research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1,10-phenanthroline-κ2N,N′)(1,3-thia­zole-2-thiol­ato-κ2S2,N)nickel(II) hexa­fluorido­phosphate 1,4-dioxane sesquisolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: thama@fukuoka-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 March 2017; accepted 22 March 2017; online 24 March 2017)

The title salt, [Ni(C3H2NS2)(C12H8N2)2]PF6·1.5C4H8O2, was the unexpected product on making an attempt to prepare an [Ni(2-mercapto­thia­zol­ate)(1,10-phenanthroline)]+ complex by reaction of [NiCl2(1,10-phen­an­throline)] with 2-mercapto­thia­zolate. In the resulting complex, the 2-mercapto­thia­zolate anion acts as a chelating ligand, which coordinates to the NiII ion with the thia­zolyl N and thiol­ate S atoms. In the crystal, ππ stacking inter­actions between the coordinating 1,10-phenanthroline mol­ecules of adjacent complexes result in a zigzag chain running parallel to the c axis. Weak C—H⋯X (X = O, F) hydrogen-bonding inter­actions between the chains and 1,4-dioxane solvent mol­ecules and PF6 counter-anions lead to the formation of sheets parallel to the ac plane.

1. Chemical context

2-Mercapto­thia­zolate (tzS) has three types of atoms available for coordination, namely the thia­zolyl N, the thia­zolyl S, and the thiol­ate S atom. Hence the tzS ligand is able to show different coordination modes. The anionic tzS ligand and its protonated neutral form are generally used as bridging ligands [μ2-tzS-κ(N, thiol­ate S)] or as monodentate ligands [κ(thiol­ate S)] (Raper et al., 1989[Raper, E. S., Britton, A. M. & Clegg, W. (1989). Inorg. Chim. Acta, 166, 171-172.], 1990a[Raper, E. S., Britton, A. M. & Clegg, W. (1990a). Acta Cryst. C46, 2344-2346.]) whereas transition metal complexes with tzS in a bidentate coordination mode are rare (Raper et al., 1989[Raper, E. S., Britton, A. M. & Clegg, W. (1989). Inorg. Chim. Acta, 166, 171-172.]), although a number of transition metal complexes with 2-mercaptobenzo­thia­zolate as a bidentate ligand exist (Raper et al., 1990b[Raper, E. S., Britton, A. M. & Clegg, W. (1990b). J. Chem. Soc. Dalton Trans. pp. 3341-3345.]; Ballester et al., 1994[Ballester, L., Gutierrez, A., Perpinan, M. F., Rico, T., Gutierrez-Puebla, E. & &Monge, A. (1994). Polyhedron, 13, 2271-2283.]; Khan et al., 2010[Khan, I. U., Şahin, O., Jillani, S. M. S., Sharif, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, m587-m588.]).

[Scheme 1]

In a project intended to prepare the square-planar [Ni(tzS)(phen)]+ cation involving tzS as a bidentate ligand by reaction of [NiCl2(phen)] (phen is 1,10-phenanthroline) with 2-mercapto­thia­zolate, we obtained the unexpected title dioxane solvate compound [Ni(tzS)(phen)2](PF6)·1.5(1,4-dioxane) in which the tzS ligand acts after all as a bidentate ligand.

2. Structural commentary

The title salt consists of a complex cation [Ni(tzS)(phen)2]+, one PF6 counter-anion, and 1.5 1,4-dioxane solvent mol­ecules of crystallization (one located about a centre of inversion), as shown in Fig. 1[link]. The nickel(II) atom exhibits a considerably distorted octa­hedral N5S coordination environment, which is constructed from one bidentate tzS and two bidentate phen ligands whereby the tzS ligand chelates to the NiII atom through the thia­zolyl N and thiol­ate S atoms. Selected bond lengths and angles are gathered in Table 1[link]. These values are very similar to that of related Ni complexes with bidentate 2-mercaptobenzo­thia­zolate ligands (Raper et al., 1990b[Raper, E. S., Britton, A. M. & Clegg, W. (1990b). J. Chem. Soc. Dalton Trans. pp. 3341-3345.]; Ballester et al., 1994[Ballester, L., Gutierrez, A., Perpinan, M. F., Rico, T., Gutierrez-Puebla, E. & &Monge, A. (1994). Polyhedron, 13, 2271-2283.]; Khan et al., 2010[Khan, I. U., Şahin, O., Jillani, S. M. S., Sharif, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, m587-m588.]). The narrow bite angle involving the tzS ligand (Table 1[link]) is due to formation of a four-membered chelate ring. The averaged Ni—N(phen) distances and bite angles are 2.08 Å and 80.2°, which are typical values for Ni–phen complexes (Bouzaid et al., 2012[Bouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906-3916.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 2.0524 (16) Ni1—N2 2.0780 (15)
Ni1—N5 2.0668 (15) Ni1—N3 2.0890 (15)
Ni1—N4 2.0735 (15) Ni1—S1 2.5871 (5)
       
N5—Ni1—N4 80.54 (6) N1—Ni1—S1 67.71 (4)
N2—Ni1—N3 79.90 (6)    
[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt, shown with 50% probability displacement ellipsoids. [Symmetry code: (i) 1 − x, −y, 1 − z.]

