research communications
Tricaesium citrate monohydrate, Cs3C6H5O7·H2O: and DFT comparison
aAtlantic International University, Honolulu, HI, USA, bDepartment of Chemistry, Northwestern University, Evanston, IL, USA, and cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago, IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com
The +·C6H5O73−·H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. This compound is isostructural to the K+ and Rb+ compounds with the same formula. The three independent Cs cations are eight-, eight-, and seven-coordinate, with bond-valence sums of 0.91, 1.22, and 1.12 valence units. The coordination polyhedra link into a three-dimensional framework. The hydroxy group forms the usual S(5) hydrogen bond with the central carboxylate group, and the water molecule acts as a donor in two strong hydrogen bonds.
of tricaesium citrate monohydrate, 3CsKeywords: crystal structure; density functional theory; citrate; caesium.
CCDC reference: 1536526
1. Chemical context
In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the sixteen new compounds and twelve previously characterized structures are being reported separately (Rammohan & Kaduk, 2017a). Twelve of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, K3C6H5O7, Rb2HC6H5O7, Rb3C6H5O7·H2O, Rb3C6H5O7, Na5H(C6H5O7)2, CsH2C6H5O7, and Cs2HC6H5O7 – have been published recently (Rammohan & Kaduk, 2016a,b,c,d,e, 2017b,c,d,e,f; Rammohan et al., 2016, 2017), and three additional structures – KH2C6H5O7 KH2C6H5O7·H2O2, and Cs3C6H5O7 – have been communicated to the CSD (Kaduk & Stern, 2016a,b; Rammohan & Kaduk, 2017g).
2. Structural commentary
The . The root-mean-square deviation of the non-hydrogen atoms in the experimental and DFT-optimized structures is 0.123 Å (Fig. 2). The largest difference is 0.200 Å, at O1W. This good agreement provides strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). Almost all of the bond lengths, bond angles, and torsion angles in the experimentally determined structure fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008). Only the O8—C1—C2 angle of 118.0° is flagged as unusual [average = 119.8 (4)°, Z-score = 4.2). The Z-score is the result of the exceptionally low uncertainty on the average of this bond angle. In the DFT-optimized structure, the O7—C1—C2 angle of 115.9° is flagged as unusual [average = 120.3 (12)°, Z-score = 3.6]. The citrate anion occurs in the trans,trans conformation, which is one of the two low-energy conformations of an isolated citrate. The three Cs+ cations are eight-, eight-, and seven-coordinate, with bond-valence sums of 0.91, 1.22, and 1.12 valence units. There is extensive of the citrate anion to Cs+ cations: O12(end)/O13(OH) to Cs1, O8(end)/O10(central) to Cs2, O11(end)/O10(central) to Cs2, C11(end)/O9(central) to Cs2, O7(end)/O13(OH) to Cs2, O8(end)/O9(central) to Cs3, and O11(end)/O11(central) to Cs3. The carboxylate group O11/O12 also acts as a bidentate ligand to Cs1. The Mulliken overlap populations and atomic charges indicate that the metal–oxygen bonding is ionic.
of the title compound is shown in Fig. 1The BFDH (Bravais–Friedel–Donnay–Harker) morphology (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) is blocky, with {011} as major faces. The powder pattern exhibited strong consistent with {101} as the major faces of plates. These faces are also significant in the BFDH morphology.
3. Supramolecular features
The coordination polyhedra link into a three-dimensional framework (Fig. 3). The hydrophobic methylene groups occupy pockets in the framework. The hydroxy group forms the usual S(5) hydrogen bond with the central carboxylate group, and the water molecule acts as a donor in two strong hydrogen bonds (2.686 and 2.662 Å). By the correlation between the square root of the Mulliken overlap population and hydrogen-bond energy derived in Rammohan & Kaduk (2017a), these hydrogen bonds contribute 14.4, 14.1, and 14.1 kcal mol−1, respectively, to the crystal energy. Numerical details of the hydrogen bonds in the experimentally determined and DFT-optimized structures are given in Tables 1 and 2, respectively.
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017a). A reduced-cell search of the cell of tricaesium citrate monohydrate in the Cambridge Structural Database (Groom et al., 2016) (increasing the default tolerance from 1.5 to 2.0%) yielded 258 hits, but combining the cell search with the elements C, H, Cs, and O only yielded no hits. Increasing the tolerance to 5% with C, H, O, and Rb only yielded trirubidium citrate monohydrate (Love & Patterson, 1960; CSD refcode ZZZHZC), but no coordinates were reported for this phase. The structure has since been reported by Rammohan & Kaduk (2017c). Increasing the tolerance on the cell to 7% with C, H, K, and O only yielded K3C6H5O7·H2O (Burns & Iball, 1954, CSD refcode ZZZHVI; Carrell et al., 1987, CSD refcodes ZZZHVI01 and ZZZHVI02). This compound is isostructural to the K+ (Carrell et al., 1987) and Rb+ (Rammohan & Kaduk, 2017c) compounds with the same formula, but the previously-reported structure of K3C6H5O7·H2O has to be transformed from setting P21/a to P21/n to make the similarities clear (Table 3).
|
5. Synthesis and crystallization
H3C6H5O7·H2O (2.0774 g, 10.0 mmol, Sigma–Aldrich) was dissolved in 8 ml deionized water. Cs2CO3 (4.9324 g, 15.1 mmole, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colorless solution was evaporated to dryness in a oven at 333 K. Single crystals were isolated from the white product.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were freely refined with isotropic ADPs. The lattice parameters at 300 K (derived from a Le Bail fit of the powder pattern) are a = 7.8851 (4), b = 12.2109 (8), c = 14.0367 (8) Å, β = 97.280 (4)°, and V = 1340.63 (14) Å3.
details are summarized in Table 4
|
7. DFT calculations
After the CRYSTAL09 (Dovesi et al., 2005). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994), and the basis set for Cs was that of Prencipe (1990). The calculation used 8 k-points and the B3LYP functional, and took about 85 h on a 2.4 GHz PC. The Ueq values from the were assigned to the optimized fractional coordinates.
a density functional geometry optimization (fixed experimental at 100 K) was carried out usingSupporting information
CCDC reference: 1536526
https://doi.org/10.1107/S205698901700367X/vn2126sup1.cif
contains datablocks I, I_DFT. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901700367X/vn2126Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901700367X/vn2126Isup3.cml
Data collection: APEX2 (Bruker, 2008) for (I). Cell
SAINT (Bruker, 2008) for (I). Data reduction: SAINT (Bruker, 2008) for (I). Program(s) used to solve structure: XM (Sheldrick, 2008) for (I); DFT calculation for I_DFT. Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for (I).3Cs+·C6H5O73−·H2O | F(000) = 1088 |
Mr = 605.85 | Dx = 3.150 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7529 (3) Å | Cell parameters from 9882 reflections |
b = 12.0281 (4) Å | θ = 2.3–36.3° |
c = 13.8043 (5) Å | µ = 8.54 mm−1 |
β = 97.000 (2)° | T = 100 K |
V = 1277.69 (8) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.28 × 0.20 mm |
Bruker Kappa APEX CCD area detector diffractometer | 6191 independent reflections |
Radiation source: sealed tube | 5701 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8 pixels mm-1 | θmax = 36.4°, θmin = 2.3° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −20→20 |
Tmin = 0.485, Tmax = 0.747 | l = −22→22 |
33171 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0103P)2 + 1.2602P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.047 | (Δ/σ)max = 0.002 |
S = 1.16 | Δρmax = 1.41 e Å−3 |
6191 reflections | Δρmin = −1.19 e Å−3 |
183 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00244 (9) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.51414 (2) | 0.83481 (2) | 0.61851 (2) | 0.00997 (3) | |
Cs2 | 0.84130 (2) | 0.56550 (2) | 0.61084 (2) | 0.00900 (3) | |
Cs3 | 0.38447 (2) | 0.43247 (2) | 0.11056 (2) | 0.01111 (3) | |
O1W | 0.1171 (3) | 0.78232 (16) | 0.55701 (16) | 0.0189 (4) | |
H1WA | 0.165 (6) | 0.716 (4) | 0.565 (4) | 0.041 (12)* | |
O7 | 0.7546 (2) | 0.42499 (14) | 0.42718 (13) | 0.0149 (3) | |
O8 | 0.5102 (2) | 0.42227 (13) | 0.32357 (13) | 0.0121 (3) | |
O9 | 0.4043 (2) | 0.68462 (13) | 0.19483 (12) | 0.0112 (3) | |
O10 | 0.2781 (2) | 0.66791 (14) | 0.33147 (13) | 0.0127 (3) | |
O11 | 0.4663 (2) | 0.91616 (13) | 0.32807 (14) | 0.0135 (3) | |
O12 | 0.7007 (2) | 0.94370 (14) | 0.43602 (14) | 0.0162 (3) | |
O13 | 0.5640 (2) | 0.66687 (13) | 0.44855 (12) | 0.0101 (3) | |
H13 | 0.470 (6) | 0.652 (4) | 0.448 (3) | 0.034 (12)* | |
C1 | 0.6500 (3) | 0.46607 (17) | 0.35969 (16) | 0.0086 (3) | |
C2 | 0.6996 (3) | 0.57813 (16) | 0.31910 (17) | 0.0091 (3) | |
H2A | 0.820 (4) | 0.592 (3) | 0.346 (2) | 0.011 (7)* | |
H2B | 0.689 (5) | 0.577 (3) | 0.252 (3) | 0.011 (8)* | |
C3 | 0.5887 (3) | 0.67637 (16) | 0.34819 (15) | 0.0075 (3) | |
C4 | 0.6931 (3) | 0.78262 (17) | 0.33527 (17) | 0.0101 (3) | |
H4A | 0.718 (4) | 0.790 (3) | 0.268 (3) | 0.012 (8)* | |
H4B | 0.808 (4) | 0.773 (3) | 0.380 (2) | 0.008 (7)* | |
C5 | 0.6133 (3) | 0.88902 (16) | 0.36962 (15) | 0.0084 (3) | |
C6 | 0.4075 (3) | 0.67732 (16) | 0.28626 (16) | 0.0083 (3) | |
H1WB | 0.070 (6) | 0.790 (3) | 0.602 (3) | 0.027 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.00914 (6) | 0.00735 (5) | 0.01319 (6) | 0.00069 (4) | 0.00047 (4) | −0.00094 (4) |
Cs2 | 0.00823 (5) | 0.00929 (5) | 0.00945 (6) | −0.00067 (4) | 0.00095 (4) | −0.00012 (4) |
Cs3 | 0.01091 (6) | 0.01313 (6) | 0.00897 (6) | 0.00360 (4) | −0.00008 (4) | −0.00176 (4) |
O1W | 0.0224 (9) | 0.0138 (8) | 0.0229 (9) | 0.0050 (7) | 0.0124 (8) | 0.0086 (7) |
O7 | 0.0170 (8) | 0.0115 (7) | 0.0147 (8) | 0.0051 (6) | −0.0045 (6) | −0.0001 (6) |
O8 | 0.0123 (7) | 0.0108 (7) | 0.0128 (7) | −0.0024 (5) | 0.0004 (6) | −0.0005 (5) |
O9 | 0.0113 (7) | 0.0140 (7) | 0.0083 (7) | −0.0017 (5) | 0.0009 (5) | 0.0010 (5) |
O10 | 0.0079 (7) | 0.0160 (7) | 0.0147 (8) | −0.0001 (5) | 0.0031 (6) | 0.0026 (6) |
O11 | 0.0103 (7) | 0.0108 (7) | 0.0185 (8) | 0.0014 (5) | −0.0013 (6) | −0.0029 (6) |
O12 | 0.0175 (8) | 0.0117 (7) | 0.0174 (8) | 0.0005 (6) | −0.0060 (7) | −0.0053 (6) |
O13 | 0.0097 (7) | 0.0122 (7) | 0.0085 (7) | −0.0008 (5) | 0.0014 (5) | −0.0007 (5) |
C1 | 0.0102 (8) | 0.0064 (7) | 0.0094 (8) | 0.0023 (6) | 0.0016 (7) | −0.0014 (6) |
C2 | 0.0081 (8) | 0.0065 (7) | 0.0131 (9) | 0.0005 (6) | 0.0037 (7) | −0.0002 (6) |
C3 | 0.0082 (8) | 0.0062 (7) | 0.0080 (8) | −0.0001 (6) | 0.0000 (6) | 0.0005 (6) |
C4 | 0.0084 (8) | 0.0074 (8) | 0.0147 (9) | −0.0007 (6) | 0.0020 (7) | −0.0014 (7) |
C5 | 0.0112 (8) | 0.0065 (7) | 0.0077 (8) | −0.0015 (6) | 0.0019 (7) | 0.0002 (6) |
C6 | 0.0088 (8) | 0.0054 (7) | 0.0105 (8) | −0.0005 (6) | 0.0005 (7) | 0.0002 (6) |
Cs1—O1W | 3.156 (2) | O7—C1 | 1.259 (3) |
Cs1—O7i | 3.7660 (18) | O8—Cs1i | 3.2051 (16) |
Cs1—O8i | 3.2052 (16) | O8—Cs2i | 2.9783 (18) |
Cs1—O9ii | 3.0886 (17) | O8—C1 | 1.252 (3) |
Cs1—O10ii | 3.3711 (18) | O9—Cs1vii | 3.0886 (17) |
Cs1—O11iii | 3.0842 (16) | O9—Cs2vii | 3.2371 (16) |
Cs1—O12iii | 3.1834 (18) | O9—C6 | 1.262 (3) |
Cs1—O12 | 3.323 (2) | O10—Cs1vii | 3.3711 (18) |
Cs1—O13 | 3.1552 (16) | O10—Cs2i | 3.0906 (17) |
Cs2—O1Wiv | 3.5088 (19) | O10—Cs3x | 3.5497 (17) |
Cs2—O7 | 3.0529 (18) | O10—C6 | 1.250 (3) |
Cs2—O7v | 3.241 (2) | O11—Cs1iii | 3.0842 (16) |
Cs2—O8i | 2.9782 (18) | O11—Cs2vii | 3.0449 (18) |
Cs2—O9ii | 3.2371 (16) | O11—Cs3x | 2.9519 (18) |
Cs2—O10i | 3.0906 (17) | O11—C5 | 1.255 (3) |
Cs2—O11ii | 3.0450 (18) | O12—Cs1iii | 3.1834 (17) |
Cs2—O13 | 3.1551 (17) | O12—Cs3xi | 3.358 (2) |
Cs3—O1Wvi | 2.9336 (19) | O12—Cs3ii | 3.0358 (17) |
Cs3—O8 | 2.9855 (17) | O12—C5 | 1.257 (3) |
Cs3—O9 | 3.2452 (16) | O13—H13 | 0.75 (5) |
Cs3—O10vi | 3.5497 (17) | O13—C3 | 1.426 (3) |
Cs3—O11vi | 2.9519 (18) | C1—C2 | 1.527 (3) |
Cs3—O12vii | 3.0358 (17) | C2—H2A | 0.98 (3) |
Cs3—O12viii | 3.358 (2) | C2—H2B | 0.91 (3) |
O1W—Cs2ix | 3.5088 (19) | C2—C3 | 1.543 (3) |
O1W—Cs3x | 2.9336 (19) | C3—C4 | 1.535 (3) |
O1W—H1WA | 0.88 (5) | C3—C6 | 1.553 (3) |
O1W—H1WB | 0.76 (5) | C4—H4A | 0.98 (4) |
O7—Cs1i | 3.7660 (18) | C4—H4B | 1.03 (3) |
O7—Cs2v | 3.2412 (19) | C4—C5 | 1.522 (3) |
O1W—Cs1—O7i | 44.55 (4) | C1—O7—Cs2 | 117.00 (13) |
O1W—Cs1—O8i | 77.81 (5) | Cs2i—O8—Cs1i | 83.57 (4) |
O1W—Cs1—O10ii | 134.52 (5) | Cs2i—O8—Cs3 | 95.53 (5) |
O1W—Cs1—O12iii | 68.81 (5) | Cs3—O8—Cs1i | 105.26 (5) |
O1W—Cs1—O12 | 112.05 (5) | C1—O8—Cs1i | 112.39 (13) |
O8i—Cs1—O7i | 36.20 (4) | C1—O8—Cs2i | 129.60 (14) |
O8i—Cs1—O10ii | 79.69 (4) | C1—O8—Cs3 | 122.53 (14) |
O8i—Cs1—O12 | 127.85 (4) | Cs1vii—O9—Cs2vii | 81.33 (4) |
O9ii—Cs1—O1W | 163.62 (5) | Cs1vii—O9—Cs3 | 78.77 (4) |
O9ii—Cs1—O7i | 119.55 (4) | Cs2vii—O9—Cs3 | 137.80 (5) |
O9ii—Cs1—O8i | 85.81 (4) | C6—O9—Cs1vii | 103.57 (13) |
O9ii—Cs1—O10ii | 40.24 (4) | C6—O9—Cs2vii | 113.98 (12) |
O9ii—Cs1—O12 | 77.85 (4) | C6—O9—Cs3 | 106.72 (12) |
O9ii—Cs1—O12iii | 127.34 (4) | Cs1vii—O10—Cs3x | 90.62 (4) |
O9ii—Cs1—O13 | 90.09 (4) | Cs2i—O10—Cs1vii | 92.69 (4) |
O10ii—Cs1—O7i | 113.74 (4) | Cs2i—O10—Cs3x | 129.09 (5) |
O11iii—Cs1—O1W | 106.05 (5) | C6—O10—Cs1vii | 90.25 (13) |
O11iii—Cs1—O7i | 148.87 (4) | C6—O10—Cs2i | 119.66 (13) |
O11iii—Cs1—O8i | 151.64 (5) | C6—O10—Cs3x | 111.11 (13) |
O11iii—Cs1—O9ii | 88.53 (4) | Cs2vii—O11—Cs1iii | 99.53 (5) |
O11iii—Cs1—O10ii | 78.11 (4) | Cs3x—O11—Cs1iii | 83.51 (4) |
O11iii—Cs1—O12 | 77.60 (5) | Cs3x—O11—Cs2vii | 94.82 (5) |
O11iii—Cs1—O12iii | 41.65 (4) | C5—O11—Cs1iii | 97.35 (12) |
O11iii—Cs1—O13 | 142.44 (5) | C5—O11—Cs2vii | 129.15 (14) |
O12—Cs1—O7i | 118.89 (4) | C5—O11—Cs3x | 134.67 (15) |
O12iii—Cs1—O7i | 113.07 (4) | Cs1iii—O12—Cs1 | 104.21 (6) |
O12iii—Cs1—O8i | 145.22 (5) | Cs1iii—O12—Cs3xi | 118.30 (6) |
O12iii—Cs1—O10ii | 117.31 (4) | Cs1—O12—Cs3xi | 130.15 (6) |
O12—Cs1—O10ii | 113.01 (4) | Cs3ii—O12—Cs1 | 78.30 (4) |
O12iii—Cs1—O12 | 75.79 (6) | Cs3ii—O12—Cs1iii | 87.62 (4) |
O13—Cs1—O1W | 82.86 (5) | Cs3ii—O12—Cs3xi | 78.70 (4) |
O13—Cs1—O7i | 57.29 (4) | C5—O12—Cs1iii | 92.59 (13) |
O13—Cs1—O8i | 65.43 (4) | C5—O12—Cs1 | 95.77 (14) |
O13—Cs1—O10ii | 121.73 (4) | C5—O12—Cs3ii | 173.92 (16) |
O13—Cs1—O12iii | 117.90 (4) | C5—O12—Cs3xi | 106.46 (14) |
O13—Cs1—O12 | 65.45 (4) | Cs1—O13—H13 | 87 (4) |
O7—Cs2—O1Wiv | 108.29 (5) | Cs2—O13—Cs1 | 81.61 (4) |
O7v—Cs2—O1Wiv | 46.65 (4) | Cs2—O13—H13 | 120 (3) |
O7—Cs2—O7v | 90.26 (5) | C3—O13—Cs1 | 135.57 (12) |
O7—Cs2—O9ii | 145.06 (4) | C3—O13—Cs2 | 124.07 (12) |
O7—Cs2—O10i | 70.65 (5) | C3—O13—H13 | 105 (4) |
O7—Cs2—O13 | 64.04 (4) | Cs1i—C1—Cs2i | 64.22 (3) |
O8i—Cs2—O1Wiv | 129.16 (5) | Cs2—C1—Cs1i | 108.67 (5) |
O8i—Cs2—O7v | 170.36 (5) | Cs2—C1—Cs2i | 102.33 (5) |
O8i—Cs2—O7 | 99.37 (5) | Cs2—C1—Cs3 | 165.18 (6) |
O8i—Cs2—O9ii | 87.08 (4) | Cs3—C1—Cs1i | 79.86 (4) |
O8i—Cs2—O10i | 69.68 (4) | Cs3—C1—Cs2i | 69.91 (4) |
O8i—Cs2—O11ii | 83.70 (5) | O7—C1—Cs1i | 76.30 (12) |
O8i—Cs2—O13 | 68.11 (5) | O7—C1—Cs2i | 115.73 (15) |
O9ii—Cs2—O1Wiv | 46.88 (5) | O7—C1—Cs2 | 45.80 (11) |
O9ii—Cs2—O7v | 85.32 (4) | O7—C1—Cs3 | 148.76 (14) |
O10i—Cs2—O1Wiv | 159.89 (5) | O7—C1—C2 | 116.69 (19) |
O10i—Cs2—O7v | 113.55 (4) | O8—C1—Cs1i | 50.15 (11) |
O10i—Cs2—O9ii | 142.00 (4) | O8—C1—Cs2i | 36.07 (11) |
O10i—Cs2—O13 | 109.54 (4) | O8—C1—Cs2 | 136.00 (15) |
O11ii—Cs2—O1Wiv | 91.47 (5) | O8—C1—Cs3 | 41.38 (11) |
O11ii—Cs2—O7v | 87.65 (5) | O8—C1—O7 | 125.3 (2) |
O11ii—Cs2—O7 | 150.39 (4) | O8—C1—C2 | 118.03 (19) |
O11ii—Cs2—O9ii | 64.15 (4) | C1—C2—H2A | 106.6 (19) |
O11ii—Cs2—O10i | 83.19 (4) | C1—C2—H2B | 111 (2) |
O11ii—Cs2—O13 | 141.15 (4) | C1—C2—C3 | 114.00 (17) |
O13—Cs2—O1Wiv | 86.70 (5) | H2A—C2—H2B | 111 (3) |
O13—Cs2—O7v | 117.38 (5) | C3—C2—H2A | 107.6 (19) |
O13—Cs2—O9ii | 87.46 (4) | C3—C2—H2B | 107 (2) |
O1Wvi—Cs3—O8 | 136.12 (5) | O13—C3—C2 | 109.66 (16) |
O1Wvi—Cs3—O9 | 148.59 (5) | O13—C3—C4 | 108.35 (17) |
O1Wvi—Cs3—O10vi | 70.03 (5) | O13—C3—C6 | 108.42 (17) |
O1Wvi—Cs3—O11vi | 105.66 (5) | C2—C3—C6 | 110.97 (17) |
O1Wvi—Cs3—O12viii | 77.63 (5) | C4—C3—C2 | 106.76 (17) |
O1Wvi—Cs3—O12vii | 73.73 (6) | C4—C3—C6 | 112.62 (16) |
O8—Cs3—O9 | 71.93 (4) | C3—C4—H4A | 111 (2) |
O8—Cs3—O10vi | 79.83 (4) | C3—C4—H4B | 105.7 (18) |
O8—Cs3—O12viii | 89.13 (5) | H4A—C4—H4B | 109 (3) |
O8—Cs3—O12vii | 150.13 (5) | C5—C4—C3 | 115.05 (18) |
O9—Cs3—O10vi | 139.43 (4) | C5—C4—H4A | 111 (2) |
O9—Cs3—O12viii | 91.51 (4) | C5—C4—H4B | 105.0 (18) |
O11vi—Cs3—O8 | 85.20 (5) | O11—C5—Cs1iii | 61.67 (11) |
O11vi—Cs3—O9 | 87.96 (4) | O11—C5—Cs1 | 101.08 (14) |
O11vi—Cs3—O10vi | 60.72 (4) | O11—C5—Cs3xi | 147.07 (14) |
O11vi—Cs3—O12viii | 174.19 (5) | O11—C5—O12 | 125.2 (2) |
O11vi—Cs3—O12vii | 84.31 (5) | O11—C5—C4 | 117.22 (18) |
O12vii—Cs3—O9 | 79.81 (4) | O12—C5—Cs1 | 64.30 (13) |
O12vii—Cs3—O10vi | 118.27 (4) | O12—C5—Cs1iii | 66.22 (12) |
O12viii—Cs3—O10vi | 116.99 (4) | O12—C5—Cs3xi | 55.55 (13) |
O12vii—Cs3—O12viii | 101.30 (4) | O12—C5—C4 | 117.59 (19) |
Cs1—O1W—Cs2ix | 133.73 (6) | O9—C6—Cs1vii | 56.50 (11) |
Cs3x—O1W—Cs1 | 89.95 (5) | O9—C6—Cs2i | 118.05 (13) |
Cs3x—O1W—Cs2ix | 132.88 (7) | O9—C6—Cs3 | 54.76 (10) |
H1WA—O1W—H1WB | 104 (4) | O9—C6—C3 | 117.20 (19) |
Cs2v—O7—Cs1i | 121.88 (5) | O10—C6—Cs1vii | 69.44 (12) |
Cs2—O7—Cs1i | 131.28 (6) | O10—C6—Cs2i | 44.02 (11) |
Cs2—O7—Cs2v | 89.74 (5) | O10—C6—Cs3 | 105.67 (13) |
C1—O7—Cs1i | 84.74 (13) | O10—C6—O9 | 125.9 (2) |
C1—O7—Cs2v | 114.49 (15) | O10—C6—C3 | 116.86 (19) |
Cs1i—O7—C1—Cs2 | 134.16 (11) | Cs2vii—O11—C5—C4 | −50.2 (3) |
Cs1i—O7—C1—Cs2i | 52.09 (9) | Cs2—O13—C3—C2 | 33.2 (2) |
Cs1i—O7—C1—Cs3 | −41.3 (3) | Cs2—O13—C3—C4 | −83.01 (17) |
Cs1i—O7—C1—O8 | 11.4 (2) | Cs2—O13—C3—C6 | 154.48 (11) |
Cs1i—O7—C1—C2 | −168.34 (17) | Cs2—C1—C2—C3 | −70.94 (16) |
Cs1i—O8—C1—Cs2i | −100.58 (17) | Cs2i—C1—C2—C3 | 31.8 (2) |
Cs1i—O8—C1—Cs2 | −74.70 (19) | Cs3—O8—C1—Cs1i | −126.90 (16) |
Cs1i—O8—C1—Cs3 | 126.90 (16) | Cs3—O8—C1—Cs2i | 132.5 (2) |
Cs1i—O8—C1—O7 | −14.5 (3) | Cs3—O8—C1—Cs2 | 158.40 (9) |
Cs1i—O8—C1—C2 | 165.25 (14) | Cs3—O8—C1—O7 | −141.38 (18) |
Cs1vii—O9—C6—Cs2i | 49.76 (13) | Cs3—O8—C1—C2 | 38.3 (2) |
Cs1vii—O9—C6—Cs3 | 82.15 (7) | Cs3—O9—C6—Cs1vii | −82.15 (7) |
Cs1vii—O9—C6—O10 | −1.9 (2) | Cs3—O9—C6—Cs2i | −32.38 (14) |
Cs1vii—O9—C6—C3 | 176.14 (13) | Cs3—O9—C6—O10 | −84.1 (2) |
Cs1vii—O10—C6—Cs2i | −93.24 (11) | Cs3—O9—C6—C3 | 93.99 (16) |
Cs1vii—O10—C6—Cs3 | −55.83 (7) | Cs3x—O10—C6—Cs1vii | −90.76 (8) |
Cs1vii—O10—C6—O9 | 1.7 (2) | Cs3x—O10—C6—Cs2i | 176.00 (17) |
Cs1vii—O10—C6—C3 | −176.35 (15) | Cs3x—O10—C6—Cs3 | −146.59 (6) |
Cs1iii—O11—C5—Cs1 | 86.11 (7) | Cs3x—O10—C6—O9 | −89.1 (2) |
Cs1iii—O11—C5—Cs3xi | −59.5 (3) | Cs3x—O10—C6—C3 | 92.88 (17) |
Cs1iii—O11—C5—O12 | 19.9 (2) | Cs3x—O11—C5—Cs1 | −2.01 (19) |
Cs1iii—O11—C5—C4 | −158.83 (16) | Cs3x—O11—C5—Cs1iii | −88.12 (15) |
Cs1iii—O12—C5—Cs1 | −104.57 (7) | Cs3x—O11—C5—Cs3xi | −147.63 (15) |
Cs1—O12—C5—Cs1iii | 104.57 (7) | Cs3x—O11—C5—O12 | −68.3 (3) |
Cs1—O12—C5—Cs3xi | −134.88 (9) | Cs3x—O11—C5—C4 | 113.0 (2) |
Cs1iii—O12—C5—Cs3xi | 120.55 (9) | Cs3xi—O12—C5—Cs1 | 134.88 (9) |
Cs1—O12—C5—O11 | 85.5 (2) | Cs3xi—O12—C5—Cs1iii | −120.55 (9) |
Cs1iii—O12—C5—O11 | −19.1 (2) | Cs3xi—O12—C5—O11 | −139.6 (2) |
Cs1—O12—C5—C4 | −95.82 (18) | Cs3xi—O12—C5—C4 | 39.1 (2) |
Cs1iii—O12—C5—C4 | 159.61 (16) | Cs3—C1—C2—C3 | 96.43 (16) |
Cs1—O13—C3—C2 | 149.16 (14) | Cs3xi—C4—C5—Cs1 | −102.19 (7) |
Cs1—O13—C3—C4 | 33.0 (2) | Cs3xi—C4—C5—Cs1iii | 64.1 (4) |
Cs1—O13—C3—C6 | −89.54 (19) | Cs3xi—C4—C5—O11 | 145.71 (18) |
Cs1i—C1—C2—C3 | 114.1 (4) | Cs3xi—C4—C5—O12 | −33.08 (19) |
Cs2—O7—C1—Cs1i | −134.16 (11) | O7—C1—C2—C3 | −108.2 (2) |
Cs2v—O7—C1—Cs1i | 122.74 (9) | O8—C1—C2—C3 | 72.1 (3) |
Cs2—O7—C1—Cs2i | −82.07 (14) | O13—C3—C4—Cs3xi | 66.8 (3) |
Cs2v—O7—C1—Cs2 | −103.10 (14) | O13—C3—C4—C5 | −56.4 (2) |
Cs2v—O7—C1—Cs2i | 174.83 (5) | O13—C3—C6—Cs2i | −46.78 (15) |
Cs2—O7—C1—Cs3 | −175.46 (19) | O13—C3—C6—Cs3 | −120.44 (13) |
Cs2v—O7—C1—Cs3 | 81.4 (3) | O13—C3—C6—O9 | −179.56 (17) |
Cs2—O7—C1—O8 | −122.8 (2) | O13—C3—C6—O10 | −1.3 (2) |
Cs2v—O7—C1—O8 | 134.14 (19) | C1—C2—C3—O13 | 42.5 (2) |
Cs2—O7—C1—C2 | 57.5 (2) | C1—C2—C3—C4 | 159.72 (18) |
Cs2v—O7—C1—C2 | −45.6 (2) | C1—C2—C3—C6 | −77.2 (2) |
Cs2i—O8—C1—Cs1i | 100.58 (17) | C2—C3—C4—Cs3xi | −51.3 (3) |
Cs2i—O8—C1—Cs2 | 25.9 (3) | C2—C3—C4—C5 | −174.41 (18) |
Cs2i—O8—C1—Cs3 | −132.5 (2) | C2—C3—C6—Cs2i | 73.71 (16) |
Cs2i—O8—C1—O7 | 86.1 (3) | C2—C3—C6—Cs3 | 0.05 (18) |
Cs2i—O8—C1—C2 | −94.2 (2) | C2—C3—C6—O9 | −59.1 (2) |
Cs2vii—O9—C6—Cs1vii | 86.42 (9) | C2—C3—C6—O10 | 119.2 (2) |
Cs2vii—O9—C6—Cs2i | 136.19 (7) | C3—C4—C5—Cs1 | 50.77 (19) |
Cs2vii—O9—C6—Cs3 | 168.57 (14) | C3—C4—C5—Cs1iii | −143.0 (4) |
Cs2vii—O9—C6—O10 | 84.5 (2) | C3—C4—C5—Cs3xi | 152.96 (19) |
Cs2vii—O9—C6—C3 | −97.44 (17) | C3—C4—C5—O11 | −61.3 (3) |
Cs2i—O10—C6—Cs1vii | 93.24 (11) | C3—C4—C5—O12 | 119.9 (2) |
Cs2i—O10—C6—Cs3 | 37.41 (15) | C4—C3—C6—Cs2i | −166.67 (13) |
Cs2i—O10—C6—O9 | 94.9 (2) | C4—C3—C6—Cs3 | 119.68 (15) |
Cs2i—O10—C6—C3 | −83.12 (19) | C4—C3—C6—O9 | 60.6 (2) |
Cs2vii—O11—C5—Cs1 | −165.21 (9) | C4—C3—C6—O10 | −121.2 (2) |
Cs2vii—O11—C5—Cs1iii | 108.68 (15) | C6—C3—C4—Cs3xi | −173.29 (18) |
Cs2vii—O11—C5—Cs3xi | 49.2 (3) | C6—C3—C4—C5 | 63.6 (2) |
Cs2vii—O11—C5—O12 | 128.5 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x−1/2, −y+3/2, z−1/2; (viii) −x+3/2, y−1/2, −z+1/2; (ix) x−1, y, z; (x) −x+1/2, y+1/2, −z+1/2; (xi) −x+3/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···O10 | 0.75 (5) | 2.06 (5) | 2.579 (2) | 127 (4) |
O1W—H1WA···O7i | 0.88 (5) | 1.81 (5) | 2.684 (3) | 174 (5) |
O1W—H1WB···O9xii | 0.76 (5) | 1.95 (5) | 2.695 (3) | 167 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (xii) x−1/2, −y+3/2, z+1/2. |
3Cs+·C6H5O73−·H2O | β = 97.0000° |
Mr = 605.85 | V = 1277.69 Å3 |
Monoclinic, P21/n | Z = 4 |
a = 7.7529 Å | DFT calculation radiation, λ = 1.54184 Å |
b = 12.0281 Å | T = 100 K |
c = 13.8043 Å |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.50780 | 0.82708 | 0.61694 | 0.00960* | |
Cs2 | 0.83209 | 0.55810 | 0.61104 | 0.00867* | |
Cs3 | 0.38395 | 0.43445 | 0.11206 | 0.01077* | |
O7 | 0.78685 | 0.43530 | 0.42471 | 0.01460* | |
O8 | 0.53202 | 0.41899 | 0.32856 | 0.01190* | |
O9 | 0.40939 | 0.69538 | 0.19097 | 0.01090* | |
O10 | 0.28355 | 0.67716 | 0.32774 | 0.01250* | |
O11 | 0.46920 | 0.91349 | 0.32953 | 0.01330* | |
O12 | 0.71297 | 0.95547 | 0.42842 | 0.01600* | |
O13 | 0.56194 | 0.66231 | 0.44450 | 0.00980* | |
H18 | 0.43476 | 0.65343 | 0.43651 | 0.02800* | |
C1 | 0.67041 | 0.46915 | 0.35846 | 0.00830* | |
C2 | 0.70544 | 0.58130 | 0.31182 | 0.00870* | |
H14 | 0.84281 | 0.60200 | 0.33092 | 0.01100* | |
H15 | 0.68245 | 0.57527 | 0.23228 | 0.00900* | |
C3 | 0.59503 | 0.67849 | 0.34578 | 0.00720* | |
C4 | 0.70484 | 0.78402 | 0.34170 | 0.00980* | |
H16 | 0.74216 | 0.79325 | 0.26803 | 0.01000* | |
H17 | 0.82267 | 0.77093 | 0.39247 | 0.00600* | |
C5 | 0.62112 | 0.89281 | 0.36933 | 0.00800* | |
C6 | 0.41465 | 0.68598 | 0.28244 | 0.00790* | |
O1W | 0.09706 | 0.77363 | 0.54410 | 0.01850* | |
H1W | 0.14970 | 0.69912 | 0.54760 | 0.04000* | |
H3W | 0.04287 | 0.78150 | 0.60432 | 0.02400* |
O7—C1 | 1.271 | C2—H15 | 1.093 |
O8—C1 | 1.256 | C2—C3 | 1.555 |
O9—C6 | 1.263 | C3—C4 | 1.533 |
O10—C6 | 1.261 | C3—C6 | 1.559 |
O11—C5 | 1.262 | C4—H16 | 1.096 |
O12—C5 | 1.264 | C4—H17 | 1.093 |
O13—H18 | 0.984 | C4—C5 | 1.529 |
O13—C3 | 1.430 | O1W—H1W | 0.984 |
C1—C2 | 1.533 | O1W—H3W | 0.981 |
C2—H14 | 1.094 |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H18···O10 | 0.984 | 1.811 | 2.538 | 127.9 |
O1W—H1W···O7i | 0.984 | 1.719 | 2.686 | 166.8 |
O1W—H3W···O9ii | 0.981 | 1.697 | 2.662 | 167.0 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+3/2, z+1/2. |
Ka | Rbb | Csc | |
a | 7.092 (2) | 7.4477 (1) | 7.88551 (4) |
b | 11.772 (1) | 11.8755 (2) | 12.2109 (8) |
c | 12.865 (1) | 13.4167 (2) | 14.0367 (8) |
β | 98.031 (2) | 97.8820 (9) | 97.280 (4) |
V | 1063.50 | 1175.44 (3) | 1340.63 (14) |
V/non-H | 16.6 | 17.3 | 19.7 |
T | 300 | 300 | 100 |
References: (a) Carrell et al. (1987); (b) Rammohan & Kaduk (2017c); (c) this work. |
Footnotes
‡Present address: CCDC 174 Frelinghuysen Rd Piscataway NJ 00854 USA.
Acknowledgements
We thank Charlotte Stern of the Department of Chemistry of Northwestern University for useful discussions and assistance in retrieving the archived raw data.
References
Bravais, A. (1866). In Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burns, D. M. & Iball, I. (1954). Acta Cryst. 7, 137–138. CSD CrossRef IUCr Journals Web of Science Google Scholar
Carrell, H. L., Glusker, J. P., Piercy, E. A., Stallings, W. C., Zacharias, D. E., Davis, R. L., Astbury, C. & Kennard, K. H. L. (1987). J. Am. Chem. Soc. 109, 8067–8071. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Donnay, J. D. H. & Harker, D. (1937). Amer. Miner. 22, 446–467. CAS Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573. Web of Science CrossRef CAS Google Scholar
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455. Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaduk, J. A. & Stern, C. (2016a). Private communication (deposition Nos. 1446457–1446458). CCDC, Cambridge, England. Google Scholar
Kaduk, J. A. & Stern, C. (2016b). Private communication (deposition Nos. 1446460–1446461). CCDC, Cambridge, England. Google Scholar
Love, W. E. & Patterson, A. L. (1960). Acta Cryst. 13, 426–428. CSD CrossRef IUCr Journals Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Prencipe, M. (1990). Laurea Thesis, pp. 91–92; www. crystal. unito. it/Basis_Sets/caesium. html. Google Scholar
Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017a). Submitted to Acta Cryst. B. Google Scholar
Rammohan, A. & Kaduk, J. A. (2017b). Acta Cryst. E73, 92–95. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017c). Acta Cryst. E73, 227–230. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017d). Acta Cryst. E73, 250–253. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017e). Acta Cryst. E73, 286–290. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017f). Acta Cryst. E73, 133–136. CSD CrossRef IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2017g). Private communication (deposition No. 1525884). CCDC, Cambridge, England. Google Scholar
Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2017). Acta Cryst. E73, 231–234. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.