research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the polymer precursors 3-(2,5-dimeth­­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate and 3-(2,4,5-tri­methyl-3,6-dioxo­cyclo­hexa-1,4-dien­yl)propyl methacrylate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by P. C. Healy, Griffith University, Australia (Received 23 March 2017; accepted 30 March 2017; online 4 April 2017)

The closely related title compounds, 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propyl methacrylate, C18H26O4 (I), and 3-(2,4,5-trimethyl-3,6-dioxo­cyclo­hexa-1,4-dien­yl)propyl methacrylate, C16H20O4 (II), are monomers suitable for the preparation of redox polymers. They consist of a propyl­methacrylate group and three methyl substituents on di­meth­oxy­benzene and quinone cores, respectively. Both crystal structures feature weak C—H⋯O hydrogen bonds and C—H⋯π(ring) contacts between methyl groups and the six-membered rings.

1. Chemical context

The title compounds, (I)[link] and (II)[link], were synthesised as part of our continuing inter­est in redox polymers and electrochemical actuators (Dana et al., 2007[Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547-559.]; McAdam et al., 2008[McAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008). J. Inorg. Organomet. Polym. Mater. 18, 485-490.]; Goswami et al., 2013[Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415-3420.], 2015[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 860-866.]). Redox-active polymers containing 2,2,6,6-tetra­methyl­piperidin-1-oxyl-4-yl (TEMPO) and ferrocene as pendant groups are well documented (Gracia & Mecerreyes, 2013[Gracia, R. & Mecerreyes, D. (2013). Polym. Chem. 4, 2206-2214.]; Tamura et al., 2008[Tamura, K., Akutagawa, N., Satoh, M., Wada, J. & Masuda, T. (2008). Macromol. Rapid Commun. 29, 1944-1949.]; Schattling et al., 2014[Schattling, P., Jochum, F. D. & Theato, P. (2014). Polym. Chem. 5, 25-36.]). In contrast, polymers with pendant quinone units are less well explored (Hodge & Gautrot, 2009[Hodge, P. & Gautrot, J. E. (2009). Polym. Int. 58, 261-266.]; Häupler et al., 2014[Häupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250-1256.]). Reasons for this include their free-radical-scavenging properties in free radical polymerization (FRP), and the incompatibility of the quinone carbonyl groups in typical living polymerization such as anionic or cationic polymerization. In previous work (Goswami et al., 2013[Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415-3420.]) we successfully demonstrated that steric hindrance by alkyl groups around a quinone unit prevents radical addition to the ring or the carbonyl oxygen atom, thus enabling FRP synthesis of homo- and co-polymers of quinone-appended methacrylate monomers.

2. Structural commentary

Compound (I)[link], a tetra-alkyl­ated p-di­meth­oxy­benzene is shown in Fig. 1[link]. The meth­oxy substituents are in the typical trans conformation (Wickramasinhage et al., 2016[Wickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.]; Wiedenfeld et al., 2003[Wiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700-o702.]; Wieczorek et al., 1975[Wieczorek, M. W., Bockii, N. G. & Struchkov, Y. T. (1975). Rocz. Chem. 49, 1737.]) with a C111—O1⋯O4—C41 torsion angle of approximately 179.24°. Three methyl groups and a propyl methacrylate occupy the other four sites on the benzene ring. Compound (II)[link], shown in Fig. 2[link], is the quinone analogue of (I)[link]. As expected, the oxidation destroys the aromaticity of the six-carbon ring, reflected in a shortening of C2—C3 and C5—C6 and a lengthening of the other ring C—C bonds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with displacement ellipsoids drawn at the 50% probability level.

The spatial arrangement of the ring substituents and the propyl methacrylate moiety is remarkably similar to that observed for (I)[link]. In particular, the torsional geometry of the vinyl and carbonyl components of the methacrylate groups of both (I)[link] and (II)[link] display the typical s-trans preference (McAdam et al., 2015[McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 1100-1105.]). Predictably, both the benzene and quinone ring systems (C1–C6) and the attached atoms (O1, C21, C31, O4, C51 and C7) are nearly planar, with r.m.s. deviations from the mean planes of 0.0377 and 0.0158 Å, respectively.

3. Supra­molecular features

3.1. Crystal packing for (I)

In the crystal structure of (I)[link], C21—H21A⋯O1 and C51—H51E⋯O4 hydrogen bonds form chains of mol­ecules along the a-axis direction. The chains are reinforced by C7—H7BCg and C31—H31CCg contacts (Cg is the centroid of the C1–C6 ring) between methyl and methyl­ene group hydrogen atoms and the aromatic ring, Table 1[link] and Fig. 3[link]. C12—H12B⋯O1 and C41—H41A⋯O10, hydrogen bonds link these chains into a sheet, two-mol­ecules thick, that lies parallel to the ac plane (010), Fig. 4[link]. Extension to a three-dimensional structure is completed by C8—H8B⋯O4 inversion dimers. These form R22(14) rings and link pairs of double-layer sheets, stacking mol­ecules along the a-axis direction, Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C1–C6 benzene ring

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.99 2.58 3.456 (4) 147
C12—H12B⋯O1ii 0.95 2.50 3.388 (4) 157
C21—H21A⋯O1iii 0.98 2.67 3.614 (5) 161
C41—H41A⋯O10iv 0.98 2.66 3.590 (5) 159
C51—H51E⋯O4v 0.98 2.65 3.541 (4) 151
C7—H7BCgv 0.99 2.97 3.709 (4) 134
C31—H31CCgiii 0.98 2.85 3.693 (4) 148
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x-1, y, z-1; (v) x+1, y, z.
[Figure 3]
Figure 3
Chains of mol­ecules of (I)[link] along the a-axis direction.
[Figure 4]
Figure 4
A double sheet of mol­ecules of (I)[link] in the ac plane.
[Figure 5]
Figure 5
Overall packing for (I)[link] viewed along the a-axis direction.

3.2. Crystal packing for (II)

For (II)[link], an extensive series of C—H⋯O hydrogen bonds and a C—H⋯π(ring) contact generate the three-dimensional structure. These contacts include O10 acting as a trifurcated acceptor; C9—H9B⋯O10 hydrogen bonds, supported by C31—H31BCg contacts (Cg is the centroid of the C1–C6 ring),Table 2[link], form chains along the a-axis direction, Fig. 6[link]. The other two components of the trifurcate, the inversion-related C9—H9A⋯O10 and C51—H51B⋯O10 hydrogen bonds form R22(10) and R22(20) rings, respectively. A third inversion dimer results from C12—H12A⋯O1 contacts and forms R22(22) rings. O4 acts as a bifurcated acceptor, forming C21—H21A⋯O4 and C31—H31C⋯O4 hydrogen bonds that enclose R21(7) rings, completing an extensive sheet of mol­ecules parallel to ([\overline{1}]05), Fig. 7[link]. This eclectic array of contacts combine to produce a three-dimensional network with mol­ecules stacked along the a axis, Fig. 8[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O10i 0.99 2.72 3.624 (3) 153
C9—H9B⋯O10ii 0.99 2.70 3.595 (3) 150
C12—H12A⋯O1iii 0.95 2.53 3.422 (3) 156
C21—H21A⋯O4iv 0.98 2.52 3.455 (3) 161
C31—H31C⋯O4iv 0.98 2.68 3.638 (3) 166
C51—H51B⋯O10v 0.98 2.67 3.510 (3) 144
C31—H31BCgii 0.98 2.95 3.534 (3) 119
Symmetry codes: (i) -x-1, -y+1, -z; (ii) x+1, y, z; (iii) -x-1, -y, -z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z.
[Figure 6]
Figure 6
Chains of mol­ecules of (II)[link] formed along a.
[Figure 7]
Figure 7
Sheets of mol­ecules of (II)[link] viewed along a.
[Figure 8]
Figure 8
Overall packing for (II)[link] viewed along the a-axis direction.

4. Database survey

A search of the CSD (Version 5.37 November 2015 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a surprising degree of exclusivity for both of the title compounds. A search for the 2,5-dimeth­oxy-3,4,6-tri­methyl­phenyl segment of (I)[link] produced only two hits, our earlier report of the precursor 2,5-dimeth­oxy-3,4,6-tri­methyl­benzaldehyde (Wickramasinhage et al., 2016[Wickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.]) and the dimer bis­(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)methane (Wiedenfeld et al., 2003[Wiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700-o702.]). A search for the corresponding quinone ring system was even less productive, with octa­methyl-1,4-cyclo­hexa­nedione the only related structure (Hoffmann & Hursthouse, 1976[Hoffmann, H. M. R. & Hursthouse, M. B. (1976). J. Am. Chem. Soc. 98, 7449-7450.]). Structures containing the propyl methacrylate moiety were similarly scarce, with the fullerene derivative 4-(6,9,12,15,18-penta­methyl-C60fulleren-1-yl)butyl methacrylate di­chloro­methane solvate (Matsuo et al., 2009[Matsuo, Y., Iwashita, A., Oyama, H. & Nakamura, E. (2009). Tetrahedron Lett. 50, 3411-3413.]) and a tungsten polyphosphate derivative (Hasegawa et al., 2007[Hasegawa, T., Shimizu, K., Seki, H., Murakami, H., Yoshida, S., Yoza, K. & Nomiya, K. (2007). Inorg. Chem. Commun. 10, 1140-1144.]) the only hits.

5. Synthesis and crystallization

The synthesis of (I)[link] was accomplished in three steps (Fig. 9[link]) from 6-hy­droxy-5,7,8-tri­methyl­chroman-2-one (III) (Goswami et al., 2011[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566-o1567.]) as described below.

[Figure 9]
Figure 9
Steps involved in the synthesis of compound (I)[link].

Methyl­ation of 6-hy­droxy-5,7,8-tri­methyl­chroman-2-one (III): To a solution of (III) (5 g, 24 mmol) and dry K2CO3 (13.4 g, 97 mmol) in MeOH (50 mL) was added MeI (13.8 mL, 97 mmol). The mixture was refluxed for 4 h, filtered through celite, and solvent removed in vacuo to afford methyl 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propano­ate (IV) (5.5 g, 85%) as a yellow liquid. MS calculated for [C15H22NaO4]+: 289.1410. Found: 289.1391 (6.72 ppm). IR (KBr) νC=O: 1750 cm−1 (methyl ester). 1H NMR (CDCl3, δ ppm): 2.18 (s, 6H, 2 × Ar–CH3), 2.24 (s, 3H, Ar-CH3), 2.49 & 2.95 [2 × (t, J = 7.8 Hz, 2H, CH2)], 3.65 (s, 3H, ester OCH3), 3.68 & 3.71 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 12.3, 12.8, 13.0, 23.0, 34.5, 51.5, 60.6, 61.1, 127.5, 128.4, 129.2, 130.4, 153.3, 174.0.

Reduction of methyl 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propano­ate (IV): To a stirred suspension of 0.85 g (22 mmol) of LiAlH4 in 100 mL dry THF cooled to 273 K in ice a solution of 5.0 g (18.7 mmol) of (IV) in 100 mL THF was added dropwise. After the vigorous reaction subsided, the mixture was heated to reflux for 2 h. Excess of the hydride was decomposed by careful addition of water, and the mixture was neutralized with acetic acid. To this was added 650 mL of saturated aq. NH4Cl solution. The organic layer was separated and the aqueous layer further extracted with 4 × 150 mL portions of THF. The combined THF layers were dried over MgSO4 and solvent removed in vacuo. Recrystallization from Et2O gave 4.1 mg (91%) of 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propan-1-ol (V) as a white solid, m.p. 461–463 K please check. MS calculated for C14H22NaO3]+: 261.1461. Found: 246.1461 (0 ppm). IR (KBr) νOH: 3425, 3150 cm−1. 1H NMR (CDCl3, δ ppm): 1.75 (m, 2H, CH2), 2.09 (s, 1H OH), 2.18 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.75 (t, J = 7.3 Hz, 2H, Ar–CH2), 3.52 (t, J = 6.6 Hz, 2H, CH2–OH), 3.65 & 3.69 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 11.7, 12.6, 12.8, 22.6, 32.0, 60.0, 61.0, 61.2, 127.4, 127.6, 128.6, 129.2, 130.4, 153.0, 153.5.

Acyl­ation of 3-(2,5-dimeth­oxy-3,4,6-tri­methyl­phen­yl)propan-1-ol (V): The alcohol (V) (5.0 g, 21 mmol) was dissolved in CH2Cl2 (100 ml). NEt3 (2.2 mL) was added and the solution stirred 30 min at 273 K. Methacryloyl chloride (2.4 g, 23 mmol) was added dropwise, stirred for 2 h under nitro­gen at 273 K and then at room temperature for 4 h. After extraction from CH2Cl2/H2O the organic layer was dried (MgSO4) and solvent removed in vacuo. Purification using chromatography on SiO2 using petroleum ether/EtOAc (9:1) gave the colourless solid product (I)[link], m.p. 395–397 K. MS calculated for [C18H26NaO4]+: 329.1723. Found: 329.1709 (4.41 ppm). IR (KBr) νC=O: 1731 cm−1 (ester). 1H NMR (CDCl3, δ ppm): 1.89 (m, 2H, CH2), 1.98 (m, 3H, CH3), 2.19 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.73 (t, J = 7.6 Hz, 2H, Ar–CH2), 3.65 & 3.68 [2 × (s, 3H, Ar–OCH3)], 4.23 (t, J = 6.1 Hz, 2H, CH2), 5.57 (m, 1H, =CH), 6.14 (m, 1H, =CH). 13C NMR (CDCl3, δ ppm): 12.2, 12.9, 13.1, 18.6, 24.1, 29.5, 60.3, 61.1, 65.0, 125.4, 127.4, 128.2, 128.8, 131.4, 136.8, 153.20, 153.4, 167.8. Crystals of (I)[link] were obtained from a mixed CH2Cl2/hexane solution 1/1 v/v.

The synthesis of (II)[link] has been reported previously (Goswami et al., 2013[Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415-3420.]). Crystals were obtained from the slow evaporation of an Et2O solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for vinyl, 0.99 Å, Uiso = 1.2Ueq(C) for CH2 H atoms and 0.98 Å, Uiso = 1.5Ueq(C) for CH3 H atoms. The hydrogen atoms of the C13 and C51 methyl groups of (I) were equally disordered over two sites. Idealized disorder models were applied using AFIX123 in SHELXL2014/7. For (I)[link], a low-angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C18H26O4 C16H20O4
Mr 306.39 276.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 91 89
a, b, c (Å) 5.1833 (7), 30.341 (4), 10.6339 (15) 4.4096 (2), 11.8425 (6), 28.2511 (16)
β (°) 97.910 (9) 93.495 (3)
V3) 1656.4 (4) 1472.55 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.65 × 0.04 × 0.04 0.27 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.775, 1.00 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11585, 1681, 1254 16398, 2509, 1774
Rint 0.081 0.071
θmax (°) 20.7 24.8
(sin θ/λ)max−1) 0.497 0.591
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.03 0.049, 0.138, 1.04
No. of reflections 1681 2509
No. of parameters 203 185
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.24 0.34, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010).

(I) 3-(2,5-Dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate top
Crystal data top
C18H26O4F(000) = 664
Mr = 306.39Dx = 1.229 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.1833 (7) ÅCell parameters from 1289 reflections
b = 30.341 (4) Åθ = 4.7–40.3°
c = 10.6339 (15) ŵ = 0.09 mm1
β = 97.910 (9)°T = 91 K
V = 1656.4 (4) Å3Needle, colourless
Z = 40.65 × 0.04 × 0.04 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1681 independent reflections
Radiation source: fine-focus sealed tube1254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 20.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 55
Tmin = 0.775, Tmax = 1.00k = 2929
11585 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.3102P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1681 reflectionsΔρmax = 0.34 e Å3
203 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One low angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5070 (7)0.13988 (12)0.9190 (3)0.0223 (10)
O10.6011 (5)0.17928 (8)0.9780 (2)0.0255 (7)
C1110.4922 (8)0.18964 (12)1.0910 (4)0.0324 (11)
H11A0.30200.18721.07410.049*
H11B0.54030.21981.11760.049*
H11C0.55950.16901.15850.049*
C20.2886 (7)0.14223 (11)0.8270 (3)0.0213 (10)
C210.1425 (7)0.18507 (12)0.7978 (4)0.0296 (10)
H21A0.02890.18310.82650.044*
H21B0.12040.19040.70610.044*
H21C0.24140.20940.84200.044*
C30.2007 (7)0.10363 (12)0.7625 (3)0.0198 (10)
C310.0362 (7)0.10426 (12)0.6621 (3)0.0263 (10)
H31A0.07620.07420.63210.039*
H31B0.00080.12270.59080.039*
H31C0.18500.11630.69840.039*
C40.3397 (7)0.06474 (11)0.7918 (3)0.0189 (10)
O40.2485 (5)0.02580 (7)0.7301 (2)0.0235 (7)
C410.3680 (8)0.01709 (13)0.6187 (3)0.0309 (11)
H41A0.34420.04260.56170.046*
H41B0.28690.00890.57500.046*
H41C0.55450.01160.64320.046*
C50.5615 (7)0.06238 (11)0.8830 (3)0.0185 (9)
C510.7126 (7)0.01998 (11)0.9032 (3)0.0240 (10)
H51A0.86080.02420.97000.036*0.5
H51B0.59910.00320.92870.036*0.5
H51C0.77630.01140.82410.036*0.5
H51D0.63000.00260.84520.036*0.5
H51E0.89180.02480.88650.036*0.5
H51F0.71450.01010.99110.036*0.5
C60.6460 (7)0.10094 (12)0.9490 (3)0.0211 (10)
C70.8823 (7)0.10066 (11)1.0496 (3)0.0229 (10)
H7A0.94800.13121.06260.028*
H7B1.02100.08291.01880.028*
C80.8279 (7)0.08205 (12)1.1773 (3)0.0233 (9)
H8A0.67840.09801.20440.028*
H8B0.77800.05071.16600.028*
C91.0568 (7)0.08561 (12)1.2801 (3)0.0268 (10)
H9A1.01970.07001.35740.032*
H9B1.21300.07221.25170.032*
O91.1017 (5)0.13212 (8)1.3071 (2)0.0266 (7)
C101.3096 (8)0.14204 (13)1.3916 (4)0.0243 (10)
O101.4618 (5)0.11468 (9)1.4395 (2)0.0335 (8)
C111.3351 (7)0.19019 (12)1.4190 (3)0.0248 (10)
C121.1719 (8)0.21884 (13)1.3569 (4)0.0330 (11)
H12A1.03640.20881.29410.040*
H12B1.19020.24941.37530.040*
C131.5513 (8)0.20272 (14)1.5203 (4)0.0391 (11)
H13A1.64600.17621.55250.059*0.5
H13B1.67070.22281.48500.059*0.5
H13C1.47910.21741.58980.059*0.5
H13D1.55120.23471.53240.059*0.5
H13E1.52650.18811.59990.059*0.5
H13F1.71810.19361.49510.059*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.023 (2)0.020 (2)0.006 (2)0.012 (2)0.0020 (18)
O10.0321 (16)0.0217 (16)0.0244 (16)0.0032 (12)0.0100 (13)0.0026 (12)
C1110.042 (3)0.030 (3)0.028 (3)0.002 (2)0.013 (2)0.0046 (19)
C20.022 (2)0.022 (2)0.022 (2)0.0017 (19)0.010 (2)0.0053 (18)
C210.025 (2)0.030 (2)0.034 (2)0.0009 (19)0.0036 (19)0.0006 (19)
C30.022 (2)0.026 (2)0.013 (2)0.0025 (19)0.0075 (18)0.0001 (18)
C310.031 (3)0.027 (2)0.022 (2)0.0015 (19)0.007 (2)0.0011 (17)
C40.026 (2)0.017 (2)0.015 (2)0.0043 (19)0.009 (2)0.0017 (17)
O40.0286 (15)0.0231 (15)0.0205 (16)0.0024 (13)0.0097 (12)0.0029 (12)
C410.039 (3)0.032 (3)0.024 (3)0.003 (2)0.014 (2)0.0054 (19)
C50.017 (2)0.020 (2)0.020 (2)0.0001 (18)0.0082 (19)0.0013 (18)
C510.025 (2)0.024 (2)0.025 (2)0.0010 (18)0.0067 (18)0.0010 (17)
C60.022 (2)0.024 (2)0.019 (2)0.0029 (19)0.0097 (19)0.0001 (18)
C70.026 (2)0.020 (2)0.023 (2)0.0012 (18)0.0058 (19)0.0003 (17)
C80.026 (2)0.023 (2)0.021 (2)0.0020 (19)0.0056 (18)0.0022 (18)
C90.034 (2)0.022 (2)0.025 (2)0.004 (2)0.0046 (19)0.0003 (19)
O90.0300 (17)0.0213 (16)0.0274 (16)0.0022 (12)0.0001 (14)0.0027 (12)
C100.024 (3)0.033 (3)0.018 (2)0.002 (2)0.011 (2)0.002 (2)
O100.0331 (17)0.0316 (17)0.0347 (18)0.0013 (15)0.0005 (14)0.0017 (14)
C110.025 (2)0.027 (3)0.024 (2)0.001 (2)0.009 (2)0.0012 (19)
C120.036 (3)0.026 (3)0.037 (3)0.006 (2)0.008 (2)0.011 (2)
C130.039 (3)0.037 (3)0.041 (3)0.008 (2)0.005 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C21.393 (5)C51—H51C0.9800
C1—C61.398 (5)C51—H51D0.9800
C1—O11.406 (4)C51—H51E0.9800
O1—C1111.431 (4)C51—H51F0.9800
C111—H11A0.9800C6—C71.512 (5)
C111—H11B0.9800C7—C81.532 (5)
C111—H11C0.9800C7—H7A0.9900
C2—C31.401 (5)C7—H7B0.9900
C2—C211.515 (5)C8—C91.503 (5)
C21—H21A0.9800C8—H8A0.9900
C21—H21B0.9800C8—H8B0.9900
C21—H21C0.9800C9—O91.452 (4)
C3—C41.395 (5)C9—H9A0.9900
C3—C311.512 (5)C9—H9B0.9900
C31—H31A0.9800O9—C101.339 (4)
C31—H31B0.9800C10—O101.209 (4)
C31—H31C0.9800C10—C111.492 (5)
C4—C51.400 (5)C11—C121.324 (5)
C4—O41.402 (4)C11—C131.493 (5)
O4—C411.435 (4)C12—H12A0.9500
C41—H41A0.9800C12—H12B0.9500
C41—H41B0.9800C13—H13A0.9800
C41—H41C0.9800C13—H13B0.9800
C5—C61.403 (5)C13—H13C0.9800
C5—C511.506 (5)C13—H13D0.9800
C51—H51A0.9800C13—H13E0.9800
C51—H51B0.9800C13—H13F0.9800
C2—C1—C6123.2 (3)H51A—C51—H51F56.3
C2—C1—O1118.0 (3)H51B—C51—H51F56.3
C6—C1—O1118.7 (3)H51C—C51—H51F141.1
C1—O1—C111114.2 (3)H51D—C51—H51F109.5
O1—C111—H11A109.5H51E—C51—H51F109.5
O1—C111—H11B109.5C1—C6—C5118.4 (3)
H11A—C111—H11B109.5C1—C6—C7120.5 (3)
O1—C111—H11C109.5C5—C6—C7121.1 (3)
H11A—C111—H11C109.5C6—C7—C8113.6 (3)
H11B—C111—H11C109.5C6—C7—H7A108.9
C1—C2—C3118.6 (3)C8—C7—H7A108.9
C1—C2—C21121.5 (3)C6—C7—H7B108.9
C3—C2—C21119.8 (3)C8—C7—H7B108.9
C2—C21—H21A109.5H7A—C7—H7B107.7
C2—C21—H21B109.5C9—C8—C7113.3 (3)
H21A—C21—H21B109.5C9—C8—H8A108.9
C2—C21—H21C109.5C7—C8—H8A108.9
H21A—C21—H21C109.5C9—C8—H8B108.9
H21B—C21—H21C109.5C7—C8—H8B108.9
C4—C3—C2118.3 (3)H8A—C8—H8B107.7
C4—C3—C31120.8 (3)O9—C9—C8107.6 (3)
C2—C3—C31120.8 (3)O9—C9—H9A110.2
C3—C31—H31A109.5C8—C9—H9A110.2
C3—C31—H31B109.5O9—C9—H9B110.2
H31A—C31—H31B109.5C8—C9—H9B110.2
C3—C31—H31C109.5H9A—C9—H9B108.5
H31A—C31—H31C109.5C10—O9—C9116.3 (3)
H31B—C31—H31C109.5O10—C10—O9123.1 (3)
C3—C4—C5123.2 (3)O10—C10—C11123.7 (4)
C3—C4—O4118.5 (3)O9—C10—C11113.1 (3)
C5—C4—O4118.2 (3)C12—C11—C10120.8 (4)
C4—O4—C41112.7 (3)C12—C11—C13123.8 (4)
O4—C41—H41A109.5C10—C11—C13115.3 (3)
O4—C41—H41B109.5C11—C12—H12A120.0
H41A—C41—H41B109.5C11—C12—H12B120.0
O4—C41—H41C109.5H12A—C12—H12B120.0
H41A—C41—H41C109.5C11—C13—H13A109.5
H41B—C41—H41C109.5C11—C13—H13B109.5
C4—C5—C6118.3 (3)H13A—C13—H13B109.5
C4—C5—C51120.3 (3)C11—C13—H13C109.5
C6—C5—C51121.3 (3)H13A—C13—H13C109.5
C5—C51—H51A109.5H13B—C13—H13C109.5
C5—C51—H51B109.5C11—C13—H13D109.5
H51A—C51—H51B109.5H13A—C13—H13D141.1
C5—C51—H51C109.5H13B—C13—H13D56.3
H51A—C51—H51C109.5H13C—C13—H13D56.3
H51B—C51—H51C109.5C11—C13—H13E109.5
C5—C51—H51D109.5H13A—C13—H13E56.3
H51A—C51—H51D141.1H13B—C13—H13E141.1
H51B—C51—H51D56.3H13C—C13—H13E56.3
H51C—C51—H51D56.3H13D—C13—H13E109.5
C5—C51—H51E109.5C11—C13—H13F109.5
H51A—C51—H51E56.3H13A—C13—H13F56.3
H51B—C51—H51E141.1H13B—C13—H13F56.3
H51C—C51—H51E56.3H13C—C13—H13F141.1
H51D—C51—H51E109.5H13D—C13—H13F109.5
C5—C51—H51F109.5H13E—C13—H13F109.5
C2—C1—O1—C11190.7 (4)C2—C1—C6—C50.1 (5)
C6—C1—O1—C11193.5 (4)O1—C1—C6—C5175.5 (3)
C6—C1—C2—C31.0 (5)C2—C1—C6—C7179.8 (3)
O1—C1—C2—C3176.7 (3)O1—C1—C6—C74.2 (5)
C6—C1—C2—C21179.6 (3)C4—C5—C6—C11.0 (5)
O1—C1—C2—C214.7 (5)C51—C5—C6—C1175.4 (3)
C1—C2—C3—C41.3 (5)C4—C5—C6—C7179.3 (3)
C21—C2—C3—C4179.9 (3)C51—C5—C6—C74.2 (5)
C1—C2—C3—C31179.7 (3)C1—C6—C7—C8101.6 (4)
C21—C2—C3—C311.1 (5)C5—C6—C7—C878.7 (4)
C2—C3—C4—C50.4 (5)C6—C7—C8—C9174.8 (3)
C31—C3—C4—C5179.4 (3)C7—C8—C9—O966.7 (4)
C2—C3—C4—O4178.3 (3)C8—C9—O9—C10176.0 (3)
C31—C3—C4—O42.7 (5)C9—O9—C10—O103.5 (5)
C3—C4—O4—C4193.9 (4)C9—O9—C10—C11177.2 (3)
C5—C4—O4—C4188.1 (4)O10—C10—C11—C12175.3 (4)
C3—C4—C5—C60.8 (5)O9—C10—C11—C124.0 (5)
O4—C4—C5—C6177.1 (3)O10—C10—C11—C135.4 (5)
C3—C4—C5—C51175.7 (3)O9—C10—C11—C13175.3 (3)
O4—C4—C5—C516.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.992.583.456 (4)147
C12—H12B···O1ii0.952.503.388 (4)157
C21—H21A···O1iii0.982.673.614 (5)161
C41—H41A···O10iv0.982.663.590 (5)159
C51—H51E···O4v0.982.653.541 (4)151
C7—H7B···Cgv0.992.973.709 (4)134
C31—H31C···Cgiii0.982.853.693 (4)148
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1, y, z.
(II) 3-(2,4,5-Trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate top
Crystal data top
C16H20O4F(000) = 592
Mr = 276.32Dx = 1.246 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4096 (2) ÅCell parameters from 1562 reflections
b = 11.8425 (6) Åθ = 2.3–21.1°
c = 28.2511 (16) ŵ = 0.09 mm1
β = 93.495 (3)°T = 89 K
V = 1472.55 (13) Å3Irregular fragment, colourless
Z = 40.27 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
ω scansθmax = 24.8°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 55
Tmin = 0.785, Tmax = 1.000k = 1313
16398 measured reflectionsl = 3133
2509 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.8066P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2509 reflectionsΔρmax = 0.34 e Å3
185 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1775 (5)0.16524 (19)0.14048 (8)0.0209 (5)
O10.0812 (4)0.09197 (14)0.11320 (6)0.0324 (5)
C20.3994 (5)0.13528 (19)0.18042 (8)0.0200 (5)
C210.4744 (6)0.01196 (19)0.18425 (8)0.0277 (6)
H21A0.64380.00100.20790.042*
H21B0.53210.01600.15340.042*
H21C0.29640.02970.19390.042*
C30.5109 (5)0.21672 (19)0.20975 (8)0.0200 (5)
C310.7283 (6)0.1988 (2)0.25224 (8)0.0273 (6)
H31A0.62080.20900.28130.041*
H31B0.89450.25370.25160.041*
H31C0.81130.12210.25150.041*
C40.4110 (5)0.33563 (19)0.20215 (8)0.0211 (5)
O40.5126 (4)0.40980 (14)0.22879 (6)0.0306 (4)
C50.1881 (5)0.36569 (18)0.16246 (8)0.0194 (5)
C510.1114 (6)0.48890 (19)0.15805 (9)0.0280 (6)
H51A0.06260.49870.13510.042*
H51B0.28660.53020.14710.042*
H51C0.06010.51820.18900.042*
C60.0734 (5)0.28445 (18)0.13349 (8)0.0189 (5)
C70.1420 (5)0.3062 (2)0.09083 (8)0.0225 (5)
H7A0.28060.36900.09790.027*
H7B0.26660.23800.08390.027*
C80.0333 (5)0.33651 (19)0.04742 (8)0.0210 (5)
H8A0.17840.39790.05620.025*
H8B0.15260.26990.03840.025*
C90.1672 (5)0.37361 (19)0.00508 (8)0.0208 (5)
H9A0.30570.43430.01450.025*
H9B0.04080.40350.01990.025*
O90.3418 (3)0.27759 (12)0.01293 (5)0.0215 (4)
C100.5198 (5)0.29825 (19)0.05223 (8)0.0211 (5)
O100.5414 (4)0.39082 (13)0.07045 (5)0.0264 (4)
C110.6877 (5)0.19585 (19)0.06980 (8)0.0241 (6)
C120.6423 (7)0.0922 (2)0.04544 (10)0.0441 (8)
H12A0.74860.02650.05640.053*
H12B0.50560.08830.01820.053*
C130.8840 (6)0.2102 (2)0.11027 (9)0.0314 (6)
H13A1.00020.14070.11640.047*
H13B0.76500.22730.13760.047*
H13C1.02390.27270.10510.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (12)0.0212 (12)0.0220 (13)0.0030 (9)0.0022 (10)0.0003 (10)
O10.0395 (11)0.0232 (9)0.0328 (10)0.0028 (8)0.0109 (8)0.0067 (8)
C20.0204 (12)0.0213 (12)0.0183 (12)0.0005 (9)0.0006 (10)0.0029 (10)
C210.0338 (15)0.0207 (13)0.0281 (14)0.0027 (10)0.0028 (11)0.0001 (11)
C30.0186 (12)0.0247 (12)0.0167 (12)0.0011 (10)0.0032 (9)0.0030 (10)
C310.0297 (13)0.0288 (14)0.0230 (13)0.0012 (11)0.0026 (11)0.0019 (11)
C40.0217 (12)0.0229 (12)0.0191 (12)0.0039 (10)0.0031 (10)0.0021 (10)
O40.0364 (10)0.0256 (9)0.0286 (10)0.0042 (8)0.0065 (8)0.0071 (8)
C50.0194 (12)0.0181 (12)0.0208 (12)0.0003 (9)0.0028 (10)0.0015 (10)
C510.0327 (15)0.0214 (13)0.0296 (15)0.0021 (10)0.0000 (11)0.0013 (11)
C60.0162 (11)0.0224 (12)0.0183 (12)0.0000 (9)0.0016 (9)0.0028 (10)
C70.0192 (12)0.0252 (13)0.0229 (13)0.0008 (10)0.0000 (10)0.0018 (10)
C80.0177 (12)0.0229 (12)0.0221 (13)0.0005 (9)0.0016 (10)0.0006 (10)
C90.0205 (12)0.0195 (12)0.0221 (13)0.0023 (9)0.0027 (10)0.0014 (10)
O90.0236 (9)0.0190 (8)0.0213 (9)0.0013 (6)0.0038 (7)0.0000 (7)
C100.0212 (12)0.0225 (13)0.0194 (13)0.0025 (10)0.0009 (10)0.0023 (10)
O100.0314 (10)0.0227 (9)0.0244 (9)0.0005 (7)0.0049 (7)0.0044 (7)
C110.0277 (13)0.0227 (13)0.0217 (13)0.0002 (10)0.0006 (10)0.0018 (10)
C120.065 (2)0.0248 (14)0.0399 (17)0.0126 (13)0.0195 (14)0.0009 (13)
C130.0295 (14)0.0303 (14)0.0338 (15)0.0014 (11)0.0036 (11)0.0079 (12)
Geometric parameters (Å, º) top
C1—O11.220 (3)C6—C71.510 (3)
C1—C21.491 (3)C7—C81.531 (3)
C1—C61.494 (3)C7—H7A0.9900
C2—C31.345 (3)C7—H7B0.9900
C2—C211.500 (3)C8—C91.509 (3)
C21—H21A0.9800C8—H8A0.9900
C21—H21B0.9800C8—H8B0.9900
C21—H21C0.9800C9—O91.448 (3)
C3—C41.487 (3)C9—H9A0.9900
C3—C311.505 (3)C9—H9B0.9900
C31—H31A0.9800O9—C101.342 (3)
C31—H31B0.9800C10—O101.213 (3)
C31—H31C0.9800C10—C111.490 (3)
C4—O41.224 (3)C11—C131.401 (3)
C4—C51.489 (3)C11—C121.416 (3)
C5—C61.342 (3)C12—H12A0.9500
C5—C511.501 (3)C12—H12B0.9500
C51—H51A0.9800C13—H13A0.9800
C51—H51B0.9800C13—H13B0.9800
C51—H51C0.9800C13—H13C0.9800
O1—C1—C2119.7 (2)C1—C6—C7116.11 (19)
O1—C1—C6119.8 (2)C6—C7—C8110.83 (18)
C2—C1—C6120.5 (2)C6—C7—H7A109.5
C3—C2—C1119.6 (2)C8—C7—H7A109.5
C3—C2—C21125.7 (2)C6—C7—H7B109.5
C1—C2—C21114.71 (19)C8—C7—H7B109.5
C2—C21—H21A109.5H7A—C7—H7B108.1
C2—C21—H21B109.5C9—C8—C7113.78 (18)
H21A—C21—H21B109.5C9—C8—H8A108.8
C2—C21—H21C109.5C7—C8—H8A108.8
H21A—C21—H21C109.5C9—C8—H8B108.8
H21B—C21—H21C109.5C7—C8—H8B108.8
C2—C3—C4119.7 (2)H8A—C8—H8B107.7
C2—C3—C31125.6 (2)O9—C9—C8108.86 (17)
C4—C3—C31114.7 (2)O9—C9—H9A109.9
C3—C31—H31A109.5C8—C9—H9A109.9
C3—C31—H31B109.5O9—C9—H9B109.9
H31A—C31—H31B109.5C8—C9—H9B109.9
C3—C31—H31C109.5H9A—C9—H9B108.3
H31A—C31—H31C109.5C10—O9—C9114.78 (17)
H31B—C31—H31C109.5O10—C10—O9122.9 (2)
O4—C4—C3119.8 (2)O10—C10—C11124.7 (2)
O4—C4—C5119.5 (2)O9—C10—C11112.39 (19)
C3—C4—C5120.8 (2)C13—C11—C12124.3 (2)
C6—C5—C4119.7 (2)C13—C11—C10116.3 (2)
C6—C5—C51124.9 (2)C12—C11—C10119.4 (2)
C4—C5—C51115.5 (2)C11—C12—H12A120.0
C5—C51—H51A109.5C11—C12—H12B120.0
C5—C51—H51B109.5H12A—C12—H12B120.0
H51A—C51—H51B109.5C11—C13—H13A109.5
C5—C51—H51C109.5C11—C13—H13B109.5
H51A—C51—H51C109.5H13A—C13—H13B109.5
H51B—C51—H51C109.5C11—C13—H13C109.5
C5—C6—C1119.7 (2)H13A—C13—H13C109.5
C5—C6—C7124.0 (2)H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10i0.992.723.624 (3)153
C9—H9B···O10ii0.992.703.595 (3)150
C12—H12A···O1iii0.952.533.422 (3)156
C21—H21A···O4iv0.982.523.455 (3)161
C31—H31C···O4iv0.982.683.638 (3)166
C51—H51B···O10v0.982.673.510 (3)144
C31—H31B···Cgii0.982.953.534 (3)119
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

Funding information

Funding for this research was provided by: NZ Ministry of Business, Innovation and Employment Science Investment Fund (award No. UOOX1206).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 860–866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420.  Web of Science CrossRef CAS Google Scholar
First citationGracia, R. & Mecerreyes, D. (2013). Polym. Chem. 4, 2206–2214.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasegawa, T., Shimizu, K., Seki, H., Murakami, H., Yoshida, S., Yoza, K. & Nomiya, K. (2007). Inorg. Chem. Commun. 10, 1140–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationHäupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250–1256.  Google Scholar
First citationHodge, P. & Gautrot, J. E. (2009). Polym. Int. 58, 261–266.  Web of Science CrossRef CAS Google Scholar
First citationHoffmann, H. M. R. & Hursthouse, M. B. (1976). J. Am. Chem. Soc. 98, 7449–7450.  CSD CrossRef CAS Web of Science Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsuo, Y., Iwashita, A., Oyama, H. & Nakamura, E. (2009). Tetrahedron Lett. 50, 3411–3413.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 1100–1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008). J. Inorg. Organomet. Polym. Mater. 18, 485–490.  Web of Science CrossRef CAS Google Scholar
First citationSchattling, P., Jochum, F. D. & Theato, P. (2014). Polym. Chem. 5, 25–36.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamura, K., Akutagawa, N., Satoh, M., Wada, J. & Masuda, T. (2008). Macromol. Rapid Commun. 29, 1944–1949.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307.  Google Scholar
First citationWieczorek, M. W., Bockii, N. G. & Struchkov, Y. T. (1975). Rocz. Chem. 49, 1737.  Google Scholar
First citationWiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds