research communications
Crystal structures of the polymer precursors 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate and 3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The closely related title compounds, 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propyl methacrylate, C18H26O4 (I), and 3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dienyl)propyl methacrylate, C16H20O4 (II), are monomers suitable for the preparation of They consist of a propylmethacrylate group and three methyl substituents on dimethoxybenzene and quinone cores, respectively. Both crystal structures feature weak C—H⋯O hydrogen bonds and C—H⋯π(ring) contacts between methyl groups and the six-membered rings.
Keywords: crystal structure; methacrylate; dimethoxybenzene; quinone; hydrogen bonds; C—H⋯π contacts.
1. Chemical context
The title compounds, (I) and (II), were synthesised as part of our continuing interest in and electrochemical actuators (Dana et al., 2007; McAdam et al., 2008; Goswami et al., 2013, 2015). Redox-active polymers containing 2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl (TEMPO) and ferrocene as pendant groups are well documented (Gracia & Mecerreyes, 2013; Tamura et al., 2008; Schattling et al., 2014). In contrast, polymers with pendant quinone units are less well explored (Hodge & Gautrot, 2009; Häupler et al., 2014). Reasons for this include their free-radical-scavenging properties in polymerization (FRP), and the incompatibility of the quinone carbonyl groups in typical such as anionic or In previous work (Goswami et al., 2013) we successfully demonstrated that by around a quinone unit prevents radical addition to the ring or the carbonyl oxygen atom, thus enabling FRP synthesis of homo- and co-polymers of quinone-appended methacrylate monomers.
2. Structural commentary
Compound (I), a tetra-alkylated p-dimethoxybenzene is shown in Fig. 1. The methoxy substituents are in the typical trans conformation (Wickramasinhage et al., 2016; Wiedenfeld et al., 2003; Wieczorek et al., 1975) with a C111—O1⋯O4—C41 torsion angle of approximately 179.24°. Three methyl groups and a propyl methacrylate occupy the other four sites on the benzene ring. Compound (II), shown in Fig. 2, is the quinone analogue of (I). As expected, the oxidation destroys the aromaticity of the six-carbon ring, reflected in a shortening of C2—C3 and C5—C6 and a lengthening of the other ring C—C bonds (Allen et al., 1987).
The spatial arrangement of the ring substituents and the propyl methacrylate moiety is remarkably similar to that observed for (I). In particular, the torsional geometry of the vinyl and carbonyl components of the methacrylate groups of both (I) and (II) display the typical s-trans preference (McAdam et al., 2015). Predictably, both the benzene and quinone ring systems (C1–C6) and the attached atoms (O1, C21, C31, O4, C51 and C7) are nearly planar, with r.m.s. deviations from the mean planes of 0.0377 and 0.0158 Å, respectively.
3. Supramolecular features
3.1. Crystal packing for (I)
In the , C21—H21A⋯O1 and C51—H51E⋯O4 hydrogen bonds form chains of molecules along the a-axis direction. The chains are reinforced by C7—H7B⋯Cg and C31—H31C⋯Cg contacts (Cg is the centroid of the C1–C6 ring) between methyl and methylene group hydrogen atoms and the aromatic ring, Table 1 and Fig. 3. C12—H12B⋯O1 and C41—H41A⋯O10, hydrogen bonds link these chains into a sheet, two-molecules thick, that lies parallel to the ac plane (010), Fig. 4. Extension to a three-dimensional structure is completed by C8—H8B⋯O4 inversion dimers. These form R22(14) rings and link pairs of double-layer sheets, stacking molecules along the a-axis direction, Fig. 5.
of (I)3.2. Crystal packing for (II)
For (II), an extensive series of C—H⋯O hydrogen bonds and a C—H⋯π(ring) contact generate the three-dimensional structure. These contacts include O10 acting as a trifurcated acceptor; C9—H9B⋯O10 hydrogen bonds, supported by C31—H31B⋯Cg contacts (Cg is the centroid of the C1–C6 ring),Table 2, form chains along the a-axis direction, Fig. 6. The other two components of the trifurcate, the inversion-related C9—H9A⋯O10 and C51—H51B⋯O10 hydrogen bonds form R22(10) and R22(20) rings, respectively. A third inversion dimer results from C12—H12A⋯O1 contacts and forms R22(22) rings. O4 acts as a bifurcated acceptor, forming C21—H21A⋯O4 and C31—H31C⋯O4 hydrogen bonds that enclose R21(7) rings, completing an extensive sheet of molecules parallel to (05), Fig. 7. This eclectic array of contacts combine to produce a three-dimensional network with molecules stacked along the a axis, Fig. 8.
|
4. Database survey
A search of the CSD (Version 5.37 November 2015 with three updates; Groom et al., 2016) revealed a surprising degree of exclusivity for both of the title compounds. A search for the 2,5-dimethoxy-3,4,6-trimethylphenyl segment of (I) produced only two hits, our earlier report of the precursor 2,5-dimethoxy-3,4,6-trimethylbenzaldehyde (Wickramasinhage et al., 2016) and the dimer bis(2,5-dimethoxy-3,4,6-trimethylphenyl)methane (Wiedenfeld et al., 2003). A search for the corresponding quinone ring system was even less productive, with octamethyl-1,4-cyclohexanedione the only related structure (Hoffmann & Hursthouse, 1976). Structures containing the propyl methacrylate moiety were similarly scarce, with the fullerene derivative 4-(6,9,12,15,18-pentamethyl-C60fulleren-1-yl)butyl methacrylate dichloromethane solvate (Matsuo et al., 2009) and a tungsten polyphosphate derivative (Hasegawa et al., 2007) the only hits.
5. Synthesis and crystallization
The synthesis of (I) was accomplished in three steps (Fig. 9) from 6-hydroxy-5,7,8-trimethylchroman-2-one (III) (Goswami et al., 2011) as described below.
Methylation of 6-hydroxy-5,7,8-trimethylchroman-2-one (III): To a solution of (III) (5 g, 24 mmol) and dry K2CO3 (13.4 g, 97 mmol) in MeOH (50 mL) was added MeI (13.8 mL, 97 mmol). The mixture was refluxed for 4 h, filtered through celite, and solvent removed in vacuo to afford methyl 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propanoate (IV) (5.5 g, 85%) as a yellow liquid. MS calculated for [C15H22NaO4]+: 289.1410. Found: 289.1391 (6.72 ppm). IR (KBr) νC=O: 1750 cm−1 (methyl ester). 1H NMR (CDCl3, δ ppm): 2.18 (s, 6H, 2 × Ar–CH3), 2.24 (s, 3H, Ar-CH3), 2.49 & 2.95 [2 × (t, J = 7.8 Hz, 2H, CH2)], 3.65 (s, 3H, ester OCH3), 3.68 & 3.71 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 12.3, 12.8, 13.0, 23.0, 34.5, 51.5, 60.6, 61.1, 127.5, 128.4, 129.2, 130.4, 153.3, 174.0.
Reduction of methyl 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propanoate (IV): To a stirred suspension of 0.85 g (22 mmol) of LiAlH4 in 100 mL dry THF cooled to 273 K in ice a solution of 5.0 g (18.7 mmol) of (IV) in 100 mL THF was added dropwise. After the vigorous reaction subsided, the mixture was heated to reflux for 2 h. Excess of the hydride was decomposed by careful addition of water, and the mixture was neutralized with acetic acid. To this was added 650 mL of saturated aq. NH4Cl solution. The organic layer was separated and the aqueous layer further extracted with 4 × 150 mL portions of THF. The combined THF layers were dried over MgSO4 and solvent removed in vacuo. Recrystallization from Et2O gave 4.1 mg (91%) of 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propan-1-ol (V) as a white solid, m.p. 461–463 K please check. MS calculated for C14H22NaO3]+: 261.1461. Found: 246.1461 (0 ppm). IR (KBr) νOH: 3425, 3150 cm−1. 1H NMR (CDCl3, δ ppm): 1.75 (m, 2H, CH2), 2.09 (s, 1H OH), 2.18 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.75 (t, J = 7.3 Hz, 2H, Ar–CH2), 3.52 (t, J = 6.6 Hz, 2H, CH2–OH), 3.65 & 3.69 [2 × (s, 3H, Ar–OCH3)]. 13C NMR (CDCl3, δ ppm): 11.7, 12.6, 12.8, 22.6, 32.0, 60.0, 61.0, 61.2, 127.4, 127.6, 128.6, 129.2, 130.4, 153.0, 153.5.
Acylation of 3-(2,5-dimethoxy-3,4,6-trimethylphenyl)propan-1-ol (V): The alcohol (V) (5.0 g, 21 mmol) was dissolved in CH2Cl2 (100 ml). NEt3 (2.2 mL) was added and the solution stirred 30 min at 273 K. Methacryloyl chloride (2.4 g, 23 mmol) was added dropwise, stirred for 2 h under nitrogen at 273 K and then at room temperature for 4 h. After extraction from CH2Cl2/H2O the organic layer was dried (MgSO4) and solvent removed in vacuo. Purification using on SiO2 using petroleum ether/EtOAc (9:1) gave the colourless solid product (I), m.p. 395–397 K. MS calculated for [C18H26NaO4]+: 329.1723. Found: 329.1709 (4.41 ppm). IR (KBr) νC=O: 1731 cm−1 (ester). 1H NMR (CDCl3, δ ppm): 1.89 (m, 2H, CH2), 1.98 (m, 3H, CH3), 2.19 (s, 6H, 2 × Ar–CH3), 2.23 (s, 3H, Ar–CH3), 2.73 (t, J = 7.6 Hz, 2H, Ar–CH2), 3.65 & 3.68 [2 × (s, 3H, Ar–OCH3)], 4.23 (t, J = 6.1 Hz, 2H, CH2), 5.57 (m, 1H, =CH), 6.14 (m, 1H, =CH). 13C NMR (CDCl3, δ ppm): 12.2, 12.9, 13.1, 18.6, 24.1, 29.5, 60.3, 61.1, 65.0, 125.4, 127.4, 128.2, 128.8, 131.4, 136.8, 153.20, 153.4, 167.8. Crystals of (I) were obtained from a mixed CH2Cl2/hexane solution 1/1 v/v.
The synthesis of (II) has been reported previously (Goswami et al., 2013). Crystals were obtained from the slow evaporation of an Et2O solution.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for vinyl, 0.99 Å, Uiso = 1.2Ueq(C) for CH2 H atoms and 0.98 Å, Uiso = 1.5Ueq(C) for CH3 H atoms. The hydrogen atoms of the C13 and C51 methyl groups of (I) were equally disordered over two sites. Idealized disorder models were applied using AFIX123 in SHELXL2014/7. For (I), a low-angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final cycles.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989017004959/hg5486sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004959/hg5486Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017004959/hg5486IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004959/hg5486Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004959/hg5486IIsup5.cml
For both compounds, data collection: APEX2 (Bruker, 2013); cell
APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010).C18H26O4 | F(000) = 664 |
Mr = 306.39 | Dx = 1.229 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1833 (7) Å | Cell parameters from 1289 reflections |
b = 30.341 (4) Å | θ = 4.7–40.3° |
c = 10.6339 (15) Å | µ = 0.09 mm−1 |
β = 97.910 (9)° | T = 91 K |
V = 1656.4 (4) Å3 | Needle, colourless |
Z = 4 | 0.65 × 0.04 × 0.04 mm |
Bruker APEXII CCD area detector diffractometer | 1681 independent reflections |
Radiation source: fine-focus sealed tube | 1254 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
ω scans | θmax = 20.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −5→5 |
Tmin = 0.775, Tmax = 1.00 | k = −29→29 |
11585 measured reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0683P)2 + 1.3102P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1681 reflections | Δρmax = 0.34 e Å−3 |
203 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. One low angle reflection with Fo << Fc, that may have been affected by the beam-stop, was omitted from the final refinement cycles. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5070 (7) | 0.13988 (12) | 0.9190 (3) | 0.0223 (10) | |
O1 | 0.6011 (5) | 0.17928 (8) | 0.9780 (2) | 0.0255 (7) | |
C111 | 0.4922 (8) | 0.18964 (12) | 1.0910 (4) | 0.0324 (11) | |
H11A | 0.3020 | 0.1872 | 1.0741 | 0.049* | |
H11B | 0.5403 | 0.2198 | 1.1176 | 0.049* | |
H11C | 0.5595 | 0.1690 | 1.1585 | 0.049* | |
C2 | 0.2886 (7) | 0.14223 (11) | 0.8270 (3) | 0.0213 (10) | |
C21 | 0.1425 (7) | 0.18507 (12) | 0.7978 (4) | 0.0296 (10) | |
H21A | −0.0289 | 0.1831 | 0.8265 | 0.044* | |
H21B | 0.1204 | 0.1904 | 0.7061 | 0.044* | |
H21C | 0.2414 | 0.2094 | 0.8420 | 0.044* | |
C3 | 0.2007 (7) | 0.10363 (12) | 0.7625 (3) | 0.0198 (10) | |
C31 | −0.0362 (7) | 0.10426 (12) | 0.6621 (3) | 0.0263 (10) | |
H31A | −0.0762 | 0.0742 | 0.6321 | 0.039* | |
H31B | −0.0008 | 0.1227 | 0.5908 | 0.039* | |
H31C | −0.1850 | 0.1163 | 0.6984 | 0.039* | |
C4 | 0.3397 (7) | 0.06474 (11) | 0.7918 (3) | 0.0189 (10) | |
O4 | 0.2485 (5) | 0.02580 (7) | 0.7301 (2) | 0.0235 (7) | |
C41 | 0.3680 (8) | 0.01709 (13) | 0.6187 (3) | 0.0309 (11) | |
H41A | 0.3442 | 0.0426 | 0.5617 | 0.046* | |
H41B | 0.2869 | −0.0089 | 0.5750 | 0.046* | |
H41C | 0.5545 | 0.0116 | 0.6432 | 0.046* | |
C5 | 0.5615 (7) | 0.06238 (11) | 0.8830 (3) | 0.0185 (9) | |
C51 | 0.7126 (7) | 0.01998 (11) | 0.9032 (3) | 0.0240 (10) | |
H51A | 0.8608 | 0.0242 | 0.9700 | 0.036* | 0.5 |
H51B | 0.5991 | −0.0032 | 0.9287 | 0.036* | 0.5 |
H51C | 0.7763 | 0.0114 | 0.8241 | 0.036* | 0.5 |
H51D | 0.6300 | −0.0026 | 0.8452 | 0.036* | 0.5 |
H51E | 0.8918 | 0.0248 | 0.8865 | 0.036* | 0.5 |
H51F | 0.7145 | 0.0101 | 0.9911 | 0.036* | 0.5 |
C6 | 0.6460 (7) | 0.10094 (12) | 0.9490 (3) | 0.0211 (10) | |
C7 | 0.8823 (7) | 0.10066 (11) | 1.0496 (3) | 0.0229 (10) | |
H7A | 0.9480 | 0.1312 | 1.0626 | 0.028* | |
H7B | 1.0210 | 0.0829 | 1.0188 | 0.028* | |
C8 | 0.8279 (7) | 0.08205 (12) | 1.1773 (3) | 0.0233 (9) | |
H8A | 0.6784 | 0.0980 | 1.2044 | 0.028* | |
H8B | 0.7780 | 0.0507 | 1.1660 | 0.028* | |
C9 | 1.0568 (7) | 0.08561 (12) | 1.2801 (3) | 0.0268 (10) | |
H9A | 1.0197 | 0.0700 | 1.3574 | 0.032* | |
H9B | 1.2130 | 0.0722 | 1.2517 | 0.032* | |
O9 | 1.1017 (5) | 0.13212 (8) | 1.3071 (2) | 0.0266 (7) | |
C10 | 1.3096 (8) | 0.14204 (13) | 1.3916 (4) | 0.0243 (10) | |
O10 | 1.4618 (5) | 0.11468 (9) | 1.4395 (2) | 0.0335 (8) | |
C11 | 1.3351 (7) | 0.19019 (12) | 1.4190 (3) | 0.0248 (10) | |
C12 | 1.1719 (8) | 0.21884 (13) | 1.3569 (4) | 0.0330 (11) | |
H12A | 1.0364 | 0.2088 | 1.2941 | 0.040* | |
H12B | 1.1902 | 0.2494 | 1.3753 | 0.040* | |
C13 | 1.5513 (8) | 0.20272 (14) | 1.5203 (4) | 0.0391 (11) | |
H13A | 1.6460 | 0.1762 | 1.5525 | 0.059* | 0.5 |
H13B | 1.6707 | 0.2228 | 1.4850 | 0.059* | 0.5 |
H13C | 1.4791 | 0.2174 | 1.5898 | 0.059* | 0.5 |
H13D | 1.5512 | 0.2347 | 1.5324 | 0.059* | 0.5 |
H13E | 1.5265 | 0.1881 | 1.5999 | 0.059* | 0.5 |
H13F | 1.7181 | 0.1936 | 1.4951 | 0.059* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.027 (2) | 0.023 (2) | 0.020 (2) | −0.006 (2) | 0.012 (2) | −0.0020 (18) |
O1 | 0.0321 (16) | 0.0217 (16) | 0.0244 (16) | −0.0032 (12) | 0.0100 (13) | −0.0026 (12) |
C111 | 0.042 (3) | 0.030 (3) | 0.028 (3) | 0.002 (2) | 0.013 (2) | −0.0046 (19) |
C2 | 0.022 (2) | 0.022 (2) | 0.022 (2) | 0.0017 (19) | 0.010 (2) | 0.0053 (18) |
C21 | 0.025 (2) | 0.030 (2) | 0.034 (2) | 0.0009 (19) | 0.0036 (19) | 0.0006 (19) |
C3 | 0.022 (2) | 0.026 (2) | 0.013 (2) | −0.0025 (19) | 0.0075 (18) | −0.0001 (18) |
C31 | 0.031 (3) | 0.027 (2) | 0.022 (2) | −0.0015 (19) | 0.007 (2) | 0.0011 (17) |
C4 | 0.026 (2) | 0.017 (2) | 0.015 (2) | −0.0043 (19) | 0.009 (2) | −0.0017 (17) |
O4 | 0.0286 (15) | 0.0231 (15) | 0.0205 (16) | −0.0024 (13) | 0.0097 (12) | −0.0029 (12) |
C41 | 0.039 (3) | 0.032 (3) | 0.024 (3) | −0.003 (2) | 0.014 (2) | −0.0054 (19) |
C5 | 0.017 (2) | 0.020 (2) | 0.020 (2) | 0.0001 (18) | 0.0082 (19) | 0.0013 (18) |
C51 | 0.025 (2) | 0.024 (2) | 0.025 (2) | −0.0010 (18) | 0.0067 (18) | −0.0010 (17) |
C6 | 0.022 (2) | 0.024 (2) | 0.019 (2) | −0.0029 (19) | 0.0097 (19) | 0.0001 (18) |
C7 | 0.026 (2) | 0.020 (2) | 0.023 (2) | 0.0012 (18) | 0.0058 (19) | 0.0003 (17) |
C8 | 0.026 (2) | 0.023 (2) | 0.021 (2) | −0.0020 (19) | 0.0056 (18) | 0.0022 (18) |
C9 | 0.034 (2) | 0.022 (2) | 0.025 (2) | −0.004 (2) | 0.0046 (19) | −0.0003 (19) |
O9 | 0.0300 (17) | 0.0213 (16) | 0.0274 (16) | −0.0022 (12) | 0.0001 (14) | −0.0027 (12) |
C10 | 0.024 (3) | 0.033 (3) | 0.018 (2) | −0.002 (2) | 0.011 (2) | −0.002 (2) |
O10 | 0.0331 (17) | 0.0316 (17) | 0.0347 (18) | 0.0013 (15) | 0.0005 (14) | 0.0017 (14) |
C11 | 0.025 (2) | 0.027 (3) | 0.024 (2) | 0.001 (2) | 0.009 (2) | −0.0012 (19) |
C12 | 0.036 (3) | 0.026 (3) | 0.037 (3) | −0.006 (2) | 0.008 (2) | −0.011 (2) |
C13 | 0.039 (3) | 0.037 (3) | 0.041 (3) | −0.008 (2) | 0.005 (2) | −0.007 (2) |
C1—C2 | 1.393 (5) | C51—H51C | 0.9800 |
C1—C6 | 1.398 (5) | C51—H51D | 0.9800 |
C1—O1 | 1.406 (4) | C51—H51E | 0.9800 |
O1—C111 | 1.431 (4) | C51—H51F | 0.9800 |
C111—H11A | 0.9800 | C6—C7 | 1.512 (5) |
C111—H11B | 0.9800 | C7—C8 | 1.532 (5) |
C111—H11C | 0.9800 | C7—H7A | 0.9900 |
C2—C3 | 1.401 (5) | C7—H7B | 0.9900 |
C2—C21 | 1.515 (5) | C8—C9 | 1.503 (5) |
C21—H21A | 0.9800 | C8—H8A | 0.9900 |
C21—H21B | 0.9800 | C8—H8B | 0.9900 |
C21—H21C | 0.9800 | C9—O9 | 1.452 (4) |
C3—C4 | 1.395 (5) | C9—H9A | 0.9900 |
C3—C31 | 1.512 (5) | C9—H9B | 0.9900 |
C31—H31A | 0.9800 | O9—C10 | 1.339 (4) |
C31—H31B | 0.9800 | C10—O10 | 1.209 (4) |
C31—H31C | 0.9800 | C10—C11 | 1.492 (5) |
C4—C5 | 1.400 (5) | C11—C12 | 1.324 (5) |
C4—O4 | 1.402 (4) | C11—C13 | 1.493 (5) |
O4—C41 | 1.435 (4) | C12—H12A | 0.9500 |
C41—H41A | 0.9800 | C12—H12B | 0.9500 |
C41—H41B | 0.9800 | C13—H13A | 0.9800 |
C41—H41C | 0.9800 | C13—H13B | 0.9800 |
C5—C6 | 1.403 (5) | C13—H13C | 0.9800 |
C5—C51 | 1.506 (5) | C13—H13D | 0.9800 |
C51—H51A | 0.9800 | C13—H13E | 0.9800 |
C51—H51B | 0.9800 | C13—H13F | 0.9800 |
C2—C1—C6 | 123.2 (3) | H51A—C51—H51F | 56.3 |
C2—C1—O1 | 118.0 (3) | H51B—C51—H51F | 56.3 |
C6—C1—O1 | 118.7 (3) | H51C—C51—H51F | 141.1 |
C1—O1—C111 | 114.2 (3) | H51D—C51—H51F | 109.5 |
O1—C111—H11A | 109.5 | H51E—C51—H51F | 109.5 |
O1—C111—H11B | 109.5 | C1—C6—C5 | 118.4 (3) |
H11A—C111—H11B | 109.5 | C1—C6—C7 | 120.5 (3) |
O1—C111—H11C | 109.5 | C5—C6—C7 | 121.1 (3) |
H11A—C111—H11C | 109.5 | C6—C7—C8 | 113.6 (3) |
H11B—C111—H11C | 109.5 | C6—C7—H7A | 108.9 |
C1—C2—C3 | 118.6 (3) | C8—C7—H7A | 108.9 |
C1—C2—C21 | 121.5 (3) | C6—C7—H7B | 108.9 |
C3—C2—C21 | 119.8 (3) | C8—C7—H7B | 108.9 |
C2—C21—H21A | 109.5 | H7A—C7—H7B | 107.7 |
C2—C21—H21B | 109.5 | C9—C8—C7 | 113.3 (3) |
H21A—C21—H21B | 109.5 | C9—C8—H8A | 108.9 |
C2—C21—H21C | 109.5 | C7—C8—H8A | 108.9 |
H21A—C21—H21C | 109.5 | C9—C8—H8B | 108.9 |
H21B—C21—H21C | 109.5 | C7—C8—H8B | 108.9 |
C4—C3—C2 | 118.3 (3) | H8A—C8—H8B | 107.7 |
C4—C3—C31 | 120.8 (3) | O9—C9—C8 | 107.6 (3) |
C2—C3—C31 | 120.8 (3) | O9—C9—H9A | 110.2 |
C3—C31—H31A | 109.5 | C8—C9—H9A | 110.2 |
C3—C31—H31B | 109.5 | O9—C9—H9B | 110.2 |
H31A—C31—H31B | 109.5 | C8—C9—H9B | 110.2 |
C3—C31—H31C | 109.5 | H9A—C9—H9B | 108.5 |
H31A—C31—H31C | 109.5 | C10—O9—C9 | 116.3 (3) |
H31B—C31—H31C | 109.5 | O10—C10—O9 | 123.1 (3) |
C3—C4—C5 | 123.2 (3) | O10—C10—C11 | 123.7 (4) |
C3—C4—O4 | 118.5 (3) | O9—C10—C11 | 113.1 (3) |
C5—C4—O4 | 118.2 (3) | C12—C11—C10 | 120.8 (4) |
C4—O4—C41 | 112.7 (3) | C12—C11—C13 | 123.8 (4) |
O4—C41—H41A | 109.5 | C10—C11—C13 | 115.3 (3) |
O4—C41—H41B | 109.5 | C11—C12—H12A | 120.0 |
H41A—C41—H41B | 109.5 | C11—C12—H12B | 120.0 |
O4—C41—H41C | 109.5 | H12A—C12—H12B | 120.0 |
H41A—C41—H41C | 109.5 | C11—C13—H13A | 109.5 |
H41B—C41—H41C | 109.5 | C11—C13—H13B | 109.5 |
C4—C5—C6 | 118.3 (3) | H13A—C13—H13B | 109.5 |
C4—C5—C51 | 120.3 (3) | C11—C13—H13C | 109.5 |
C6—C5—C51 | 121.3 (3) | H13A—C13—H13C | 109.5 |
C5—C51—H51A | 109.5 | H13B—C13—H13C | 109.5 |
C5—C51—H51B | 109.5 | C11—C13—H13D | 109.5 |
H51A—C51—H51B | 109.5 | H13A—C13—H13D | 141.1 |
C5—C51—H51C | 109.5 | H13B—C13—H13D | 56.3 |
H51A—C51—H51C | 109.5 | H13C—C13—H13D | 56.3 |
H51B—C51—H51C | 109.5 | C11—C13—H13E | 109.5 |
C5—C51—H51D | 109.5 | H13A—C13—H13E | 56.3 |
H51A—C51—H51D | 141.1 | H13B—C13—H13E | 141.1 |
H51B—C51—H51D | 56.3 | H13C—C13—H13E | 56.3 |
H51C—C51—H51D | 56.3 | H13D—C13—H13E | 109.5 |
C5—C51—H51E | 109.5 | C11—C13—H13F | 109.5 |
H51A—C51—H51E | 56.3 | H13A—C13—H13F | 56.3 |
H51B—C51—H51E | 141.1 | H13B—C13—H13F | 56.3 |
H51C—C51—H51E | 56.3 | H13C—C13—H13F | 141.1 |
H51D—C51—H51E | 109.5 | H13D—C13—H13F | 109.5 |
C5—C51—H51F | 109.5 | H13E—C13—H13F | 109.5 |
C2—C1—O1—C111 | 90.7 (4) | C2—C1—C6—C5 | 0.1 (5) |
C6—C1—O1—C111 | −93.5 (4) | O1—C1—C6—C5 | −175.5 (3) |
C6—C1—C2—C3 | 1.0 (5) | C2—C1—C6—C7 | 179.8 (3) |
O1—C1—C2—C3 | 176.7 (3) | O1—C1—C6—C7 | 4.2 (5) |
C6—C1—C2—C21 | 179.6 (3) | C4—C5—C6—C1 | −1.0 (5) |
O1—C1—C2—C21 | −4.7 (5) | C51—C5—C6—C1 | 175.4 (3) |
C1—C2—C3—C4 | −1.3 (5) | C4—C5—C6—C7 | 179.3 (3) |
C21—C2—C3—C4 | −179.9 (3) | C51—C5—C6—C7 | −4.2 (5) |
C1—C2—C3—C31 | 179.7 (3) | C1—C6—C7—C8 | 101.6 (4) |
C21—C2—C3—C31 | 1.1 (5) | C5—C6—C7—C8 | −78.7 (4) |
C2—C3—C4—C5 | 0.4 (5) | C6—C7—C8—C9 | −174.8 (3) |
C31—C3—C4—C5 | 179.4 (3) | C7—C8—C9—O9 | 66.7 (4) |
C2—C3—C4—O4 | 178.3 (3) | C8—C9—O9—C10 | −176.0 (3) |
C31—C3—C4—O4 | −2.7 (5) | C9—O9—C10—O10 | 3.5 (5) |
C3—C4—O4—C41 | 93.9 (4) | C9—O9—C10—C11 | −177.2 (3) |
C5—C4—O4—C41 | −88.1 (4) | O10—C10—C11—C12 | 175.3 (4) |
C3—C4—C5—C6 | 0.8 (5) | O9—C10—C11—C12 | −4.0 (5) |
O4—C4—C5—C6 | −177.1 (3) | O10—C10—C11—C13 | −5.4 (5) |
C3—C4—C5—C51 | −175.7 (3) | O9—C10—C11—C13 | 175.3 (3) |
O4—C4—C5—C51 | 6.4 (5) |
Cg is the centroid of the C1–C6 benzene ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O4i | 0.99 | 2.58 | 3.456 (4) | 147 |
C12—H12B···O1ii | 0.95 | 2.50 | 3.388 (4) | 157 |
C21—H21A···O1iii | 0.98 | 2.67 | 3.614 (5) | 161 |
C41—H41A···O10iv | 0.98 | 2.66 | 3.590 (5) | 159 |
C51—H51E···O4v | 0.98 | 2.65 | 3.541 (4) | 151 |
C7—H7B···Cgv | 0.99 | 2.97 | 3.709 (4) | 134 |
C31—H31C···Cgiii | 0.98 | 2.85 | 3.693 (4) | 148 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) x−1, y, z−1; (v) x+1, y, z. |
C16H20O4 | F(000) = 592 |
Mr = 276.32 | Dx = 1.246 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.4096 (2) Å | Cell parameters from 1562 reflections |
b = 11.8425 (6) Å | θ = 2.3–21.1° |
c = 28.2511 (16) Å | µ = 0.09 mm−1 |
β = 93.495 (3)° | T = 89 K |
V = 1472.55 (13) Å3 | Irregular fragment, colourless |
Z = 4 | 0.27 × 0.14 × 0.13 mm |
Bruker APEXII CCD area detector diffractometer | 1774 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.071 |
ω scans | θmax = 24.8°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −5→5 |
Tmin = 0.785, Tmax = 1.000 | k = −13→13 |
16398 measured reflections | l = −31→33 |
2509 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0609P)2 + 0.8066P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2509 reflections | Δρmax = 0.34 e Å−3 |
185 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1775 (5) | 0.16524 (19) | 0.14048 (8) | 0.0209 (5) | |
O1 | 0.0812 (4) | 0.09197 (14) | 0.11320 (6) | 0.0324 (5) | |
C2 | 0.3994 (5) | 0.13528 (19) | 0.18042 (8) | 0.0200 (5) | |
C21 | 0.4744 (6) | 0.01196 (19) | 0.18425 (8) | 0.0277 (6) | |
H21A | 0.6438 | 0.0010 | 0.2079 | 0.042* | |
H21B | 0.5321 | −0.0160 | 0.1534 | 0.042* | |
H21C | 0.2964 | −0.0297 | 0.1939 | 0.042* | |
C3 | 0.5109 (5) | 0.21672 (19) | 0.20975 (8) | 0.0200 (5) | |
C31 | 0.7283 (6) | 0.1988 (2) | 0.25224 (8) | 0.0273 (6) | |
H31A | 0.6208 | 0.2090 | 0.2813 | 0.041* | |
H31B | 0.8945 | 0.2537 | 0.2516 | 0.041* | |
H31C | 0.8113 | 0.1221 | 0.2515 | 0.041* | |
C4 | 0.4110 (5) | 0.33563 (19) | 0.20215 (8) | 0.0211 (5) | |
O4 | 0.5126 (4) | 0.40980 (14) | 0.22879 (6) | 0.0306 (4) | |
C5 | 0.1881 (5) | 0.36569 (18) | 0.16246 (8) | 0.0194 (5) | |
C51 | 0.1114 (6) | 0.48890 (19) | 0.15805 (9) | 0.0280 (6) | |
H51A | −0.0626 | 0.4987 | 0.1351 | 0.042* | |
H51B | 0.2866 | 0.5302 | 0.1471 | 0.042* | |
H51C | 0.0601 | 0.5182 | 0.1890 | 0.042* | |
C6 | 0.0734 (5) | 0.28445 (18) | 0.13349 (8) | 0.0189 (5) | |
C7 | −0.1420 (5) | 0.3062 (2) | 0.09083 (8) | 0.0225 (5) | |
H7A | −0.2806 | 0.3690 | 0.0979 | 0.027* | |
H7B | −0.2666 | 0.2380 | 0.0839 | 0.027* | |
C8 | 0.0333 (5) | 0.33651 (19) | 0.04742 (8) | 0.0210 (5) | |
H8A | 0.1784 | 0.3979 | 0.0562 | 0.025* | |
H8B | 0.1526 | 0.2699 | 0.0384 | 0.025* | |
C9 | −0.1672 (5) | 0.37361 (19) | 0.00508 (8) | 0.0208 (5) | |
H9A | −0.3057 | 0.4343 | 0.0145 | 0.025* | |
H9B | −0.0408 | 0.4035 | −0.0199 | 0.025* | |
O9 | −0.3418 (3) | 0.27759 (12) | −0.01293 (5) | 0.0215 (4) | |
C10 | −0.5198 (5) | 0.29825 (19) | −0.05223 (8) | 0.0211 (5) | |
O10 | −0.5414 (4) | 0.39082 (13) | −0.07045 (5) | 0.0264 (4) | |
C11 | −0.6877 (5) | 0.19585 (19) | −0.06980 (8) | 0.0241 (6) | |
C12 | −0.6423 (7) | 0.0922 (2) | −0.04544 (10) | 0.0441 (8) | |
H12A | −0.7486 | 0.0265 | −0.0564 | 0.053* | |
H12B | −0.5056 | 0.0883 | −0.0182 | 0.053* | |
C13 | −0.8840 (6) | 0.2102 (2) | −0.11027 (9) | 0.0314 (6) | |
H13A | −1.0002 | 0.1407 | −0.1164 | 0.047* | |
H13B | −0.7650 | 0.2273 | −0.1376 | 0.047* | |
H13C | −1.0239 | 0.2727 | −0.1051 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0196 (12) | 0.0212 (12) | 0.0220 (13) | −0.0030 (9) | 0.0022 (10) | 0.0003 (10) |
O1 | 0.0395 (11) | 0.0232 (9) | 0.0328 (10) | −0.0028 (8) | −0.0109 (8) | −0.0067 (8) |
C2 | 0.0204 (12) | 0.0213 (12) | 0.0183 (12) | −0.0005 (9) | 0.0006 (10) | 0.0029 (10) |
C21 | 0.0338 (15) | 0.0207 (13) | 0.0281 (14) | 0.0027 (10) | −0.0028 (11) | 0.0001 (11) |
C3 | 0.0186 (12) | 0.0247 (12) | 0.0167 (12) | −0.0011 (10) | 0.0032 (9) | 0.0030 (10) |
C31 | 0.0297 (13) | 0.0288 (14) | 0.0230 (13) | −0.0012 (11) | −0.0026 (11) | 0.0019 (11) |
C4 | 0.0217 (12) | 0.0229 (12) | 0.0191 (12) | −0.0039 (10) | 0.0031 (10) | −0.0021 (10) |
O4 | 0.0364 (10) | 0.0256 (9) | 0.0286 (10) | −0.0042 (8) | −0.0065 (8) | −0.0071 (8) |
C5 | 0.0194 (12) | 0.0181 (12) | 0.0208 (12) | 0.0003 (9) | 0.0028 (10) | 0.0015 (10) |
C51 | 0.0327 (15) | 0.0214 (13) | 0.0296 (15) | 0.0021 (10) | 0.0000 (11) | 0.0013 (11) |
C6 | 0.0162 (11) | 0.0224 (12) | 0.0183 (12) | 0.0000 (9) | 0.0016 (9) | 0.0028 (10) |
C7 | 0.0192 (12) | 0.0252 (13) | 0.0229 (13) | −0.0008 (10) | 0.0000 (10) | 0.0018 (10) |
C8 | 0.0177 (12) | 0.0229 (12) | 0.0221 (13) | 0.0005 (9) | −0.0016 (10) | −0.0006 (10) |
C9 | 0.0205 (12) | 0.0195 (12) | 0.0221 (13) | −0.0023 (9) | −0.0027 (10) | 0.0014 (10) |
O9 | 0.0236 (9) | 0.0190 (8) | 0.0213 (9) | −0.0013 (6) | −0.0038 (7) | 0.0000 (7) |
C10 | 0.0212 (12) | 0.0225 (13) | 0.0194 (13) | 0.0025 (10) | 0.0009 (10) | −0.0023 (10) |
O10 | 0.0314 (10) | 0.0227 (9) | 0.0244 (9) | −0.0005 (7) | −0.0049 (7) | 0.0044 (7) |
C11 | 0.0277 (13) | 0.0227 (13) | 0.0217 (13) | −0.0002 (10) | 0.0006 (10) | −0.0018 (10) |
C12 | 0.065 (2) | 0.0248 (14) | 0.0399 (17) | −0.0126 (13) | −0.0195 (14) | −0.0009 (13) |
C13 | 0.0295 (14) | 0.0303 (14) | 0.0338 (15) | 0.0014 (11) | −0.0036 (11) | −0.0079 (12) |
C1—O1 | 1.220 (3) | C6—C7 | 1.510 (3) |
C1—C2 | 1.491 (3) | C7—C8 | 1.531 (3) |
C1—C6 | 1.494 (3) | C7—H7A | 0.9900 |
C2—C3 | 1.345 (3) | C7—H7B | 0.9900 |
C2—C21 | 1.500 (3) | C8—C9 | 1.509 (3) |
C21—H21A | 0.9800 | C8—H8A | 0.9900 |
C21—H21B | 0.9800 | C8—H8B | 0.9900 |
C21—H21C | 0.9800 | C9—O9 | 1.448 (3) |
C3—C4 | 1.487 (3) | C9—H9A | 0.9900 |
C3—C31 | 1.505 (3) | C9—H9B | 0.9900 |
C31—H31A | 0.9800 | O9—C10 | 1.342 (3) |
C31—H31B | 0.9800 | C10—O10 | 1.213 (3) |
C31—H31C | 0.9800 | C10—C11 | 1.490 (3) |
C4—O4 | 1.224 (3) | C11—C13 | 1.401 (3) |
C4—C5 | 1.489 (3) | C11—C12 | 1.416 (3) |
C5—C6 | 1.342 (3) | C12—H12A | 0.9500 |
C5—C51 | 1.501 (3) | C12—H12B | 0.9500 |
C51—H51A | 0.9800 | C13—H13A | 0.9800 |
C51—H51B | 0.9800 | C13—H13B | 0.9800 |
C51—H51C | 0.9800 | C13—H13C | 0.9800 |
O1—C1—C2 | 119.7 (2) | C1—C6—C7 | 116.11 (19) |
O1—C1—C6 | 119.8 (2) | C6—C7—C8 | 110.83 (18) |
C2—C1—C6 | 120.5 (2) | C6—C7—H7A | 109.5 |
C3—C2—C1 | 119.6 (2) | C8—C7—H7A | 109.5 |
C3—C2—C21 | 125.7 (2) | C6—C7—H7B | 109.5 |
C1—C2—C21 | 114.71 (19) | C8—C7—H7B | 109.5 |
C2—C21—H21A | 109.5 | H7A—C7—H7B | 108.1 |
C2—C21—H21B | 109.5 | C9—C8—C7 | 113.78 (18) |
H21A—C21—H21B | 109.5 | C9—C8—H8A | 108.8 |
C2—C21—H21C | 109.5 | C7—C8—H8A | 108.8 |
H21A—C21—H21C | 109.5 | C9—C8—H8B | 108.8 |
H21B—C21—H21C | 109.5 | C7—C8—H8B | 108.8 |
C2—C3—C4 | 119.7 (2) | H8A—C8—H8B | 107.7 |
C2—C3—C31 | 125.6 (2) | O9—C9—C8 | 108.86 (17) |
C4—C3—C31 | 114.7 (2) | O9—C9—H9A | 109.9 |
C3—C31—H31A | 109.5 | C8—C9—H9A | 109.9 |
C3—C31—H31B | 109.5 | O9—C9—H9B | 109.9 |
H31A—C31—H31B | 109.5 | C8—C9—H9B | 109.9 |
C3—C31—H31C | 109.5 | H9A—C9—H9B | 108.3 |
H31A—C31—H31C | 109.5 | C10—O9—C9 | 114.78 (17) |
H31B—C31—H31C | 109.5 | O10—C10—O9 | 122.9 (2) |
O4—C4—C3 | 119.8 (2) | O10—C10—C11 | 124.7 (2) |
O4—C4—C5 | 119.5 (2) | O9—C10—C11 | 112.39 (19) |
C3—C4—C5 | 120.8 (2) | C13—C11—C12 | 124.3 (2) |
C6—C5—C4 | 119.7 (2) | C13—C11—C10 | 116.3 (2) |
C6—C5—C51 | 124.9 (2) | C12—C11—C10 | 119.4 (2) |
C4—C5—C51 | 115.5 (2) | C11—C12—H12A | 120.0 |
C5—C51—H51A | 109.5 | C11—C12—H12B | 120.0 |
C5—C51—H51B | 109.5 | H12A—C12—H12B | 120.0 |
H51A—C51—H51B | 109.5 | C11—C13—H13A | 109.5 |
C5—C51—H51C | 109.5 | C11—C13—H13B | 109.5 |
H51A—C51—H51C | 109.5 | H13A—C13—H13B | 109.5 |
H51B—C51—H51C | 109.5 | C11—C13—H13C | 109.5 |
C5—C6—C1 | 119.7 (2) | H13A—C13—H13C | 109.5 |
C5—C6—C7 | 124.0 (2) | H13B—C13—H13C | 109.5 |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O10i | 0.99 | 2.72 | 3.624 (3) | 153 |
C9—H9B···O10ii | 0.99 | 2.70 | 3.595 (3) | 150 |
C12—H12A···O1iii | 0.95 | 2.53 | 3.422 (3) | 156 |
C21—H21A···O4iv | 0.98 | 2.52 | 3.455 (3) | 161 |
C31—H31C···O4iv | 0.98 | 2.68 | 3.638 (3) | 166 |
C51—H51B···O10v | 0.98 | 2.67 | 3.510 (3) | 144 |
C31—H31B···Cgii | 0.98 | 2.95 | 3.534 (3) | 119 |
Symmetry codes: (i) −x−1, −y+1, −z; (ii) x+1, y, z; (iii) −x−1, −y, −z; (iv) −x+3/2, y−1/2, −z+1/2; (v) −x, −y+1, −z. |
Acknowledgements
We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.
Funding information
Funding for this research was provided by: NZ Ministry of Business, Innovation and Employment Science Investment Fund (award No. UOOX1206).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559. Web of Science CrossRef CAS Google Scholar
Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 860–866. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420. Web of Science CrossRef CAS Google Scholar
Gracia, R. & Mecerreyes, D. (2013). Polym. Chem. 4, 2206–2214. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hasegawa, T., Shimizu, K., Seki, H., Murakami, H., Yoshida, S., Yoza, K. & Nomiya, K. (2007). Inorg. Chem. Commun. 10, 1140–1144. Web of Science CSD CrossRef CAS Google Scholar
Häupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250–1256. Google Scholar
Hodge, P. & Gautrot, J. E. (2009). Polym. Int. 58, 261–266. Web of Science CrossRef CAS Google Scholar
Hoffmann, H. M. R. & Hursthouse, M. B. (1976). J. Am. Chem. Soc. 98, 7449–7450. CSD CrossRef CAS Web of Science Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsuo, Y., Iwashita, A., Oyama, H. & Nakamura, E. (2009). Tetrahedron Lett. 50, 3411–3413. Web of Science CSD CrossRef CAS Google Scholar
McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 1100–1105. Web of Science CSD CrossRef IUCr Journals Google Scholar
McAdam, C. J., Nafady, A., Bond, A. M., Moratti, S. C. & Simpson, J. (2008). J. Inorg. Organomet. Polym. Mater. 18, 485–490. Web of Science CrossRef CAS Google Scholar
Schattling, P., Jochum, F. D. & Theato, P. (2014). Polym. Chem. 5, 25–36. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamura, K., Akutagawa, N., Satoh, M., Wada, J. & Masuda, T. (2008). Macromol. Rapid Commun. 29, 1944–1949. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wickramasinhage, R., McAdam, C. J. & Simpson, J. (2016). IUCrData, 1, x160307. Google Scholar
Wieczorek, M. W., Bockii, N. G. & Struchkov, Y. T. (1975). Rocz. Chem. 49, 1737. Google Scholar
Wiedenfeld, D. J., Nesterov, V. N., Minton, M. A. & Glass, D. R. (2003). Acta Cryst. C59, o700–o702. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.