3. Supra­molecular features

In the crystal, ππ stacking inter­actions between phen ligands of adjacent [Ni(tzS)(phen)2]+ exist (Fig. 2[link]). The inter­actions result in zigzag chains parallel to the c axis. The distances between the centroids of the rings are 3.8528 (11) for Cg6⋯Cg9ii and Cg9⋯Cg6ii, and 3.6126 (10) Å for Cg8⋯Cg10iii and Cg10⋯Cg8iii, respectively [Cg6, Cg9, Cg8, and Cg10 are the centroids of the N3/C14/C10–C13, C7–C10/C14/C15, N5/C26/C22–C25 and C19–C22/C26/C27 rings, respectively; symmetry codes: (ii) 2 − x, 1 − y, 1 − z; (iii) 2 − x, 1 − y, −z]. Such chains in turn are linked by weak C—H⋯X (X = O, F) hydrogen-bonding inter­actions involving the PF6 counter-anion and 1,4-dioxane solvent mol­ecules, which results in the formation of a sheet structure parallel to the ac plane (Fig. 3[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H1⋯O1i 0.95 2.42 3.330 (2) 160
C3—H2⋯F6 0.95 2.47 3.074 (2) 122
C4—H3⋯O2 0.95 2.51 3.226 (2) 132
C5—H4⋯O1 0.95 2.63 3.269 (2) 125
C12—H9⋯F4ii 0.95 2.63 3.249 (3) 124
C13—H10⋯F6ii 0.95 2.56 3.412 (2) 150
C24—H17⋯F1iii 0.95 2.58 3.386 (3) 143
C28—H20⋯F3iii 0.99 2.50 3.336 (3) 142
C30—H23⋯F1iv 0.99 2.44 3.225 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x+1, y-1, z; (iv) x, y-1, z.
[Figure 2]
Figure 2
The arrangement of the complex cations in the crystal structure, forming zigzag ππ stacked chains extending parallel to the c axis. Green dashed lines represent ππ stacking inter­actions, red spheres represent centroids of the phen­yl/pyridyl rings. Cg6, Cg9, Cg8 and Cg10 are the centroids of the N3/C14/C10–13, C7–C10/C14/C15, N5/C26/C22–C25 and C19-C22/C26/C27 rings, respectively. [Symmetry codes: (ii) 2 − x, 1 − y, 1 − z; (iii) 2 − x, 1 − y, −z.]
[Figure 3]
Figure 3
The sheet structure constructed from chains by C—H⋯X (X = F, O) hydrogen-bonding inter­actions (blue dashed lines).

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals four reports of Ni complexes with bidentate 2-mercaptobenzo­thia­zolate ligands. One is a square-planar complex (Banerji et al., 1982[Banerji, S., Byrne, R. E. & Livingstone, S. E. (1982). Transition Met. Chem. 7, 5-10.]), the others being octa­hedral complexes. Two of them consist of two 2-mercaptobenzo­thia­zole ligands and another bidentate ligand (Ballester et al., 1994[Ballester, L., Gutierrez, A., Perpinan, M. F., Rico, T., Gutierrez-Puebla, E. & &Monge, A. (1994). Polyhedron, 13, 2271-2283.]; Khan et al., 2010[Khan, I. U., Şahin, O., Jillani, S. M. S., Sharif, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, m587-m588.]) whereas the third is a tris-2-mercaptobenzo­thia­zolate complex (Raper et al., 1990b[Raper, E. S., Britton, A. M. & Clegg, W. (1990b). J. Chem. Soc. Dalton Trans. pp. 3341-3345.]). In the case of a tzS-Ni complex, one μ2-tzS-κ(N, thiol­ate S)-Ni2 complex is reported (Raper et al., 1989[Raper, E. S., Britton, A. M. & Clegg, W. (1989). Inorg. Chim. Acta, 166, 171-172.]).

5. Synthesis and crystallization

The title compound was synthesized using [NiCl2(phen)], prepared by a literature protocol (Yakhvarov et al., 2007[Yakhvarov, D. G., Hey-Hawkins, E. M., Kagirov, R. M., Budnikova, Yu. H., Ganushevich, Yu. S. & Sinyashin, O. G. (2007). Russ. Chem. Bull. 56, 935-942.]). A mixture of 2-mercapto­thia­zole (8.07 × 10 −4 mol) and one equivalent of Et3N in methanol (10 ml) was added slowly to a solution of [NiCl2(phen)] (8.07 × 10 −4 mol) in methanol (20 ml). After stirring overnight, the colour of the solution turned from blue to brown–yellow. 10 equivalents of NH4PF6 were added to the solution, resulting in a pale-brown–yellow precipitate. The precipitate was filtered off and dried in vacuo. The crude product containing excess NH4PF6 was purified by recrystallization using 1,4-dioxane vapor diffusion into an aceto­nitrile solution of the crude product. The title complex was isolated as brown block-like crystals [yield 365 mg, 40.6% (based on Ni)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions and refined as riding, with phenyl C—H = 0.95 Å and methyl­ene C—H = 0.99 Å, both with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C3H2NS2)(C12H8N2)2]PF6·1.5C4H8O2
Mr 812.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 110
a, b, c (Å) 9.1800 (2), 12.1460 (2), 14.9005 (3)
α, β, γ (°) 88.490 (2), 89.166 (2), 83.278 (2)
V3) 1649.31 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.27 × 0.24 × 0.16
 
Data collection
Diffractometer Rigaku Saturn 724+ CCD area-detector diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.942, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30580, 9593, 8109
Rint 0.037
(sin θ/λ)max−1) 0.728
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.02
No. of reflections 9593
No. of parameters 460
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.07, −0.55
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku , 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]; Wakita, 2001[Wakita, K. (2001). Yadokari-XG. https://chem.s.kanazawa-u.ac. jp/coord/index_e. html]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku , 2001); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006) and Yadokari-XG (Kabuto et al., 2009; Wakita, 2001); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009; Wakita, 2001), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis(1,10-phenanthroline-κ2N,N')(1,3-thiazole-2-thiolato-κ2S2,N)nickel(II) hexafluoridophosphate 1,4-dioxane sesquisolvate top
Crystal data top
[Ni(C3H2NS2)(C12H8N2)2]PF6·1.5C4H8O2Z = 2
Mr = 812.42F(000) = 832
Triclinic, P1Dx = 1.636 Mg m3
a = 9.1800 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1460 (2) ÅCell parameters from 17089 reflections
c = 14.9005 (3) Åθ = 2.7–31.3°
α = 88.490 (2)°µ = 0.84 mm1
β = 89.166 (2)°T = 110 K
γ = 83.278 (2)°Block, pale brown
V = 1649.31 (6) Å30.27 × 0.24 × 0.16 mm
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
8109 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
θmax = 31.1°, θmin = 2.6°
Tmin = 0.942, Tmax = 1.000h = 1312
30580 measured reflectionsk = 1717
9593 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.5145P]
where P = (Fo2 + 2Fc2)/3
9593 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.73044 (2)0.61812 (2)0.24062 (2)0.01241 (6)
S10.53398 (5)0.58427 (4)0.12496 (3)0.02027 (10)
S20.27542 (5)0.74630 (4)0.20072 (3)0.02077 (10)
N10.53418 (17)0.71330 (13)0.26332 (10)0.0156 (3)
N20.67416 (17)0.49693 (12)0.33146 (10)0.0149 (3)
N30.83585 (16)0.66322 (12)0.35503 (10)0.0141 (3)
N40.80703 (16)0.73517 (12)0.15381 (10)0.0135 (3)
N50.91276 (17)0.52383 (12)0.18870 (10)0.0145 (3)
C10.4540 (2)0.68055 (15)0.19814 (12)0.0168 (3)
C20.4575 (2)0.79119 (15)0.31651 (12)0.0163 (3)
H10.5004910.8230320.3657350.020*
C30.3158 (2)0.81894 (16)0.29321 (13)0.0200 (4)
H20.2482210.8709810.3234820.024*
C40.5919 (2)0.41613 (15)0.31850 (13)0.0193 (4)
H30.5566320.4070170.2598650.023*
C50.5550 (2)0.34380 (16)0.38736 (14)0.0233 (4)
H40.4961990.2866490.3753710.028*
C60.6045 (2)0.35620 (16)0.47238 (14)0.0235 (4)
H50.5798980.3078480.5199310.028*
C70.6921 (2)0.44098 (16)0.48883 (12)0.0191 (4)
C80.7474 (2)0.46125 (17)0.57547 (13)0.0249 (4)
H60.7262210.4150780.6252860.030*
C90.8292 (2)0.54520 (18)0.58738 (13)0.0254 (4)
H70.8649270.5568150.6454830.030*
C100.8632 (2)0.61703 (16)0.51402 (12)0.0191 (4)
C110.9467 (2)0.70618 (17)0.52245 (14)0.0239 (4)
H80.9848060.7216070.5791050.029*
C120.9726 (2)0.77056 (16)0.44835 (14)0.0222 (4)
H91.0295890.8305570.4530620.027*
C130.9142 (2)0.74704 (15)0.36545 (13)0.0178 (4)
H100.9314150.7929800.3147340.021*
C140.8106 (2)0.59880 (15)0.42826 (12)0.0151 (3)
C150.7239 (2)0.50946 (15)0.41569 (12)0.0156 (3)
C160.7508 (2)0.83886 (15)0.13609 (12)0.0169 (3)
H110.6678910.8691490.1699230.020*
C170.8085 (2)0.90583 (15)0.06957 (13)0.0194 (4)
H120.7646100.9796280.0585050.023*
C180.9287 (2)0.86359 (15)0.02080 (12)0.0179 (4)
H130.9684950.9075010.0249980.021*
C190.9929 (2)0.75454 (15)0.03913 (12)0.0152 (3)
C201.1203 (2)0.70379 (16)0.00691 (12)0.0190 (4)
H141.1638200.7440550.0536120.023*
C211.1801 (2)0.59931 (16)0.01492 (12)0.0193 (4)
H151.2667610.5685160.0151280.023*
C221.1142 (2)0.53469 (15)0.08271 (12)0.0161 (3)
C231.1700 (2)0.42569 (16)0.10745 (13)0.0202 (4)
H161.2586410.3921750.0812520.024*
C241.0956 (2)0.36811 (16)0.16959 (13)0.0210 (4)
H171.1316440.2941020.1865550.025*
C250.9656 (2)0.41942 (15)0.20793 (12)0.0178 (4)
H180.9130460.3778200.2494340.021*
C260.98624 (19)0.58098 (14)0.12670 (11)0.0140 (3)
C270.92727 (19)0.69317 (14)0.10620 (11)0.0134 (3)
P10.06216 (5)1.07671 (4)0.28379 (3)0.01764 (10)
F10.08571 (15)1.13260 (13)0.29517 (10)0.0407 (4)
F20.07497 (16)1.12468 (12)0.18336 (8)0.0367 (3)
F30.20929 (14)1.02145 (11)0.27239 (9)0.0330 (3)
F40.04921 (18)1.02975 (13)0.38455 (9)0.0462 (4)
F50.15412 (16)1.18707 (11)0.31890 (10)0.0372 (3)
F60.02958 (15)0.96652 (11)0.24816 (11)0.0407 (4)
O10.46687 (16)0.11530 (11)0.48337 (10)0.0246 (3)
C280.6101 (2)0.05903 (18)0.46710 (15)0.0275 (4)
H190.6843480.1103350.4766840.033*
H200.6182130.0356960.4038870.033*
C290.3598 (2)0.04078 (17)0.47172 (15)0.0267 (4)
H210.3618530.0171590.4085830.032*
H220.2609070.0790380.4849380.032*
O20.43879 (16)0.25330 (12)0.19127 (10)0.0258 (3)
C300.4199 (2)0.14818 (19)0.23091 (14)0.0279 (5)
H230.3451900.1575200.2795690.034*
H240.5134060.1145880.2574850.034*
C310.3720 (3)0.07302 (19)0.16157 (16)0.0343 (5)
H250.3587120.0001650.1899030.041*
H260.2765980.1053730.1366570.041*
O30.4778 (2)0.05827 (13)0.09123 (12)0.0406 (4)
C320.5003 (3)0.16329 (19)0.05165 (15)0.0298 (5)
H270.4085800.1970320.0230200.036*
H280.5773400.1527110.0044310.036*
C330.5455 (2)0.23982 (19)0.12063 (15)0.0275 (4)
H290.6415390.2092070.1456900.033*
H300.5566150.3129110.0920260.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01357 (11)0.01267 (11)0.01108 (11)0.00176 (8)0.00075 (8)0.00039 (8)
S10.0239 (2)0.0193 (2)0.0174 (2)0.00050 (18)0.00023 (18)0.00451 (17)
S20.0155 (2)0.0246 (2)0.0219 (2)0.00020 (18)0.00392 (17)0.00288 (18)
N10.0160 (7)0.0166 (7)0.0140 (7)0.0014 (6)0.0003 (6)0.0004 (6)
N20.0158 (7)0.0137 (7)0.0152 (7)0.0014 (6)0.0007 (6)0.0004 (5)
N30.0132 (7)0.0137 (7)0.0153 (7)0.0006 (5)0.0018 (5)0.0015 (5)
N40.0142 (7)0.0141 (7)0.0124 (7)0.0018 (5)0.0019 (5)0.0006 (5)
N50.0165 (7)0.0136 (7)0.0133 (7)0.0016 (6)0.0016 (6)0.0008 (5)
C10.0178 (9)0.0165 (8)0.0159 (8)0.0009 (7)0.0001 (7)0.0001 (7)
C20.0208 (9)0.0152 (8)0.0134 (8)0.0041 (7)0.0001 (7)0.0006 (6)
C30.0205 (9)0.0201 (9)0.0189 (9)0.0001 (7)0.0019 (7)0.0026 (7)
C40.0216 (9)0.0160 (9)0.0209 (9)0.0044 (7)0.0007 (7)0.0009 (7)
C50.0263 (10)0.0153 (9)0.0288 (10)0.0055 (8)0.0045 (8)0.0001 (7)
C60.0289 (11)0.0147 (9)0.0257 (10)0.0004 (8)0.0080 (8)0.0060 (7)
C70.0217 (9)0.0177 (9)0.0163 (8)0.0039 (7)0.0030 (7)0.0028 (7)
C80.0312 (11)0.0260 (10)0.0155 (9)0.0032 (8)0.0018 (8)0.0054 (7)
C90.0310 (11)0.0309 (11)0.0126 (8)0.0042 (9)0.0036 (8)0.0005 (8)
C100.0192 (9)0.0211 (9)0.0155 (8)0.0050 (7)0.0034 (7)0.0032 (7)
C110.0233 (10)0.0272 (10)0.0206 (9)0.0021 (8)0.0081 (8)0.0086 (8)
C120.0196 (9)0.0196 (9)0.0278 (10)0.0021 (7)0.0057 (8)0.0074 (8)
C130.0174 (9)0.0151 (8)0.0209 (9)0.0014 (7)0.0016 (7)0.0021 (7)
C140.0158 (8)0.0149 (8)0.0136 (8)0.0032 (6)0.0009 (6)0.0022 (6)
C150.0171 (9)0.0137 (8)0.0153 (8)0.0005 (7)0.0008 (7)0.0003 (6)
C160.0172 (9)0.0146 (8)0.0184 (8)0.0005 (7)0.0003 (7)0.0016 (7)
C170.0234 (10)0.0142 (8)0.0203 (9)0.0009 (7)0.0023 (7)0.0020 (7)
C180.0219 (9)0.0174 (9)0.0151 (8)0.0052 (7)0.0009 (7)0.0022 (7)
C190.0161 (8)0.0177 (8)0.0125 (8)0.0039 (7)0.0023 (6)0.0008 (6)
C200.0180 (9)0.0244 (9)0.0152 (8)0.0046 (7)0.0023 (7)0.0005 (7)
C210.0164 (9)0.0240 (9)0.0173 (9)0.0013 (7)0.0023 (7)0.0043 (7)
C220.0162 (8)0.0175 (8)0.0148 (8)0.0011 (7)0.0020 (7)0.0031 (6)
C230.0173 (9)0.0194 (9)0.0229 (9)0.0036 (7)0.0021 (7)0.0061 (7)
C240.0235 (10)0.0151 (8)0.0233 (9)0.0030 (7)0.0049 (8)0.0014 (7)
C250.0213 (9)0.0154 (8)0.0168 (8)0.0019 (7)0.0039 (7)0.0005 (7)
C260.0138 (8)0.0142 (8)0.0138 (8)0.0005 (6)0.0032 (6)0.0017 (6)
C270.0143 (8)0.0142 (8)0.0119 (7)0.0019 (6)0.0032 (6)0.0010 (6)
P10.0179 (2)0.0176 (2)0.0175 (2)0.00266 (18)0.00070 (18)0.00178 (17)
F10.0282 (7)0.0550 (9)0.0433 (8)0.0218 (7)0.0021 (6)0.0075 (7)
F20.0479 (9)0.0412 (8)0.0197 (6)0.0024 (7)0.0003 (6)0.0089 (6)
F30.0254 (7)0.0397 (8)0.0370 (7)0.0140 (6)0.0059 (5)0.0143 (6)
F40.0601 (10)0.0546 (10)0.0254 (7)0.0157 (8)0.0099 (7)0.0166 (7)
F50.0406 (8)0.0258 (7)0.0450 (8)0.0014 (6)0.0112 (6)0.0130 (6)
F60.0302 (7)0.0273 (7)0.0615 (10)0.0095 (6)0.0039 (7)0.0039 (7)
O10.0298 (8)0.0153 (7)0.0285 (8)0.0022 (6)0.0013 (6)0.0007 (6)
C280.0279 (11)0.0232 (10)0.0314 (11)0.0048 (8)0.0076 (9)0.0008 (8)
C290.0253 (11)0.0221 (10)0.0325 (11)0.0013 (8)0.0005 (9)0.0006 (8)
O20.0232 (7)0.0280 (8)0.0265 (7)0.0036 (6)0.0015 (6)0.0043 (6)
C300.0207 (10)0.0383 (12)0.0241 (10)0.0018 (9)0.0007 (8)0.0059 (9)
C310.0444 (14)0.0247 (11)0.0345 (12)0.0083 (10)0.0017 (10)0.0040 (9)
O30.0588 (12)0.0220 (8)0.0392 (10)0.0015 (8)0.0122 (8)0.0051 (7)
C320.0342 (12)0.0316 (12)0.0231 (10)0.0022 (9)0.0043 (9)0.0001 (9)
C330.0198 (10)0.0352 (12)0.0279 (11)0.0059 (9)0.0011 (8)0.0020 (9)
Geometric parameters (Å, º) top
Ni1—N12.0524 (16)C17—H120.9500
Ni1—N52.0668 (15)C18—C191.407 (3)
Ni1—N42.0735 (15)C18—H130.9500
Ni1—N22.0780 (15)C19—C271.402 (2)
Ni1—N32.0890 (15)C19—C201.432 (3)
Ni1—S12.5871 (5)C20—C211.355 (3)
S1—C11.7143 (19)C20—H140.9500
S2—C31.724 (2)C21—C221.433 (3)
S2—C11.7377 (19)C21—H150.9500
N1—C11.324 (2)C22—C261.403 (2)
N1—C21.373 (2)C22—C231.404 (3)
N2—C41.326 (2)C23—C241.368 (3)
N2—C151.360 (2)C23—H160.9500
N3—C131.327 (2)C24—C251.401 (3)
N3—C141.359 (2)C24—H170.9500
N4—C161.325 (2)C25—H180.9500
N4—C271.359 (2)C26—C271.433 (2)
N5—C251.329 (2)P1—F31.5901 (13)
N5—C261.359 (2)P1—F21.5925 (13)
C2—C31.353 (3)P1—F41.5929 (14)
C2—H10.9500P1—F51.5944 (14)
C3—H20.9500P1—F61.5946 (14)
C4—C51.397 (3)P1—F11.6002 (14)
C4—H30.9500O1—C291.427 (2)
C5—C61.370 (3)O1—C281.430 (3)
C5—H40.9500C28—C29i1.499 (3)
C6—C71.407 (3)C28—H190.9900
C6—H50.9500C28—H200.9900
C7—C151.402 (2)C29—H210.9900
C7—C81.431 (3)C29—H220.9900
C8—C91.352 (3)O2—C301.421 (3)
C8—H60.9500O2—C331.427 (3)
C9—C101.434 (3)C30—C311.500 (3)
C9—H70.9500C30—H230.9900
C10—C141.405 (2)C30—H240.9900
C10—C111.407 (3)C31—O31.419 (3)
C11—C121.370 (3)C31—H250.9900
C11—H80.9500C31—H260.9900
C12—C131.403 (3)O3—C321.427 (3)
C12—H90.9500C32—C331.498 (3)
C13—H100.9500C32—H270.9900
C14—C151.436 (2)C32—H280.9900
C16—C171.403 (3)C33—H290.9900
C16—H110.9500C33—H300.9900
C17—C181.369 (3)
N1—Ni1—N5167.32 (6)C17—C18—H13120.3
N1—Ni1—N493.43 (6)C19—C18—H13120.3
N5—Ni1—N480.54 (6)C27—C19—C18117.60 (17)
N1—Ni1—N291.11 (6)C27—C19—C20118.87 (17)
N5—Ni1—N295.58 (6)C18—C19—C20123.53 (17)
N4—Ni1—N2174.56 (6)C21—C20—C19121.19 (17)
N1—Ni1—N396.71 (6)C21—C20—H14119.4
N5—Ni1—N395.07 (6)C19—C20—H14119.4
N4—Ni1—N396.57 (6)C20—C21—C22120.89 (17)
N2—Ni1—N379.90 (6)C20—C21—H15119.6
N1—Ni1—S167.71 (4)C22—C21—H15119.6
N5—Ni1—S1100.94 (4)C26—C22—C23117.41 (17)
N4—Ni1—S189.91 (4)C26—C22—C21119.09 (17)
N2—Ni1—S194.59 (4)C23—C22—C21123.49 (17)
N3—Ni1—S1163.53 (4)C24—C23—C22119.49 (18)
C1—S1—Ni172.66 (6)C24—C23—H16120.3
C3—S2—C190.25 (9)C22—C23—H16120.3
C1—N1—C2112.89 (16)C23—C24—C25119.32 (18)
C1—N1—Ni1100.84 (12)C23—C24—H17120.3
C2—N1—Ni1146.25 (13)C25—C24—H17120.3
C4—N2—C15118.14 (16)N5—C25—C24122.78 (18)
C4—N2—Ni1128.68 (13)N5—C25—H18118.6
C15—N2—Ni1113.07 (12)C24—C25—H18118.6
C13—N3—C14118.13 (16)N5—C26—C22122.98 (16)
C13—N3—Ni1129.09 (13)N5—C26—C27117.26 (16)
C14—N3—Ni1112.67 (11)C22—C26—C27119.76 (16)
C16—N4—C27118.16 (15)N4—C27—C19122.76 (16)
C16—N4—Ni1129.33 (13)N4—C27—C26117.15 (15)
C27—N4—Ni1112.38 (11)C19—C27—C26120.09 (16)
C25—N5—C26117.93 (16)F3—P1—F290.17 (8)
C25—N5—Ni1129.51 (13)F3—P1—F490.13 (8)
C26—N5—Ni1112.56 (11)F2—P1—F4179.51 (9)
N1—C1—S1118.78 (14)F3—P1—F590.39 (8)
N1—C1—S2111.99 (14)F2—P1—F590.13 (8)
S1—C1—S2129.24 (11)F4—P1—F589.48 (9)
C3—C2—N1114.64 (17)F3—P1—F689.55 (8)
C3—C2—H1122.7F2—P1—F689.58 (8)
N1—C2—H1122.7F4—P1—F690.81 (9)
C2—C3—S2110.23 (14)F5—P1—F6179.70 (9)
C2—C3—H2124.9F3—P1—F1179.86 (10)
S2—C3—H2124.9F2—P1—F189.74 (8)
N2—C4—C5122.83 (18)F4—P1—F189.96 (8)
N2—C4—H3118.6F5—P1—F189.50 (8)
C5—C4—H3118.6F6—P1—F190.56 (8)
C6—C5—C4119.28 (18)C29—O1—C28109.56 (15)
C6—C5—H4120.4O1—C28—C29i111.04 (17)
C4—C5—H4120.4O1—C28—H19109.4
C5—C6—C7119.59 (18)C29i—C28—H19109.4
C5—C6—H5120.2O1—C28—H20109.4
C7—C6—H5120.2C29i—C28—H20109.4
C15—C7—C6117.20 (18)H19—C28—H20108.0
C15—C7—C8119.17 (18)O1—C29—C28i110.46 (18)
C6—C7—C8123.63 (18)O1—C29—H21109.6
C9—C8—C7120.92 (18)C28i—C29—H21109.6
C9—C8—H6119.5O1—C29—H22109.6
C7—C8—H6119.5C28i—C29—H22109.6
C8—C9—C10121.29 (18)H21—C29—H22108.1
C8—C9—H7119.4C30—O2—C33109.66 (16)
C10—C9—H7119.4O2—C30—C31110.18 (17)
C14—C10—C11117.21 (18)O2—C30—H23109.6
C14—C10—C9118.94 (18)C31—C30—H23109.6
C11—C10—C9123.85 (18)O2—C30—H24109.6
C12—C11—C10119.52 (18)C31—C30—H24109.6
C12—C11—H8120.2H23—C30—H24108.1
C10—C11—H8120.2O3—C31—C30110.5 (2)
C11—C12—C13119.36 (18)O3—C31—H25109.5
C11—C12—H9120.3C30—C31—H25109.5
C13—C12—H9120.3O3—C31—H26109.5
N3—C13—C12122.67 (18)C30—C31—H26109.5
N3—C13—H10118.7H25—C31—H26108.1
C12—C13—H10118.7C31—O3—C32109.84 (17)
N3—C14—C10123.10 (17)O3—C32—C33111.09 (18)
N3—C14—C15117.20 (15)O3—C32—H27109.4
C10—C14—C15119.70 (17)C33—C32—H27109.4
N2—C15—C7122.97 (17)O3—C32—H28109.4
N2—C15—C14117.04 (16)C33—C32—H28109.4
C7—C15—C14119.99 (17)H27—C32—H28108.0
N4—C16—C17122.88 (17)O2—C33—C32110.56 (17)
N4—C16—H11118.6O2—C33—H29109.5
C17—C16—H11118.6C32—C33—H29109.5
C18—C17—C16119.20 (17)O2—C33—H30109.5
C18—C17—H12120.4C32—C33—H30109.5
C16—C17—H12120.4H29—C33—H30108.1
C17—C18—C19119.37 (17)
C2—N1—C1—S1179.41 (13)N3—C14—C15—C7179.09 (16)
Ni1—N1—C1—S11.39 (16)C10—C14—C15—C70.0 (3)
C2—N1—C1—S20.3 (2)C27—N4—C16—C171.2 (3)
Ni1—N1—C1—S2178.89 (9)Ni1—N4—C16—C17174.37 (14)
Ni1—S1—C1—N11.14 (13)N4—C16—C17—C180.5 (3)
Ni1—S1—C1—S2179.20 (15)C16—C17—C18—C190.8 (3)
C3—S2—C1—N10.03 (15)C17—C18—C19—C271.3 (3)
C3—S2—C1—S1179.65 (14)C17—C18—C19—C20178.73 (18)
C1—N1—C2—C30.5 (2)C27—C19—C20—C211.8 (3)
Ni1—N1—C2—C3178.06 (17)C18—C19—C20—C21178.29 (18)
N1—C2—C3—S20.5 (2)C19—C20—C21—C222.3 (3)
C1—S2—C3—C20.25 (15)C20—C21—C22—C260.0 (3)
C15—N2—C4—C50.1 (3)C20—C21—C22—C23179.21 (18)
Ni1—N2—C4—C5175.92 (14)C26—C22—C23—C242.7 (3)
N2—C4—C5—C60.3 (3)C21—C22—C23—C24176.58 (18)
C4—C5—C6—C70.3 (3)C22—C23—C24—C250.5 (3)
C5—C6—C7—C150.2 (3)C26—N5—C25—C242.4 (3)
C5—C6—C7—C8179.18 (19)Ni1—N5—C25—C24176.95 (13)
C15—C7—C8—C90.0 (3)C23—C24—C25—N52.2 (3)
C6—C7—C8—C9179.0 (2)C25—N5—C26—C220.0 (3)
C7—C8—C9—C100.2 (3)Ni1—N5—C26—C22179.44 (13)
C8—C9—C10—C140.4 (3)C25—N5—C26—C27179.54 (15)
C8—C9—C10—C11179.5 (2)Ni1—N5—C26—C271.01 (19)
C14—C10—C11—C120.2 (3)C23—C22—C26—N52.5 (3)
C9—C10—C11—C12179.65 (19)C21—C22—C26—N5176.79 (16)
C10—C11—C12—C130.6 (3)C23—C22—C26—C27177.96 (16)
C14—N3—C13—C120.7 (3)C21—C22—C26—C272.8 (3)
Ni1—N3—C13—C12176.59 (14)C16—N4—C27—C190.5 (2)
C11—C12—C13—N31.1 (3)Ni1—N4—C27—C19175.75 (13)
C13—N3—C14—C100.1 (3)C16—N4—C27—C26179.86 (15)
Ni1—N3—C14—C10176.42 (14)Ni1—N4—C27—C263.88 (19)
C13—N3—C14—C15179.19 (16)C18—C19—C27—N40.7 (3)
Ni1—N3—C14—C152.7 (2)C20—C19—C27—N4179.34 (16)
C11—C10—C14—N30.5 (3)C18—C19—C27—C26178.90 (16)
C9—C10—C14—N3179.28 (17)C20—C19—C27—C261.0 (2)
C11—C10—C14—C15179.60 (17)N5—C26—C27—N43.4 (2)
C9—C10—C14—C150.2 (3)C22—C26—C27—N4177.08 (15)
C4—N2—C15—C70.0 (3)N5—C26—C27—C19176.28 (15)
Ni1—N2—C15—C7176.42 (14)C22—C26—C27—C193.3 (2)
C4—N2—C15—C14178.94 (16)C29—O1—C28—C29i57.7 (2)
Ni1—N2—C15—C142.5 (2)C28—O1—C29—C28i57.4 (2)
C6—C7—C15—N20.0 (3)C33—O2—C30—C3158.8 (2)
C8—C7—C15—N2179.08 (17)O2—C30—C31—O359.4 (2)
C6—C7—C15—C14178.90 (17)C30—C31—O3—C3257.7 (3)
C8—C7—C15—C140.2 (3)C31—O3—C32—C3356.7 (3)
N3—C14—C15—N20.1 (2)C30—O2—C33—C3257.7 (2)
C10—C14—C15—N2179.01 (16)O3—C32—C33—O257.0 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···O1ii0.952.423.330 (2)160
C3—H2···F60.952.473.074 (2)122
C4—H3···O20.952.513.226 (2)132
C5—H4···O10.952.633.269 (2)125
C12—H9···F4iii0.952.633.249 (3)124
C13—H10···F6iii0.952.563.412 (2)150
C24—H17···F1iv0.952.583.386 (3)143
C28—H20···F3iv0.992.503.336 (3)142
C30—H23···F1v0.992.443.225 (3)136
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y1, z.
 

References

First citationBallester, L., Gutierrez, A., Perpinan, M. F., Rico, T., Gutierrez-Puebla, E. & &Monge, A. (1994). Polyhedron, 13, 2271–2283.  CSD CrossRef Google Scholar
First citationBanerji, S., Byrne, R. E. & Livingstone, S. E. (1982). Transition Met. Chem. 7, 5–10.  CSD CrossRef CAS Google Scholar
First citationBouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906–3916.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationKhan, I. U., Şahin, O., Jillani, S. M. S., Sharif, S. & Büyükgüngör, O. (2010). Acta Cryst. E66, m587–m588.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRaper, E. S., Britton, A. M. & Clegg, W. (1989). Inorg. Chim. Acta, 166, 171–172.  CSD CrossRef CAS Google Scholar
First citationRaper, E. S., Britton, A. M. & Clegg, W. (1990a). Acta Cryst. C46, 2344–2346.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaper, E. S., Britton, A. M. & Clegg, W. (1990b). J. Chem. Soc. Dalton Trans. pp. 3341–3345.  CSD CrossRef Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. https://chem.s.kanazawa-u.ac. jp/coord/index_e. html  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakhvarov, D. G., Hey-Hawkins, E. M., Kagirov, R. M., Budnikova, Yu. H., Ganushevich, Yu. S. & Sinyashin, O. G. (2007). Russ. Chem. Bull. 56, 935–942.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds