vii—Cs3—O12viii101.30 (4)O12—C5—C4117.59 (19)
Cs1—O1W—Cs2ix133.73 (6)O9—C6—Cs1vii56.50 (11)
Cs3x—O1W—Cs189.95 (5)O9—C6—Cs2i118.05 (13)
Cs3x—O1W—Cs2ix132.88 (7)O9—C6—Cs354.76 (10)
H1WA—O1W—H1WB104 (4)O9—C6—C3117.20 (19)
Cs2v—O7—Cs1i121.88 (5)O10—C6—Cs1vii69.44 (12)
Cs2—O7—Cs1i131.28 (6)O10—C6—Cs2i44.02 (11)
Cs2—O7—Cs2v89.74 (5)O10—C6—Cs3105.67 (13)
C1—O7—Cs1i84.74 (13)O10—C6—O9125.9 (2)
C1—O7—Cs2v114.49 (15)O10—C6—C3116.86 (19)
Cs1i—O7—C1—Cs2134.16 (11)Cs2vii—O11—C5—C450.2 (3)
Cs1i—O7—C1—Cs2i52.09 (9)Cs2—O13—C3—C233.2 (2)
Cs1i—O7—C1—Cs341.3 (3)Cs2—O13—C3—C483.01 (17)
Cs1i—O7—C1—O811.4 (2)Cs2—O13—C3—C6154.48 (11)
Cs1i—O7—C1—C2168.34 (17)Cs2—C1—C2—C370.94 (16)
Cs1i—O8—C1—Cs2i100.58 (17)Cs2i—C1—C2—C331.8 (2)
Cs1i—O8—C1—Cs274.70 (19)Cs3—O8—C1—Cs1i126.90 (16)
Cs1i—O8—C1—Cs3126.90 (16)Cs3—O8—C1—Cs2i132.5 (2)
Cs1i—O8—C1—O714.5 (3)Cs3—O8—C1—Cs2158.40 (9)
Cs1i—O8—C1—C2165.25 (14)Cs3—O8—C1—O7141.38 (18)
Cs1vii—O9—C6—Cs2i49.76 (13)Cs3—O8—C1—C238.3 (2)
Cs1vii—O9—C6—Cs382.15 (7)Cs3—O9—C6—Cs1vii82.15 (7)
Cs1vii—O9—C6—O101.9 (2)Cs3—O9—C6—Cs2i32.38 (14)
Cs1vii—O9—C6—C3176.14 (13)Cs3—O9—C6—O1084.1 (2)
Cs1vii—O10—C6—Cs2i93.24 (11)Cs3—O9—C6—C393.99 (16)
Cs1vii—O10—C6—Cs355.83 (7)Cs3x—O10—C6—Cs1vii90.76 (8)
Cs1vii—O10—C6—O91.7 (2)Cs3x—O10—C6—Cs2i176.00 (17)
Cs1vii—O10—C6—C3176.35 (15)Cs3x—O10—C6—Cs3146.59 (6)
Cs1iii—O11—C5—Cs186.11 (7)Cs3x—O10—C6—O989.1 (2)
Cs1iii—O11—C5—Cs3xi59.5 (3)Cs3x—O10—C6—C392.88 (17)
Cs1iii—O11—C5—O1219.9 (2)Cs3x—O11—C5—Cs12.01 (19)
Cs1iii—O11—C5—C4158.83 (16)Cs3x—O11—C5—Cs1iii88.12 (15)
Cs1iii—O12—C5—Cs1104.57 (7)Cs3x—O11—C5—Cs3xi147.63 (15)
Cs1—O12—C5—Cs1iii104.57 (7)Cs3x—O11—C5—O1268.3 (3)
Cs1—O12—C5—Cs3xi134.88 (9)Cs3x—O11—C5—C4113.0 (2)
Cs1iii—O12—C5—Cs3xi120.55 (9)Cs3xi—O12—C5—Cs1134.88 (9)
Cs1—O12—C5—O1185.5 (2)Cs3xi—O12—C5—Cs1iii120.55 (9)
Cs1iii—O12—C5—O1119.1 (2)Cs3xi—O12—C5—O11139.6 (2)
Cs1—O12—C5—C495.82 (18)Cs3xi—O12—C5—C439.1 (2)
Cs1iii—O12—C5—C4159.61 (16)Cs3—C1—C2—C396.43 (16)
Cs1—O13—C3—C2149.16 (14)Cs3xi—C4—C5—Cs1102.19 (7)
Cs1—O13—C3—C433.0 (2)Cs3xi—C4—C5—Cs1iii64.1 (4)
Cs1—O13—C3—C689.54 (19)Cs3xi—C4—C5—O11145.71 (18)
Cs1i—C1—C2—C3114.1 (4)Cs3xi—C4—C5—O1233.08 (19)
Cs2—O7—C1—Cs1i134.16 (11)O7—C1—C2—C3108.2 (2)
Cs2v—O7—C1—Cs1i122.74 (9)O8—C1—C2—C372.1 (3)
Cs2—O7—C1—Cs2i82.07 (14)O13—C3—C4—Cs3xi66.8 (3)
Cs2v—O7—C1—Cs2103.10 (14)O13—C3—C4—C556.4 (2)
Cs2v—O7—C1—Cs2i174.83 (5)O13—C3—C6—Cs2i46.78 (15)
Cs2—O7—C1—Cs3175.46 (19)O13—C3—C6—Cs3120.44 (13)
Cs2v—O7—C1—Cs381.4 (3)O13—C3—C6—O9179.56 (17)
Cs2—O7—C1—O8122.8 (2)O13—C3—C6—O101.3 (2)
Cs2v—O7—C1—O8134.14 (19)C1—C2—C3—O1342.5 (2)
Cs2—O7—C1—C257.5 (2)C1—C2—C3—C4159.72 (18)
Cs2v—O7—C1—C245.6 (2)C1—C2—C3—C677.2 (2)
Cs2i—O8—C1—Cs1i100.58 (17)C2—C3—C4—Cs3xi51.3 (3)
Cs2i—O8—C1—Cs225.9 (3)C2—C3—C4—C5174.41 (18)
Cs2i—O8—C1—Cs3132.5 (2)C2—C3—C6—Cs2i73.71 (16)
Cs2i—O8—C1—O786.1 (3)C2—C3—C6—Cs30.05 (18)
Cs2i—O8—C1—C294.2 (2)C2—C3—C6—O959.1 (2)
Cs2vii—O9—C6—Cs1vii86.42 (9)C2—C3—C6—O10119.2 (2)
Cs2vii—O9—C6—Cs2i136.19 (7)C3—C4—C5—Cs150.77 (19)
Cs2vii—O9—C6—Cs3168.57 (14)C3—C4—C5—Cs1iii143.0 (4)
Cs2vii—O9—C6—O1084.5 (2)C3—C4—C5—Cs3xi152.96 (19)
Cs2vii—O9—C6—C397.44 (17)C3—C4—C5—O1161.3 (3)
Cs2i—O10—C6—Cs1vii93.24 (11)C3—C4—C5—O12119.9 (2)
Cs2i—O10—C6—Cs337.41 (15)C4—C3—C6—Cs2i166.67 (13)
Cs2i—O10—C6—O994.9 (2)C4—C3—C6—Cs3119.68 (15)
Cs2i—O10—C6—C383.12 (19)C4—C3—C6—O960.6 (2)
Cs2vii—O11—C5—Cs1165.21 (9)C4—C3—C6—O10121.2 (2)
Cs2vii—O11—C5—Cs1iii108.68 (15)C6—C3—C4—Cs3xi173.29 (18)
Cs2vii—O11—C5—Cs3xi49.2 (3)C6—C3—C4—C563.6 (2)
Cs2vii—O11—C5—O12128.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+3/2, z1/2; (viii) x+3/2, y1/2, z+1/2; (ix) x1, y, z; (x) x+1/2, y+1/2, z+1/2; (xi) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O100.75 (5)2.06 (5)2.579 (2)127 (4)
O1W—H1WA···O7i0.88 (5)1.81 (5)2.684 (3)174 (5)
O1W—H1WB···O9xii0.76 (5)1.95 (5)2.695 (3)167 (4)
Symmetry codes: (i) x+1, y+1, z+1; (xii) x1/2, y+3/2, z+1/2.
(I_DFT) Tricaesium citrate monohydrate top
Crystal data top
3Cs+·C6H5O73·H2Oβ = 97.0000°
Mr = 605.85V = 1277.69 Å3
Monoclinic, P21/nZ = 4
a = 7.7529 ÅDFT calculation radiation, λ = 1.54184 Å
b = 12.0281 ÅT = 100 K
c = 13.8043 Å
Data collection top
h = l =
k =
Refinement top
H-atom parameters not refined
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.507800.827080.616940.00960*
Cs20.832090.558100.611040.00867*
Cs30.383950.434450.112060.01077*
O70.786850.435300.424710.01460*
O80.532020.418990.328560.01190*
O90.409390.695380.190970.01090*
O100.283550.677160.327740.01250*
O110.469200.913490.329530.01330*
O120.712970.955470.428420.01600*
O130.561940.662310.444500.00980*
H180.434760.653430.436510.02800*
C10.670410.469150.358460.00830*
C20.705440.581300.311820.00870*
H140.842810.602000.330920.01100*
H150.682450.575270.232280.00900*
C30.595030.678490.345780.00720*
C40.704840.784020.341700.00980*
H160.742160.793250.268030.01000*
H170.822670.770930.392470.00600*
C50.621120.892810.369330.00800*
C60.414650.685980.282440.00790*
O1W0.097060.773630.544100.01850*
H1W0.149700.699120.547600.04000*
H3W0.042870.781500.604320.02400*
Bond lengths (Å) top
O7—C11.271C2—H151.093
O8—C11.256C2—C31.555
O9—C61.263C3—C41.533
O10—C61.261C3—C61.559
O11—C51.262C4—H161.096
O12—C51.264C4—H171.093
O13—H180.984C4—C51.529
O13—C31.430O1W—H1W0.984
C1—C21.533O1W—H3W0.981
C2—H141.094
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H18···O100.9841.8112.538127.9
O1W—H1W···O7i0.9841.7192.686166.8
O1W—H3W···O9ii0.9811.6972.662167.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2.
Lattice parameters (Å, °, Å3, K; space group P21/n) of M3C6H5O7·H2O top
KaRbbCsc
a7.092 (2)7.4477 (1)7.88551 (4)
b11.772 (1)11.8755 (2)12.2109 (8)
c12.865 (1)13.4167 (2)14.0367 (8)
β98.031 (2)97.8820 (9)97.280 (4)
V1063.501175.44 (3)1340.63 (14)
V/non-H16.617.319.7
T300300100
References: (a) Carrell et al. (1987); (b) Rammohan & Kaduk (2017c); (c) this work.
 

Footnotes

Present address: CCDC 174 Frelinghuysen Rd Piscataway NJ 00854 USA.

Acknowledgements

We thank Charlotte Stern of the Department of Chemistry of Northwestern University for useful discussions and assistance in retrieving the archived raw data.

References

First citationBravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137–138.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCarrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Amer. Miner. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). Private communication (deposition Nos. 1446457–1446458). CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). Private communication (deposition Nos. 1446460–1446461). CCDC, Cambridge, England.  Google Scholar
First citationLove, W. E. & Patterson, A. L. (1960). Acta Cryst. 13, 426–428.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrencipe, M. (1990). Laurea Thesis, pp. 91–92; www. crystal. unito. it/Basis_Sets/caesium. html.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. BGoogle Scholar
First citationRammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286–290.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133–136.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017g). Private communication (deposition No. 1525884). CCDC, Cambridge, England.  Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2017). Acta Cryst. E73, 231–234.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds